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Part I.  

Discovering the role of flow-dependent mechanism in the regulation of 

cerebrovascular resistance. Contribution of hemodynamic forces to 

autoregulation of cerebral blood flow. 
 

I.1. INTRODUCTION 

Regulation of cerebral blood flow (CBF) is of utmost importance to supply the myriad 

functions of the brain. Many of the mechanisms operating in other organs and tissues are also 

contributing to the regulation of CBF, however all these mechanisms have to comply with limited 

space in the closed cranium 
1
. Thus maintenance of a relatively constant cerebral blood flow despite 

of the variations in systemic blood pressure and flow, the so called “autoregulation” of CBF is 

extremely important and thus, has been always in the center of investigations. 

Total cerebral blood flow has to be relatively constant in order to allow a stable and 

continuous supply of cerebral tissue and maintain intracranial volume and pressure constant. On the 

basis of Hagen-Poiseuille law it is assumed that CBF is related to the 4
th

 power of vessel radius, thus 

an increase in the diameter of vessels elicits an exponential increase in blood flow. Therefore in the 

closed cranium, a general vasodilatation would lead to substantial increase in CBF and cerebral 

blood volume (CBV) and would lead to elevation of intracranial pressure (and vice versa)
2, 3

 which 

would compress the brain and severely limits its function. Thus, tight control of CBF and CBV is 

essential for the brain. Indeed, in a wide range (from ~ 60 to 140 mmHg) of systemic arterial 

perfusion pressure CBF increases only slightly in a linear manner measured by different in vivo 

techniques.
4, 5

 At this point it has to be noted, that although in mathematical models gain = 1 is used 

to indicate so called perfect autoregulation, 
6, 7

 as also depicted in Figure 1, it is likely that such 

perfect horizontal relationship does not exist in vivo and it would not be even beneficial to provide 

an appropriate blood supply of brain tissues. Rather, as Rosenblum suggested, it is likely that the 

slope increases linearly as pressure and flow increases.
4, 5, 8, 9

 Nevertheless, the linear and not 

exponential (!) increase of CBF in the face of increasing blood pressure is achieved by cerebral 

autoregulation, although the underlying mechanisms have not yet clarified exactly. 
 

Because changes in pressure are accompanied by changes in flow, in vivo responses of 

cerebral vessels to changes in hemodynamics are most likely a combination of pressure and flow-

induced mechanisms. 
10-13

 Whereas, the role of changes in pressure has been well investigated in the 

cerebral circulation, the role of changes in flow eliciting vasomotor responses received much less 

attention. It is important to note however, that in previous in vivo studies of autoregulation of CBF 

and underlying cerebrovascular responses the effects of pressure and flow could not be separated and 

the effect of flow on the diameter of vessels was not even considered. 
5, 14-24

 
 

I. 1. 2. Intraluminal pressure-induced responses of cerebral vessels 

Earlier findings and new interpretations 

Until very recently, autoregulation of CBF has been primarily explained by the pressure-

induced myogenic response: 
25

 the inherent property of vascular smooth muscle to dilate to decreases 

and to constrict to increases in intraluminal pressure. Since its first description by Bayliss, 
26

 early in 

the 20
th

 century the myogenic response of different vessels (arterial, venous and lymphatic)  has been 

widely investigated. 
27-29

 
6, 30

 In these in vitro studies investigating the myogenic response only 

pressure was changed, flow was kept constant. 
31-33

 Therefore the observed diameter responses were 

due to changes in pressure alone and were not influenced by changes in flow. As mentioned above 

we reinvestigated these publications and found that in many of these studies cerebral vessels only 

maintained a constant diameter between 60-140 mmHg intraluminal pressure.
6, 34-36

 This response is 

referred as the 2
nd

 phase of in vitro arterial myogenic behavior proposed by Osol at al.
35

 Interestingly 
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however, if one extrapolated these findings to in vivo conditions it would not achieve autoregulation 

of CBF. That is, because in the presence of constant diameter, increasing pressure would result in an 

increased blood flow velocity thus an increase in CBF. In contrast, as described above, in vivo 

measurements of CBF did show that CBF remained relatively constant while intraluminal pressure 

(and flow velocity) increased!  These observations and facts prompted us to hypothesize the 

existence of a flow sensitive mechanism, which augments the gain of autoregulation close to 1 by 

eliciting additional constriction. 
 

I.1.3. Flow-induced responses of cerebral vessels 

As mentioned above, changes in pressure are accompanied by changes in flow,
10-13

 and based 

on theoretical considerations flow-induced mechanisms may play a role in cerebral autoregulation. 

