TABLE OF CONTENTS

INTRODUCTION .. 3
AIMS .. 8
SUBJECTS .. 9
METHODS .. 11
 - Anthropometric measurements ... 11
 - Blood pressure measurements .. 11
 - Laboratory tests .. 12
 - Determination of the Trp64Arg polymorphism in exon 1 of the 3-BAR gene 12
 - Determination of factor V Leiden mutation ... 12
 - Biochemical studies .. 13
 - Statistical analysis .. 13
RESULTS ... 14
 - Trp64Arg polymorphism of the 3-BAR gene .. 14
 - Leiden mutation; size at birth and later risk factors ... 16
 - Impaired glucose tolerance and type 2 diabetes mellitus .. 19
DISCUSSION AND PRACTICAL CONSEQUENCES OF THE STUDIES 21
REFERENCES .. 24
PUBLICATIONS IN THE ISSUE OF THE THESIS ... 32
ABSTRACTS WHICH CAN BE CITED IN THE ISSUE OF THE THESIS 34
OTHER PUBLICATIONS AND ABSTRACTS .. 35
ENCLOSED PUBLICATIONS ... 39
LECTURES AND POSTERS IN THE ISSUE OF THE THESIS 40
OTHER LECTURES AND POSTERS ... 43
ACKNOWLEDGEMENTS ... 48
INTRODUCTION

An alarming rise in overweight and obesity was observed worldwide, particularly during the 1990’s, in both the developed and developing countries. Obesity is a serious health risk; it is a major determinant of different diseases such as diabetes mellitus, hypertension, heart and kidney failure, atherosclerosis, cancer, infertility, birth complications and arthritis.

On the other hand, obesity is largely preventable through changes in lifestyle. The prevalence of childhood obesity continues to increase at a rapid rate. In the United States the National Health and Nutrition Examination Survey IV (1) showed that 13-14 % of children aged 6-11 years (yr) and adolescents aged 12-19 yr were overweight, while data from 1999-2000 indicated continued increases to 15.3 % of 6-to 11-yr-olds and 15.5 % of 12-to 19-yr-olds (2). In three cross-sectional studies of England and Scotland in 1974, 1984, 1994, only minor changes were found in the prevalence of overweight or obesity between 1974-84, but by 1994, the prevalence had risen by 9-10 % in boys, to over 13 % of English girls and to nearly 16 % in Scottish girls (3). Similar trends have been seen in other developed and developing countries. In Hungary, the prevalence of obesity increased from 12% to 16 % between 1980’ and 1990’s among schoolchildren (4).

Obesity is a heterogeneous group of conditions with multiple causes. Body weight is determined by an interaction between genetic, environmental and psychosocial factors. Although genetic differences are of great importance, the marked rise in the prevalence of obesity is best explained by behavioural and environmental changes.

Identical twins of obese parents are more likely to become obese than those of non-obese parents, suggesting a genetic factor to obesity. In a review on twin, adoption and family studies, body mass index (BMI) inheritance has been proposed to account for 25 % to 40% of the inter-individual variability (5).

Obesity is one of the features accompanying numerous genetic syndromes, like Prader-Willi (PWS), Cohen, Alstrom and Bardet-Biedl syndrome that have been genetically mapped (6). The first gene identification in obese human subjects was linked with the screening for genes identified previously in rodent models of monogenic obesity. These rodent models mostly involved genes in the regulatory pathway of food intake, which is mostly similar in human monogenic obesity (7). However, the genetic susceptibility to obesity is in most cases polygenic, and is
rarely the result of a Mendelian gene (monogenic obesity). Apart from rare obesity-associated syndromes, the genetic influences seem to operate through susceptibility genes. Such genes increase the risk of developing a characteristic but are not essential for its expression or, by themselves, sufficient to explain the development of a disease. The susceptible-gene hypothesis is supported by twin studies in which pairs of twins were exposed to periods of positive and negative energy balance, and the differences, for example, in the rate and the proportion of weight gain showed greater similarity within pairs than between pairs (8), which can suggest differences in genetic susceptibility within a population. One of the two approaches to identify susceptibility genes is the candidate gene approach. It involves testing the association between obesity and a specific allele of a gene either in a family study or in a large cohort of unrelated controls and patients. Several candidate genes have been associated with human obesity and its metabolic complications, which include e.g. receptors that are important in thermogenesis (β3-adrenergic receptor /3-BAR / gene and the family of uncoupling proteins), as well as those involved in appetite regulation.