Interestingly, there have been only few studies investigating flow-induced responses of cerebral 

vessels, which varied between species, vessel types and methods used.
37-42

 
43, 44

 
45-47

 Studies using a 

well-controlled methodological approach found dilation to flow in rat and mice in the vertebro-

basilar circulatory area; constriction was found in cat and rat isolated cerebral arteries from the 

internal carotid circulatory area; biphasic responses were observed in rabbit and rat cerebral 

arterioles showing pressure and flow-rate dependency (dilated at lower and constricted at higher 

pressure and flow-rates).  
 

I.2. HYPOTHESIS AND AIMS OF STUDIES 

As described above flow-induced responses of cerebral vessels varied between species, vessel 

types and methods used.
37-42

 
43, 44

 
45-47

 Importantly, no data are available regarding human cerebral 

vessels preventing the translation of knowledge from vertebrates to humans. In theory, flow-induced 

dilation (acting parallel to increase in pressure) would reduce the magnitude of myogenic 

constriction of cerebral vessels, which would reduce the gain of autoregulation of CBF, whereas if 

flow elicited constriction, it could contribute to a more efficient autoregulation of CBF. Importantly, 

the middle cerebral artery supplies those inner areas in which arteries have been shown to contribute 

substantially to vascular resistance controlling blood flow. 

Thus, we hypothesized that increases in flow elicit constriction of isolated middle cerebral arteries of 

rats and intracerebral arteries of humans.  

We aimed to assess the potential contribution of flow-induced response of cerebral arteries to the 

autoregulation of CBF and in a rat model elucidate the underlying molecular mechanisms. 
 

I.3. MATERIALS AND METHODS 

Isolation of human intracerebral arteries and rat middle cerebral arteries 

All procedures were approved by the institutional animal care and use commeettes of 

University of Pecs, Medical School, Pecs, Hungary and New York Medical College, Valhalla NY, 

USA. Studies of human samples were carried out under the approvement of the Regional Ethic and 

Review Commeette of the University of Pecs. 

Human samples 

Human brain samples were provided by Dr. Tamas Doczi (Department of Neurosurgery,  

University of Pecs, Pecs, Hungary) from discarded tissues of patients undergoing neurosurgical 

treatment of epileptic disorder or cerebral tumors (n=6, age: 32±10 years).
36

 The patients did not 

have any co-morbidity. Vessels for the study were selected to be removed from normal, non-

enhancing areas that had to be removed due to operative technical reasons to be able to approach 

deep-seated tumors. Brain tissue from the fronto-temporal cortex was placed in 0-4 ºC physiological 

salt solution (PSS) composed of (in mmol/L) 110.0 NaCl, 5.0 KCl, 2.5 CaCl2, 1.0 MgSO4, 1.0 

KH2PO4, 5.5 glucose, and 24.0 NaHCO3 equilibrated with a gas mixture of 20% O2 and 5% CO2, 

balanced with nitrogen at pH ~7.3.
48

 Under an operating microscope, with microsurgical instruments 
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small human cerebral arteries (HCA, 200-300 μm active diameters) were isolated from cortical brain 

tissue.  

Rat samples 

Male Wistar-Kyoto rats (250-350 g) were anesthetized (intraperitoneal pentobarbital sodium) 

and decapitated. The brains were immediately removed and placed in PSS. Middle cerebral arteries 

(MCA) were isolated from both sides of brain of each animal (n=61).  

Flow-, pressure-, and simultaneous flow and pressure - induced responses of isolated cerebral 

arteries  

After isolation, cerebral arteries were transferred into a custom made pressure-flow chamber. 

First, changes in diameter of cerebral arteries were obtained to stepwise increases in flow elicited by 

pressure differences (∆P; established by changing the inflow and outflow pressure to an equal 

degree, but opposite direction; ∆P = 5, 10, 20, 30, 40 corresponding to 3 to 320 μL/min intraluminal 

flow.
49

 2) Next, changes in diameter of cerebral arteries were measured to stepwise increase in 

intraluminal pressure (0-140 mmHg) in the absence of intraluminal flow by elevating simultaneously 

the inflow and outflow reservoir to the same level (10 minutes at each pressure step). 3) Then, 

changes in diameter were measured to stepwise simultaneous increase in pressure and flow. At the 

end of each experiment the passive diameters were measured at each intraluminal pressure step in the 

presence of Ca
2+

-free PSS containing nifedipine 10
-5

 mol/L.  

Theoretical calculations 

We have estimated the change in CBF (in arbitrary units) by using the Hagen–Poiseuille 

equation (Q = r
4
ΔPπ/L8 η, where Q = flow, r = radius, ΔP = pressure difference, L = length, η : 

viscosity). We have also calculated a “gain factor (G)” indicating the strength or efficacy of the 

autoregulation of blood flow.
6
 G = 1 indicates perfect autoregulation, whereas G<1 means inefficient 

autoregulation, when flow increases as a function of intraluminal pressure.  

Administration of vasoactive agents and enzyme inhibitors 

Flow-induced diameter changes of HCA and MCA were repeated in the presence of 20-

HETE synthesis inhibitor HET 0016, cyclooxygenase inhibitor indomethacin, TXA2 /PGH2 receptor 

(TP) blocker SQ 29,548; free radical scavenger superoxide dismutase-SOD, and catalase-CAT, 

TXA2-synthase inhibitor ozagrel. Afterward, 20-HETE was directly administered into the vessel 

chamber. In a series of experiments in the presence of ∆40 mmHg adenosine was added into the 

chamber.  

Expression of CYP450 4A proteins in cerebral vessels 

 CYP450 4A protein expression was studied by western blot analysis (anti-cytochrome P450, 

1:4000 dilution, #ab22615, Abcam, Cambridge MA).  

Detection of Superoxide Level 

Flow-induced superoxide production was assessed in MCA of rat by the dihydroethidium 

fluorescence method (EB).
50

  

Statistical analysis 

Statistical analysis was performed by two-way ANOVA followed by a Tukey’s post hoc test 

or Student’s t-test. P values less than 0.05 (p<0.05) were considered to be significant. Data are 

expressed as either micrometer or % of passive diameter (maximum diameter of a given vessel in 

Ca
2+

 free solution is taken as 100%) at corresponding intraluminal pressure and are presented as 

mean ± SEM. 
 

I.4. RESULTS 

Flow-induced responses of cerebral arteries and calculations of CBF 

In the presence of constant pressure (80 mmHg) increases in flow elicited significant 

constrictions of vessels (human: from 74±4.9 to 63±5 %, rat: from 63.8±0.8 to 48.8±1.5 % of passive 

diameter at 80 mmHg, p<0.05). Diameter of MCAs incubated in the presence of flow Δ20mmHg 

increased when flow was decreased to Δ10 mmHg (to 111±1.7 % of diameter at flow Δ20 mmHg), 
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and decreased when flow was increased to Δ40 mmHg (to 84±1.5 % of diameter at flow Δ20 

mmHg). Also, adenosine (10
-5

 mol/L) increased the diameter of MCAs perfused by flow Δ40 mmHg 

significantly above the baseline diameter (to 148±10 % of diameter at flow Δ20 mmHg). 

We found that increases in intraluminal pressure decreased normalized diameter of MCA (from 84±3 

to 53±4 %, n=6), whereas simultaneous increase of pressure+flow enhanced the only pressure-

induced decrease in diameter (from 83.8±3 to 36±3 %, p<0.05). When only pressure was increased 

eCBF showed a linear increase from 1.4±0.1 to 23.3±7.6 in arbitrary units. In contrast, when 

pressure+flow increased simultaneously first the eCBF decreased significantly to 0.7±0.1 and then 

increased only to 5.4±1.4 in arbitrary unit. The gain of autoregulation (G) calculated using diameters 

induced by pressure alone was 0.8±0.1, whereas G was 0.99±0.1 when pressure+flow were increased 

simultaneously 
 

Mechanism of flow-induced response of cerebral arteries 
Incubation of the vessels with HET0016 (inhibitor of 20-HETE production by blocking 

Cyp4504A enzymes) abolished the decrease in diameter of both HCA and MCA elicited by increases 

in flow. Direct administration of CYP 450 metabolite 20-HETE (10
-7 

mol/L) decreased the diameter 

of MCA similarly to flow (at ΔP=40mmHg, flow:42±3, 20-HETE: 34±9.8 Δμm).  

Dilations of MCA in response to ACh were not affected significantly by HET 0016 (before: 53±4.6 

% after: 46±5.4 % of maximal dilation). Western blot analysis confirmed that cytochrome P450 4A 

enzymes are present in the MCA of rat. 

Incubation of vessels with SOD/CAT significantly decreased the reduction in diameter of rat cerebral 

arteries elicited by increases in flow. EB fluorescent images of sections of MCA demonstrated an 

enhanced EB fluorescence in the vessels exposed to flow compared to control (absence of flow). 