The effects of catecholamines are modulated through four subtypes of adrenoreceptors (9). The human 3-BAR is expressed predominantly in visceral fats, where it plays a role in determining the resting metabolic rate through its ability to stimulate lipolysis and thermogenesis (10). The involvement of 3-BAR in energy metabolism originates from observations indicating the prevalence of the genetic variant at the codon 64 of the 3-BAR gene leads to replacement of a tryptophan with an arginine (Trp64Arg). This polymorphism has been reported to be associated with abdominal obesity (11), a propensity for weight gain (12), high BMI (13,14), insulin resistance (11,14) and an earlier onset of type 2 diabetes mellitus (11, 15). Other studies, however, could not demonstrate these associations (16,17).

An obese child will remain obese in adulthood and become at risk for acquiring or increasing coronary heart disease in 30 % to 60 % of cases (18). Although genetics may have a part of it, several environmental factors affect this phenomenon significantly. The first contact of the child with the environment is in the uterus. Over- or under-feeding in pregnancy has been associated with the development of obesity in later life (19,20). Beside of the prenatal period, the other critical period is the adolescence in the development and persistence of overweight in the paediatric age group. The period of 'adiposity rebound' may constitute a third. It is when the
BMI begins to increase after reaching a nadir in early childhood. After birth the method of feeding may influence the risk of obesity. Family lifestyle and food habits play a role in children’s food preferences and physical activity which may affect their body weight. Small for gestational age (SGA) has been associated with increased risk of diseases such as diabetes or cardiovascular disease in adulthood (21,22,23,24). Infants with high birth weights appear to have an increased risk of subsequent overweight (20).

The presence of inherited and acquired thrombophilias has recently been linked to most cases of maternal venous thrombotic events as well as these adverse obstetric outcomes (25). One of the most common inherited thrombophilias is heterozygosity for the factor V Leiden mutation. Although there is no consensus on the association between the factor V Leiden mutation and early pregnancy loss, but the evidence suggests an association between the mutation and late (first-, second-, third-trimester) fetal loss, severe preeclampsia, abruption and severe intrauterine growth retardation (IUGR) (26,27,28,29,30).

Over the past two decades, many papers have demonstrated that low birth-weight, thinness and short body length at birth are associated with increased risk of atherosclerosis, type 2 diabetes mellitus (T2DM), hypertension and metabolic syndrome. This observation, which originated at Hertfordshire in the United Kingdom (21,22,31) was confirmed in other countries such as Sweden (32) and Netherlands (33). The association of low birth-weight with adult cardiovascular disease led to the 'fetal origins or thrifty phenotype hypothesis' formulated by Barker (34). According to this hypothesis, an impaired intrauterine milieu, such as nutrient restriction, causes a 'reprogramming' of the endocrine-metabolic status of the fetus, which has short-term survival benefits, but this reprogramming can be detrimental effects on long term. If the prenatal nutrient restriction is subsequently followed by an extrauterine nutrient abundance, the risk of the development of metabolic syndrome increases, because this reprogramming consist mainly of the development of insulin resistance (23,35,36,37). There are, however contradictory results (38,39,40). Many researchers dispute the 'fetal origins hypothesis', asserting that environmental (e.g. maternal smoking, drug abuse, abnormal BMI etc) and genetic factors can, at least in part, explain the association between SGA and adult cardiovascular risk (41,42). Several pathophysiological mechanism are implicated, but in addition to the intrauterine retardation the sudden break of fetal development

and the accelerated pace of postnatal 'catch-up' growth might also play a role in the pathogenesis of these chronic diseases (23,42,43,44,45,46).