Enhanced EB fluorescence was reduced to the control level by HET 0016 (10
-5

 m/L) (control: 

0.05±0.02, flow: 0.18±0.04, flow+HET 0016: 0.07±0.02 integrated intensity/total area, respectively; 

p<0.05). 

Incubation of the vessels with indomethacin or SQ 29,548 inhibited the constriction of MCA to 

increases in flow, whereas ozagrel did not have an effect.  
 

I.5. DISCUSSION OF FINDINGS 

Physiological significance of flow-induced responses of cerebral vessels. Developing a novel 

concept for the autoregulation of CBF.  

The present studies established that increases in flow elicit constrictions in the isolated 

middle cerebral arteries of rats and isolated cerebral arteries of humans. These findings can have 

major impact on our understanding of the autoregulation of CBF, because previously only the 

pressure-induced myogenic response was used to explain autoregulation of CBF, which however, 

seems to be inefficient on its own (Figure 1). 

In the cerebrum, in the internal carotid circulatory system resistance is profoundly determined 

by larger arteries.
5, 16, 18, 51

 In line with this, larger arteries (i.e MCA) constrict to increases in flow, 

which enhances the pressure-induced tone of cerebral vessels leading to a more efficient 

autoregulation of CBF, and this way, flow-induced constriction of cerebral arteries plays an 

important role in regulating cerebral blood volume and intracranial pressure. Therefore, in addition 

to myogenic response, flow-induced constriction may also participate in the development of 

segmental resistance of the cerebral circulation, because both large arteries and arterioles respond to 

changes in flow with either constriction or dilation.
7, 37-39, 43, 46, 52, 53
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Figure 1. Proposed physiological role of flow-induced constriction of cerebral arteries in autoregulation of 

cerebral blood flow. Combined effect of intraluminal pressure and intraluminal flow (Δ flow) achieves 

effective autoregulation of cerebral blood flow (CBF), while only pressure-induced diameter responses lead 

to increases in CBF, thus inefficient autoregulation. 

 

Importantly, the vasomotor tone “set” by the two hemodynamic forces can be modulated or 

overridden by other factors sensitive to the needs of neural tissues. That is blood flow still can be 

altered locally (for example due to metabolic factors) during increased demand. Such as, local neural 

needs can increase cerebral blood flow regionally via neural, glial and other regulatory mechanisms, 

which can also be propagated to upstream vessels.
54-56

 This concept is in line with the suggestion of 

studies showing that metabolic dilation could overcome the constrictor effect of pressure or flow.
7, 44, 

57, 58
 Conversely, in the brain stem (vertebro-basilar system) arterioles are the major site of 

resistance,
18, 59

 thus larger arteries, such as the basilar artery “can” dilate to flow participating in 

reactive hyperemia.
53

  

 

Signaling mechanisms responsible for mediating flow-induced constriction of cerebral arteries  
Harder and Gebremedhin at al. and others showed that AA is metabolized by cytochrome 

P450 ω-hydroxylases (CYP450 4A) into 20-hydroxyeicosatetraenoic acid (20-HETE)
60, 61

 and it 

plays an important role in the regulation of cerebrovascular tone, by mediating agonists- and 

pressure-induced constrictions of vascular smooth muscle of cerebral vessels.
62, 63

 We found that 

flow-induced constrictions of human cerebral arteries and MCA of rat were abolished by 

administration of HET 0016, an inhibitor of 20-HETE production. Consistently to these functional 

findings we found that CYP450 4A enzymes are present in the MCA of the rat, a finding similar to 

that of Gebremedhin and Dunn at al.
62, 64
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Figure 2. Flow induces dilation, biphasic responses, or constriction of cerebral vessels depending on the 

regional and segmental localization of the vessels. We propose that in the internal carotid system larger 

arteries (such as the middle cerebral artery) constrict to increases in flow. The flow-induced constriction is 

mediated by 20-hydroxyeicosatetraenoic acid (20-HETE) (a metabolite of arachidonic acid (AA) produced by 

cytochrome P450 4A enzymes (CYP450 4A) acting via thromboxane A2/prostaglandin H2 (TP) receptors and 

requires COX activity. CYP450 4A also produces reactive oxygen species (ROS), which contribute to the 

constriction. Whereas, in the brain stem supplied by the vertebro-basilar system larger arteries, such as 

basilar artery, dilate to flow. Dilation is mediated by NADPH-oxidase (activated by phosphatydilinositol3-

kinase (PI3-K) derived H2O2 and/or eNOS derived nitric oxide (NO). eNOS is activated in an Akt-dependent 

pathway. 

 

It is also known, that production and direct administration of 20-HETE by cytochrome P450 can 

produce ROS.
44, 65, 66

 In the present studies we found that administration of ROS scavengers 

significantly reduced the flow-induced constriction of cerebral arteries. In addition, our findings 

showed increased EB fluorescence in MCA after exposing the vessels to flow, suggesting flow-

induced increased ROS production. The enhanced production of ROS was reversed by inhibition of 

20-HETE production, suggesting ROS is generated during synthesis of 20-HETE, which is elicited 

by increases in flow. These findings demonstrate that ROS are generated during flow-induced 

activation of CYP450 4A,
66

 but because HET 0016 abolished flow-induced constriction, ROS 

unlikely have major direct vasomotor effect in this condition.  

 

Our results that both inhibition of 20-HETE production and antagonizing TP receptor abolished 

flow-induced constriction suggest that 20-HETE acts on TP receptor. Consistently with this 

hypothesis previous studies
67, 68

 by Schwartzman at al. proposed that 20-HETE caused constriction 

of arteries via TP receptor after 20-HETE was metabolized by COX into 20-endoperoxides (20-OH-

PGH2, 20-OH-PGG2). This finding is supported by our finding that indomethacin also blocked flow-

induced constrictions of MCA. The proposed molecular mechanisms mediating flow-induced 

constriction of human and rat cerebral arteries are summarized in Fig 2.  
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I.6. SUMMARY OF NOVEL FINDINGS OF PART I. 

 

1) Increases in flow elicit constrictions in isolated human intracerebral arteries and in rat 

middle cerebral arteries; 

2) simultaneous increases of pressure and flow elicit significantly greater constriction than 

pressure alone in isolated rat middle cerebral arteries; 

3) pressure- and flow-induced constriction together can achieve a more efficient estimated 

autoregulation of CBF than pressure alone; 

4) the underlying subcellular mechanism of flow-induced constriction of cerebral arteries 

involves increased production of ROS, increased activity of COX and CYP450 enzymes and 

consequently increased production of 20-HETE, which acts via TP receptors. 
 
 

Part II. 

Dysfunctional pressure- and flow-induced vasomotor mechanisms in 

hypertension and aging. Pathophysiological effects on the autoregulation of CBF. 
 

II.1. INTRODUCTION 

Epidemiological studies provide strong evidence that the deleterious cerebrovascular effects 

of hypertension are exacerbated in elderly patients, whereas young individuals appear to be more 

protected from cerebromicrovascular damage induced by hypertension.
69-71

 Although the available 

human data suggest that advanced age and hypertension have synergistic effects, there are virtually 

no studies addressing the specific age-related mechanisms through which aging increases the 

vulnerability of the cerebromicrovascular system to hypertension leading to cerebrovascular 

diseases.
72

 

 Studies on young animals demonstrate that cerebral resistance arteries exhibit functional and 

structural adaptation to hypertension leading to increased vascular resistance, which provides and 

important protection of the distal portion of the cerebral microcirculation from pressure overload
73, 

74
. Among these adaptive responses an increased pressure-induced myogenic constriction of cerebral 

resistance arteries is of great significance.
5, 6, 75

 Previous studies demonstrated that in young 

hypertensive animals increased pressure sensitivity of the myogenic mechanism leads to an increased 

resistance at the level of small cerebral arteries, keeping pressure in the thin-walled, injury-prone 

arterioles and capillaries in the normal range with little change in tissue blood supply and 

oxygenation. As a result of this adaptive response, the range of cerebral blood flow autoregulation is 

extended to higher pressure values both in hypertensive experimental animals and hypertensive 

patients.
73, 74, 76

 Studies in animal models of hypertension and stroke
77

 suggest that pathological loss 

of autoregulatory protection contribute to cerebromicrovascular injury. Despite the paramount 

importance of the autoregulatory mechanisms in cerebromicrovascular protection, it is not well 

understood how aging affects the functional adaptation of the cerebral resistance arteries to maintain 

autoregulation of CBF in hypertension. 
 

II.2. HYPOTHESIS AND AIMS OF STUDIES 

The 2
nd

 part of my work was designed to test the hypothesis that 1) in hypertension aging 

impairs functional adaptation of pressure- and flow-induced responses of cerebral vessels, 2) these 

are leading to impaired autoregulation of CBF, and 3) exacerbates hypertension-induced 

microvascular damage and neuroinflammation 4) promoting neural/learning dysfunction. I aimed to 

asses in young and aged hypertensive mice: 1) the changes of arterial myogenic and flow-induced 

constriction and 2) autoregulation of cerebral blood flow, 3) blood-brain barrier function, 

microvascular density, markers of neuroinflammation 4) and cognitive function.   
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II.3. MATERIALS AND METHODS 

Animals 

 Young (3 month, n=80) and aged (24 month, n=80) male C57/BL6 mice were used. All 

procedures were approved by the Institutional Animal Use and Care Committee of the University of 

Oklahoma health Sciences Center.   