Obese children have a higher prevalence of T2DM and insulin resistance (47,48,50) and the frequency of this complication appears to have risen in recent years paralleling the worldwide increase in obesity in this age group. On the basis of the available data, the prevalence of T2DM in Caucasian children and adolescents (49,50,51,52) seems to be much lower than those reported in other races (53,54), but more representative, population-based surveys are needed. Although the presence of impaired glucose tolerance and chemical diabetes in obese children has been reported as early as the 60s, 70s of the last century (55,56,57), but it has become a hot topic only recently. Sinha et al. (58), in a multiethnic cohort of 167 obese children and adolescents demonstrated abnormal glucose tolerance in 25% of children and 21% of adolescents. According to the European literature, the first case of childhood T2DM in Europe was diagnosed in 1993 (59). Only two population-based reports have been published, by Rami et al. from Austria (60) and Ehtisham et al. from the UK (61). In April 2002, a questionnaire was distributed among European Childhood Obesity Group (ECOG) representatives from 16 European countries, which included several questions concerning the prevalence, risk factors and complications of childhood obesity, such as T2DM. From nine countries, altogether 184 European children were diagnosed with T2DM, 144 of them of Caucasian origin. The majority of them were overweight females and had positive family history for T2DM (62). Though both genetic and environmental factors play a role in the pathophysiology of T2DM, its rapidly increasing rates cannot be attributed to an altered genetic pool but rather to the raising prevalence of obesity.

Although general principles of treatment of T2DM in adolescents are similar to the treatment of adults there is general agreement between the paediatricians dealing with this problem that they should not be a simple extrapolation (50, 63, 64). Treatment strategies should be based on symptoms at presentation. Asymptomatic children identified at routine testing should be counselled on the necessary lifestyle changes. Therapeutic strategies include lifestyle and behaviour modification, nutrition education, and psychological and family therapy interventions. Because obesity is the major problem in most adolescents with T2DM, dietetic advice is mandatory, although calorie intake should not be too restricted to ensure normal growth and pubertal development. Patients should be encouraged to increase their
physical activity or at least to decrease inactivity. However, if the treatment goals are not achieved, pharmacological therapy should be considered. Recently, metformin has been approved by Food and Drug Administration (FDA) for use in children, and has been recommended by the American Diabetes Association (ADA) as a first line oral agent for treatment of T2DM in children (65,66). In symptomatic youth, particularly if ketonaemia develops, insulin treatment should be initiated to achieve good glycaemia control.

Childhood onset of adult cardiovascular disease has become a significant public health problem that needs to be addressed globally and individually. Whether genetic, environmental, or fetal influences are the primary culprits in the epidemic of obesity-related adult cardiovascular diseases seen today remains unknown. In spite of this, the interventional focus should be placed on early life, and health care providers and public health professionals should pay attention to the elevated future coronary heart disease risk among children. Better understanding of the aetiology of these diseases hopefully will lead to more effective, targeted preventive measures and therapy.
AIMS

1. **Trp64Arg polymorphism of the β3-adrenergic receptor gene**

 1.1 To examine the frequency of Arg64 allele of the β3-adrenergic receptor (3-BAR) gene, which is one of the known candidate genes, in healthy and obese Hungarian children.

 1.2 To look for possible associations between this polymorphism and some clinical and metabolic characteristics of obese children.

2. **Leiden mutation; size at birth and later risk factors**

 2.1 To test the prevalence of Leiden mutation in the mothers of premature infants and in the mothers of intrauterine-growth-retarded children.

 2.2 To determine the association between size at birth and later risk factors (hypertension, hyperinsulinism, hyperglycaemia, dyslipidaemia) in prepubertal children.

3. **Impaired glucose tolerance and type 2 diabetes mellitus**

 3.1 To examine the prevalence of impaired glucose tolerance (IGT) and T2DM in obese Hungarian children.

 3.2 To assess the effects of a 6-month diet and life-style changes in the children with IGT and T2DM.
SUBJECTS

Written informed consents were obtained from the subjects and all parents of the children before enrollment in the different studies. All of the studies were approved by the ethic review committee of the University of Pécs.

1.1 In all, 295 obese children (male: 168) were included in the study after the exclusion of any endocrinological disorder, nutritional-, growth- and renal problems or obesity syndromes. With the exception of obesity, the children had no apparent disease and were not taking any kind of medication. A total of 147 healthy, non-obese children (male: 68) recruited from elementary schools, served as controls. The average age of the children in the two groups was 12.6±3.2 and 12.4±1.7, respectively.

1.2 Obese children carrying the Arg64 allele (n=35, male: 23) were compared to randomly chosen, obese children without the Arg64 allele (n=35, male: 20).

2.1 White (Caucasian) mothers of premature (Group PM; n=50) and mothers of intrauterine growth retarded neonates (Group IUGR; n=56) were tested. The newborns were considered as premature when their gestational age was < 37 weeks. Intrauterine growth retarded children were born full term with birth weight, height and head circumference below the 10th centile (proportional) or with birth weight below the 10th centile, but with normal length and head circumference (disproportional).

2.2 229 children (134 boys, 95 girls) were examined at the age of 6-10. We compared children born full term with normal weight, height and head circumference (1st group), the children born full term with birth weight, height and head circumference less than 10th centile (2nd group), children born full term with birth weight less than 10th centile and with normal length and head circumference (3rd group) and children who were preterm at birth (4th group) according to the criteria by Fekete et al (67). The age of children at the time of investigation was comparable in the four groups.
3.1-2 Oral glucose tolerance test (OGTT) was performed in 289 obese (153 boys) (mean BMI±SD: 31.1±4.6 kg/m²) adolescents (mean age±SD, 12.9±2.7 years). After 6 months, the OGTT was repeated in children with IGT and DM.
METHODS

Anthropometric measurements
These investigations included weight, height and skin-fold thicknesses. Weight was obtained with subjects wearing light clothing to the nearest 0.1 kg on a standard beam scale. Height was measured to the nearest 0.1 cm by a Holtain stadiometer. In all examinations, children were considered as obese if their body weight exceeded the expected weight for height with more than 20%, and if body fat content with more than 25% in males and 30% in females. BMI was calculated according to the formula, real weight (kg)/height2(m2), while body fat (BF) was estimated from skinfold measurements, which were performed with a Holtain caliper, using Parizkova and Roth’s formula (68). The body weight of control, healthy children was less than 120% of the expected weight for height.

Blood pressure measurements
Blood pressure (BP) was measured using a Mercury sphygmomanometer with proper cuff size in standard conditions. Blood pressure measurements were carried out according to the method recommended by the report in children (69,70). 3-5 occasional BP values were obtained and if the average of the blood pressure values was above the 95th centile for age and sex, 24 h ambulatory blood pressure monitoring (ABPM) was performed with a non-invasive recorder (Meditech, Hungary) using oscillometric method. Systolic, diastolic BP and heart rate values were also monitored with a sampling time set 20-minutes during daytime, and 30-minutes during sleep. The duration of these periods were adjusted to the individual timetable of the child. Those children whose mean 24h arterial blood pressure value exceeded the 95th centile value for height and sex (71) were considered hypertensive. (In the study of prepubertal children who were intrauterine growth retarded neonates, there was no possibility to perform the ABPM, so we considered children to be hypertensive when the lowest blood pressure value of the three measurements was above the 95th centile for age and sex (72).)
Laboratory tests

Determination of the Trp64Arg polymorphism in exon 1 of the 3-BAR gene

DNA was prepared from peripheral blood leukocytes by salting out procedure (73). Exon 1 was amplified with polymerase chain reaction (PCR) using the primers BsrN UP: 5’-CGCCCAATACCGCCAACAG-3’ and BsrN DOWN: 5’-CCACCAGGAGTCCCCACC-3’ (product size 210 bp). PCR reaction was performed in a 50 µl reaction volume with 50-100 ng genomic DNA, 10 pmol of each primer, PCR buffer containing 10 mmol/l Tris-HCL (pH 8.8), 50 mmol/l KCl, 1,5 mmol/l MgCl₂, 0,1% Triton X-100, 1 U Taq polymerase, 200 µmol/l dNTP.

PCR conditions were denaturising at 94 ºC for 3 min, followed by 33 cycles of denaturising at 94 ºC for 30 s, annealing at 64 ºC for 15 s, and extension at 72 ºC for 20 s with final extension at 72 ºC for 4 min.

Restriction enzyme analysis: 35 µl of PCR product was digested in a 50 µl volume containing 9,1 µl deionised distilled H₂O, 0,5 µl BSA (10 mg/ml), 0,4 µl enzyme MvaI (an isoschizomer of BsrNI, MBI Fermentas, 10 U/µl) and 5 µl of reaction buffer R (MBI Fermentas) and incubated at 37 ºC for 4-18 h.