Angiotensin II-induced hypertension 

 Young and aged mice received angiotensin II (Ang II, 1000 ng/min/kg) subcutaneously for 4 

weeks. Systolic blood pressure was measured by the tail cuff method. 

Behavioral studies 

 Mice were assessed for learning capacity using an elevated plus maze-based learning 

protocol. 

Cerebrovascular autoregulation 

 In anesthetized, ventilated mice cortical blood flow was measured as a function of blood 

pressure between 40–160 mmHg by laser speckle flowmetry. 

Assessment of pressure- and flow-induced responses in isolated middle cerebral arteries 

 In isolated middle cerebral arteries (MCA) myogenic response was assessed and repeated in 

the presence of the cytochrome P450 ω-hydroxylase inhibitor HET0016 (10
-6

 mol/L) and SKF96365 

(5x 10
-6

 mol/L, for 15 min), a potent blocker of TRPC channels. In isolated MCAs flow-induced 

constriction was also assessed.  

Quantitative real-time RT-PCR  

 mRNA expression of Cyp4a12, Cyp4a10, Cyp4a14 and Trpc6  was analyzed in MCAs. 

Assessment of the integrity of the blood- brain barrier 

 To quantify blood brain barrier (BBB) permeability we used the sodium fluorescein tracer 

assay. We also detected extravasated IgG by immunohystochemistry.  

Western blotting 

 Immunoblotting studies for TRPC6 in MCA homogenates and for the tight junction proteins 

(ZO-1, occludin, and claudin-5) in hippocampal homogenates were performed.  

Pericyte coverage  

 Pericyte coverage was assessed in brain slices of young and aged αSMA-GFP transgenic 

mice with or without angiotensin II-induced hypertension. Immunolabeling of endothelium was 

performed by using CD31. 

Capillary density analysis 

 Capillary density (CD31 + capillaries) was quantified in different brain regions. 

Neuroinflammation  

 Microglia activation was quantified in hippocampal sections by immunofluorescent labeling 

for CD68 and Iba-1. Neuroinflammatory cytokines/chemokines were determined by quantitative 

real-time PCR and protein levels of selected micoglia-derived pro-inflammatory factors (MCP-1, 

TNF , IP-10) by fluorescent bead assay. 

Determination of hippocampal protein 5-nitrotyrosine content 

 Oxidative/nitrosative stress was studied by 5-nitrotyrosine (5-NT; a marker for peroxynitrite 

action) in homogenates of hippocampi.   

Statistical analysis 

 Data were analyzed by two-way analysis of variance (ANOVA) followed by Tukey post-hoc 

tests and Pearson’s correlation analysis. A p value less than 0.05 was considered statistically 

significant. Data are expressed as mean±S.E.M..  
 

II.4. RESULTS 

Impaired cerebrovascular autoregulation in aged hypertensive mice  

 In young control mice CBF was independent of blood pressure in the range of 60–120 

mmHg, which indicates that autoregulation was present and effective. No differences in 
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autoregulation were observed among young and aged normotensive mice. In young hypertensive 

mice there was a progressive expansion of the range of autoregulation, indicating an adaptive 

response, which was completely absent in aged hypertensive mice. 

 

Aging impairs autoregulatory function of cerebral arteries: role of myogenic and flow-induced 

constriction  

 In MCAs of young control mice, increases in intravascular pressure increased myogenic 

constriction and myogenic tone was maintained at almost the same level up to ~120 mmHg, 

overlapping the autoregulatory range of CBF. At higher pressures myogenic tone tended to decrease 

and arteries tended to dilate. In MCAs from young hypertensive mice myogenic tone was maintained 

at almost the same level at up to ~160 mmHg. MCAs of aged mice developed a slightly decreased 

myogenic constriction and did not exhibit a similar hypertension-induced adaptive increase in 

myogenic constriction, which was observed in young mice. 

 Increases in intraluminal flow elicited vasoconstriction in MCAs of young mice and this 

response was significantly enhanced by hypertension. In contrast, there was no adaptive increase in 

flow-induced constriction in MCAs of aged hypertensive mice.  