Restriction enzyme digestion products were separated on a 3% agarose gel and visualized by staining with ethidium bromide.

Digested fragments were 97, 61, 31, 15 and 6 bp for normal homozygote; 158, 97, 61, 31, 15 and 6 bp for Trp64Arg heterozygote; and 158, 31, 15, and 6 bp for Arg64Arg homozygote (74).

Determination of factor V Leiden mutation

The factor V Leiden mutation was tested from dried blood-spot samples according to Zöllner and Dahlbäck (75), by PCR method. The sequences of the PCR primers (Ransom Hill Bioscience, Ramona, CA) for the amplification were the following: forward primer: 5’GGGCTAATAGGACTACTTCTAATC3’; reverse primer: 5’TCTCTTTGAAAGGACTCTTTCTATAC3’. PCR amplification was carried out in a final volume of 100 µl consisting of 10 µl DNA extract, 25 pmol from both primers, 200 µmol/l dNTP (Pharmacia), 20 mmol/l Tris-HCL pH 8, 50 mmol/l KCl, 2.5 mmol/l MgCl₂, 1.5 U Taq polymerase (Gibco or Promega). PCR conditions were 5 minutes at 94 ºC, followed by 30 cycles of 94 ºC for 40 seconds, 55 ºC for 1 minute
and 72 °C for 1 minute. Final extension was at 72 °C for 5 minutes. The DNA was digested by MnI restricted enzyme (Stratagene). The resulting PCR products were separated by electrophoresis on a 2.2 % agarose gel with ethidium-bromide staining.

Biochemical studies

Plasma glucose, serum insulin and lipid levels were determined from blood samples taken after an overnight fast in obese children. In obese children OGTT (1.75 g/kg ideal body weight, max. 75 g) was performed. Plasma glucose and serum insulin levels were determined at 0 and 120 min at the OGTT by the glucose oxidase method and by commercially available radioimmunoassay (RIA) kits, respectively. C-peptide level was also determined by RIA. The criteria of impaired glucose tolerance and diabetes mellitus were based on the recommendation of American Diabetes Association (76). Insulin resistance was estimated by the Homeostasis Model Assessment (HOMA) using the formula: fasting serum insulin (µIU/ml) x fasting plasma glucose (mmol/l)/22.5 (77). (In the study of prepubertal children who were intrauterine growth retarded neonates, the cutoff value for fasting insulin was 20 µIU/ml, while hyperglycaemia was considered when the fasting blood glucose level was more then 6.2 mmol/l.)

Serum cholesterol and triglyceride levels were determined by the enzymatic method with Boehringer kits; serum high-density lipoprotein (HDL) cholesterol was measured according to the method of Steele et al. (78). Serum cholesterol, triglyceride and HDL-cholesterol were considered high or low when they fell above or below the recommended values of the Hungarian Lipid Consensus Conference (79): serum cholesterol > 5.2, HDL-cholesterol < 0.9 mmol/l and serum triglyceride > 1.1 mmol/l (< 10 years)- > 1.5 mmol/l (> 10 years). If the value of any of these parameters was abnormal, the child was considered dyslipidaemic.

Statistical analysis

All statistical analysis were performed using the Statistical Package for the Social Sciences (SPSS) for Windows, version 7.5, 8.0 and 10.0. Data are presented as means±SD. Statistical significance of the differences between groups was evaluated using the Fisher’s exact or Chi-square or Student’s t-test or ANOVA, when appropriate.
RESULTS

1. Trp64Arg polymorphism of the 3-BAR gene
(8, 11, 13, 14; abstr: 2,6)*

1.1 The frequency of Trp64Arg polymorphism in normal and obese Hungarian children was similar. The mutation occurred in 14 healthy (male: 7) and 35 obese children (male: 23), of whom 2 were Arg64Arg homozygote and 33 were Trp64Arg heterozygote.

1.2 The obese children with Arg64 allele were compared to a group of obese children without it. The latter group was formed by a computer-generated randomisation. The anthropometric data of obese children with and without polymorphism are shown in Table 1.