 

Role of 20-HETE and TRPC6 in functional maladaptation of aged cerebral arteries to 

hypertension  

 We found that in MCAs of young hypertensive mice increased myogenic tone was 

significantly inhibited by both HET0016 and SKF96365 eliminating the difference between the four 

groups, whereas neither HET0016 nor SKF96365 affect significantly the myogenic tone of MCAs of 

aged hypertensive mice. Hypertension was associated with up-regulated expression of the CYP 4A 

arachidonic acid ω-hydroxylases Cyp4a12, Cyp4a10 and Cyp4a14 and TRPC6 channels) in MCAs 

of young mice, whereas these adaptive responses were significantly impaired or missing in MCAs of 

aged hypertensive mice.  

 

Aging exacerbates hypertension-induced BBB disruption  

 We found that aging exacerbates hypertension-induced fluorescein leakage in the 

hippocampi, cortex and white matter. Immunostaining for plasma-derived IgG revealed significant 

perivascular IgG deposits in the hippocampus of aged hypertensive mice. IgG leakage in the 

hippocampus of young hypertensive mice was significantly reduced and there was no detectable IgG 

leakage in young control mice.  

 

Aging exacerbates hypertension-induced pericyte loss and microvascular rarefaction  

 In young mice hypertension resulted in a significant decline in the relative number of 

pericytes and capillary pericyte coverage (by ~29%). In aged mice hypertension-induced decreases in 

pericyte number and pericyte coverage (by ~41%) were exacerbated. Relative hypertension-induced 

decreases in capillary length density in CA1, CA3, and DG of the mouse hippocampus, retrosplenial 

cortex, primary somatosensory cortex and corpus callosum of aged mice were significantly greater 

than in young mice.   

 

Aging exacerbates hypertension-induced inflammation and oxidative stress in the hippocampus 

 We found that aging is associated with a relative increase in the number of activated 

microglia in the hippocampi. Importantly, hypertension-induced microglia activation was 

exacerbated in the hippocampi of aged mice. Sustained activation of microglia was associated with 

an increased expression of several pro-inflammatory cytokines and chemokines in the hippocampi of 

aged hypertensive mice. These findings were corroborated by demonstration of increased protein 

expression of MCP-1, TNF  and IP-10, which are known to be secreted by activated microglia, in 

the hippocampi of aged hypertensive mice.  
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 Aging exacerbated hypertension-induced increases in hippocampal 5-nitrotyrosine content, 

confirming that the effects of age and hypertension are synergistic.  

 

Aging exacerbates hypertension-induced decline in hippocampal dependent learning 

 In young control mice, transfer latency on Day 2 was significantly decreased compared to 

Day 1, indicating an intact learning effect (learning index: 1). The learning indexes for young 

hypertensive mice (~0.7) and aged (~0.67) mice tended to decrease, compared to young control 

mice, although the differences did not reach statistical significance. For old hypertensive mice, 

transfer latency was similar on Days 1 and 2 (corresponding to a learning index: ~0).  
 

II.5. DISCUSSION OF FINDINGS 

In the cerebral circulation myogenic constriction of proximal branches of the cerebrovascular 

tree (i.e. MCA) is uniquely important for protection of the distal cerebral microcirculation.
16

 In 

healthy young animals pressure-induced myogenic constriction of the cerebral arteries acts as a 

critical homeostatic mechanism that assures that increased arterial pressure does not penetrate the 

distal portion of the microcirculation, causing damage to the thin-walled arteriolar and capillary 

microvessels in the brain.
5, 75

 In hypertensive young mice and rats
6, 78

 the myogenic constriction of 

cerebral arteries is enhanced and the range of cerebrovascular autoregulation is extended, which 

represent functional adaptation of these vessels to higher systemic blood pressure, protecting the 

cerebral microcirculation.
5, 6, 73-75

 We have found perhaps for the first time that cerebral arteries of 

aged mice do not exhibit a hypertension-induced adaptive increase in myogenic constriction 

observed in young mice.  

As we have shown (Part I of the thesis) in addition to the myogenic response flow-induced 

constriction of cerebral arteries may also contribute to cerebrovascular autoregulatory function.
7, 79

 

We have demonstrated that in young hypertensive mice flow-induced arterial constriction is also 

enhanced, representing another component of functional arterial adaptation to high blood pressure. 

This adaptive response is also impaired in aged hypertensive mice. Taken together, hypertension in 

aging is associated with dysfunction of cerebrovascular autoregulatory mechanisms protecting the 

brain.  

 Our findings support the view that in young animals activation of a 20-HETE/TRPC6-

dependent pathway underlies functional adaptation of cerebral arteries to hypertension and that this 

adaptive response is dysfunctional in aging. First, in young hypertensive mice 20-HETE mediation 

of myogenic constriction is up-regulated in the high pressure range, likely due to adaptive up-

regulation of cytochrome P450 4A ω-hydroxylases. We have found that this, 20-HETE-dependent 

adaptive response is impaired in aged hypertensive mice. Previous studies demonstrate that 

activation of TRPC6 channels mediates 20-HETE-induced smooth muscle constriction
80

 and 

contributes to myogenic constriction of cerebral arteries
81

 and while in cerebral arteries of young 

mice hypertension up-regulates vascular TRPC6 expression and activity, this adaptive response is 

impaired in aged hypertensive mice. Because flow-induced constriction of cerebral arteries is 

predominantly mediated by 20-HETE,
7, 62

 dysregulation of this pathway in aged hypertensive mice 

simultaneously impairs both the myogenic and the flow-induced components of cerebrovascular 

autoregulation.  
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Figure 3. Proposed scheme depicting the mechanisms by which age-related cerebrovascular autoregulatory 

dysfunction (due to lack of up-regulation of 20-HETE/TRPC6 pathway) exacerbates hypertension-induced 

microvascular damage, blood-brain barrier (BBB) disruption and neuroinflammation leading to 

learning/cognitive impairment. 

 

We found evidence that autoregulatory dysfunction in aged hypertensive mice leads to 

significant cerebromicrovascular damage. Lack of autoregulatory protection likely allows high blood 

pressure to penetrate the distal portion of the cerebral microcirculation, which leads to significant 

BBB disruption in the hippocampus and other brain regions in aged hypertensive mice. Pericytes are 

important cellular constituents of the BBB and they are sensitive to oxidative stress. Thus, it is likely 

that increased hypertension-induced loss of pericyte coverage contributes to BBB disruption in aged 

mice. Pericytes are sensitive to oxidative damage, thus it is possible that exacerbated hypertension-

induced oxidative stress contributes to the increased pericyte loss in aged mice. Pericytes is also 

likely to contribute to microvascular rarefaction in brain of aged hypertensive mice. Increased BBB 

disruption in aged hypertensive mice is likely to impair neuronal function by multiple mechanisms 

involving the induction of neuroinflammation. We have found evidence that in aged hypertensive 

mice BBB disruption results in increased extravasation of IgG and an exacerbated 

neuroinflammatory response as shown by the increased number of activated microglia in the 

hippocampi. We also found that in the hippocampi of aged hypertensive mice there is an increased 

presence and expression of inflammatory mediators secreted by activated microglia. Microglia-

derived pro-inflammatory cytokines, chemokines and proteases (i.e. MMPs) are thought to play a 

role in neuronal dysfunction and neurodegeneration in various pathophysiological conditions,
82

 

suggesting that exacerbation of neuroinflammation may importantly contribute to hypertension-

induced neuronal dysfunction in aged mice. Activated microglia are also known to exhibit increased 

production of free radicals, thereby causing oxidative neuronal injury.
83

 Our findings that aging 

exacerbates hypertension-induced oxidative/nitrosative stress in the hippocampus are consistent with 

this view.  

 To determine whether compromised BBB integrity, microvascular rarefaction, 

oxidative/nitrosative stress and chronic low-grade neuroinflammation were sufficient to induce 

neuronal dysfunction in aged hypertensive mice, we studied behavior. Importantly, hypertensive 

aged mice had the worst performance on behavioral tests of hippocampal function.  
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II.6. SUMMARY OF NOVEL FINDINGS OF PART II. 

 

The novel findings of these studies are: 

1) in cerebral arteries of young hypertensive mice there is an enhanced myogenic- and flow-

induced constriction of cerebral arteries, 

2) the up-regulation of 20-HETE/TRPC6 pathway is responsible for this adaptation. 

3) By adapting to hypertensive condition cerebral arteries of young mice are able to and 

maintain an enhanced autoregulation of CBF, 

4) in cerebral arteries of aged hypertensive mice there is an impaired myogenic- and flow-

induced constriction of cerebral arteries, 

5) the autoregulatory adaptation is lost in aged hypertensive animals, 

6) in aged hypertensive mice there is exacerbated BBB disruption, 

7) in aged hypertensive mice there is capillary rarefaction in cerebral tissue, 

8) in aged hypertensive mice there is increased neuroinflammation, which likely 

9) contributes to learning decline.  
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