Table 1. Anthropometric data of obese children with and without polymorphism (mean±SD)

<table>
<thead>
<tr>
<th></th>
<th>Trp64Trp (n=35) (male: 20)</th>
<th>Trp64Arg/Arg64Arg (n=33+2) (male: 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>12.3 ± 2.9</td>
<td>12.6 ± 2.9</td>
</tr>
<tr>
<td>Body height (cm)</td>
<td>155.7 ± 15.9</td>
<td>161.4 ± 15.4</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>75.6 ± 17.7</td>
<td>81.2 ± 23.2 **</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>30.9 ± 3.9</td>
<td>35.0 ± 10.9 ***</td>
</tr>
<tr>
<td>BF (%)</td>
<td>36.5 ± 2.3</td>
<td>38.8 ± 3.9 ***</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>114.5 ± 8.3</td>
<td>125.2 ± 10.1 *</td>
</tr>
<tr>
<td></td>
<td>72.5 ± 9.0</td>
<td>73.2 ± 8.4</td>
</tr>
</tbody>
</table>

*** p < 0.05, ** p < 0.01, * p < 0.001
BMI: body mass index; BF: body fat

The weight of obese children with Arg64 allele was significantly higher (p<0.01) than those without the polymorphism. Similar tendency (p<0.05) was observed in the BMI and BF values. Laboratory results are shown in Table 2.

*Numbers in parenthesis are serial numbers of the papers and abstracts which were written in the issue of the thesis.
Table 2. Metabolic parameters in obese children with and without polymorphism (mean±SD)

<table>
<thead>
<tr>
<th></th>
<th>Trp64Trp (n=35)</th>
<th>Trp64Arg/Arg64Arg (n=33+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma glucose (mmol/l) 0 min</td>
<td>4.4±0.8</td>
<td>4.5±0.9</td>
</tr>
<tr>
<td>Plasma glucose (mmol/l) 120 min</td>
<td>6.6±1.8</td>
<td>6.3±1.3</td>
</tr>
<tr>
<td>Serum insulin (µIU/ml) 0 min</td>
<td>16.9±7.6</td>
<td>31.4±16.7*</td>
</tr>
<tr>
<td>Serum insulin (µIU/ml) 0 min ^</td>
<td>21.6±2.5</td>
<td>31.2±16.4*</td>
</tr>
<tr>
<td>Serum insulin (µIU/ml) 120 min</td>
<td>120.0±71.7</td>
<td>101.6±90.2</td>
</tr>
<tr>
<td>HOMA</td>
<td>3.2±1.8</td>
<td>6.2±3.9*</td>
</tr>
<tr>
<td>HOMA ^</td>
<td>3.8±1.3</td>
<td>6.1±3.8*</td>
</tr>
<tr>
<td>Serum cholesterol (mmol/l)</td>
<td>4.6±0.8</td>
<td>4.3±1.1</td>
</tr>
<tr>
<td>Serum triglyceride (mmol/l)</td>
<td>1.4±0.8</td>
<td>1.4±0.6</td>
</tr>
<tr>
<td>Serum HDL-cholesterol (mmol/l)</td>
<td>1.2±0.3</td>
<td>1.2±0.2</td>
</tr>
</tbody>
</table>

^ adjusted for body fat, * p < 0.001 HOMA: Homeostasis Model Assessment

The serum insulin levels and HOMA were significantly higher in children carriers of Arg64 allele as compared to those not having this. Since the two groups were significantly different in respect of BF and BW, and these factors are closely related to insulin levels and HOMA index, therefore these latter two parameters were corrected for BW and BF. The corrected values remained significantly different between the two groups. Serum triglyceride, total cholesterol and HDL-cholesterol levels were not different between the two groups. Systolic BP of subjects with Trp64Arg and/or Arg64Arg genotype was also significantly higher (p<0.001) than that of those with the Trp64Trp genotype (Table 1.).
2. Leiden mutation; size at birth and later risk factors
(3,4,5)

2.1 The prevalence of the Leiden mutation in an apparently healthy Hungarian Caucasian population sample of our region was 6.33 % (80), which was comparable with other European prevalence rates (81). In the group with IUGR the prevalence of heterozygosity was not significantly different from that of the healthy Hungarian population, while in the preterm the prevalence was 18 %. As compared to the 6.3% prevalence rate of the healthy Hungarian population, this 18 % value of the mothers of premature neonates proved to be significantly higher (p<0.01). The difference between Groups PM and IUGR (18% versus 7.2%) was also significant statistically (Table 3).

Table 3. Prevalence of factor V Leiden mutation in the two groups

<table>
<thead>
<tr>
<th></th>
<th>Normal (% of total)</th>
<th>Heterozygotes (% of total)</th>
<th>Homozygotes (% of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group PM (n=50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mothers of prematures)</td>
<td>41 (82)</td>
<td>9 (18)</td>
<td>-</td>
</tr>
<tr>
<td>Group IUGR (n=56)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mothers of intrauterine growth retarded neonates)</td>
<td>52 (92.8)</td>
<td>3 (5.4)</td>
<td>1 (1.8)</td>
</tr>
</tbody>
</table>

Figures in parenthesis indicate percent of total.
2.2 According to the results cardiovascular risk factors cannot be found among children at the age of 6-10 who were born with low birth weight (Table 4 and 5). The anthropometric data of children are shown in Table 4.

Table 4. Anthropometric data of children at the time of examination (prepubertal stage) (mean±SD)

<table>
<thead>
<tr>
<th></th>
<th>Full term neonates</th>
<th>Prematures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>normal (n=24)</td>
<td>disproportional IUGR (n=90)</td>
</tr>
<tr>
<td></td>
<td>1. group</td>
<td>2. group</td>
</tr>
<tr>
<td>Age (years)</td>
<td>8.8±1.5</td>
<td>8.1±1.5</td>
</tr>
<tr>
<td>BW (kg)</td>
<td>32.2±7.4</td>
<td>24.9±7.2* **</td>
</tr>
<tr>
<td>BH (cm)</td>
<td>134.4±10.1</td>
<td>122.6±9.3 **</td>
</tr>
<tr>
<td>BF (%)</td>
<td>22.9±6.8</td>
<td>20.5±5.9</td>
</tr>
<tr>
<td>LBM (kg)</td>
<td>24.4±4.2</td>
<td>19.6±4.6* **</td>
</tr>
</tbody>
</table>

*p<0.01, ** p<0.001

BW: body weight, BH: body height, BF: body fat; LBM: lean body mass

BW: p<0.001 1. vs. 2. group; p<0.01 2. vs. 4 group
BH: p< 0.001 1. vs. 2. 2. vs. 4 group
BF: p<0.001 1. vs. 3. group;
LBM: p< 0.001 1. vs. 2., 3. group, p<0.01 2. vs 4 group
Weight and height of the children in the 2nd group were significantly lower than in the 1st and 4th groups (2nd group vs. 4th group: p< 0.01; 2nd group vs. 1st group: p<0.001). The laboratory results were normal (Table 5). Dyslipidaemia was found 21% in the 1st group, 17 % in the 2nd group, 16% in the 3rd group and 28% in premature. There was no significant difference among the four groups. The mean of the systolic and diastolic blood pressures were similar in the four groups. Hypertension was detected in 12.5 % of the 1st and 3rd groups, in 5.6 % of the 2nd group and in 8.9 % of the 4th group.

Table 5. Laboratory results of children at the time of examination (mean±SD)

<table>
<thead>
<tr>
<th></th>
<th>Full term neonates</th>
<th></th>
<th>Prematures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>normal (n=24)</td>
<td>proportional IUGR (n=90)</td>
<td>disproportionaIUGR (n=25)</td>
</tr>
<tr>
<td>1. group</td>
<td></td>
<td>2. group</td>
<td>3. group</td>
</tr>
<tr>
<td>Blood glucose (mmol/l)</td>
<td>4.9±0.8</td>
<td>4.6±0.6</td>
<td>4.8±0.8</td>
</tr>
<tr>
<td>Insulin (µIU/ml)</td>
<td>7.0±5.2</td>
<td>6.4±5.1</td>
<td>5.9±3.7</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>4.5±0.8</td>
<td>4.3±0.7</td>
<td>4.5±0.6</td>
</tr>
<tr>
<td>HDL-chol. (mmol/l)</td>
<td>1.5±0.3</td>
<td>1.6±0.3</td>
<td>1.7±0.4</td>
</tr>
<tr>
<td>Triglyceride (mmol/l)</td>
<td>1.0±0.4</td>
<td>0.9±0.3</td>
<td>1.0±0.4</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>112.8±9.7</td>
<td>109.1±9.3</td>
<td>108.1±14.0</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>66.3±9.7</td>
<td>63.0±8.2</td>
<td>62.3±10.3</td>
</tr>
</tbody>
</table>
3. Impaired glucose tolerance and type 2 diabetes mellitus

Because of the scarce European, especially Hungarian data of the prevalence of T2DM our aim was to evaluate the frequency of IGT and T2DM among clinically healthy, obese children. IGT was found in 50 children (17.3 %), while the prevalence of T2DM was 1.7 % (n=5), so altogether the disorders of carbohydrate metabolism could be detected in 19.0 % of the children (n=55).

The children with disturbed carbohydrate metabolism, a low calorie (1500 kcal/day), carbohydrate (200-250 g/day) diet, and regular exercise were recommended and they were called back for a repeated OGTT after six months.

![Figure 1](image-url)

* *p < 0.001

**Figure 1. Changes of blood glucose (mean±SD) after a 6-months diet and exercise (n=36)
3.2

32 children with IGT and 4 children with T2DM took part in the repeated OGTT. Although the body weight was not changed significantly, BMI decreased significantly (30.4±4.9 vs 29.0±4.4 kg/m²; p<0.05). The changes of mean blood glucose and serum insulin levels are shown in Figure 1 and 2. HOMA index also decreased significantly (6.7±3.7 vs 4.9±3.3).

Figure 2. Changes of serum insulin levels (mean±SD) after 6-months diet and exercise (n=36)
DISCUSSION AND PRACTICAL CONSEQUENCES OF THE STUDIES

1. Trp64Arg polymorphism of the 3-BAR gene

According to the literature the frequency of Trp64Arg mutation of 3-BAR is highly heterogeneous among different populations. The frequency of the mutation was highest in the Pima Indians, followed by Japanese people and Caucasians in the USA (15) and France (12). There was no significant difference between the frequency of carrying the Arg64 allele of 3-BAR gene in healthy and obese Hungarian children. The frequency was 9.5 vs. 11.8 % in the two groups, respectively, which is similar to the frequency of this polymorphism in Europe (12,16,17). Our results are in concert with the findings of studies conducted in children, showing a significant difference between normal weight and obese children (16,82). Several studies have investigated the association of Trp64Arg polymorphism of the 3-BAR gene with obesity or weight gain, but the results are equivocal (83,84). The one possible reason for the contradiction can be the differences in the age and extent of obesity of the subjects in different studies. Only few studies (16,17,82) have looked at the effects of this polymorphism on obesity and cardiovascular risk factors in children. In our present study, the obese children with Trp64Arg and/or Arg64Arg genotypes had significantly higher fasting serum insulin levels, HOMA indices and systolic BP values than the Trp64Trp group. These differences remained significant when corrected for BW and BF. The significantly higher fasting serum insulin and HOMA values indicate the presence of insulin resistance, which together with high blood pressure are the main features of metabolic cardiovascular syndrome. However, the lipid levels were similar in the two obese groups. Our results are in concert with the findings of Sakane (85) and Strazullo et al. (86).

Observations and practical consequences

The frequency of Trp64Arg polymorphism was similar in Hungary as compared to other European countries, and there was no difference between healthy and obese children, however the possession of Arg64 allele in obese children is associated with higher degree of obesity, insulin resistance and hypertension, but the number of cases need to be increased and further studies are needed to clarify these associations.
To the best of my knowledge this is the first study of children in Hungary investigating the frequency of a candidate gene of obesity and its effect on cardiovascular risk factors.

Although, in the literature, there are controversial results of the role, not only, of Trp64Arg polymorphism of 3-BAR gene, but other candidate genes, in developing obesity, according to our findings and to know that obesity a multifactorial and heterogeneous disorder, therefore, preventive measures for obesity, to be fully effective in a population, must based on the modification of several potential risk factors simultaneously. Comprehensive, successful prevention programs are needed which should focus on promoting and supporting healthful lifestyles for all children at home, in school and in the society. The population strategies should harmonize lifestyle and nutritional habits with recommendations, by following the quality of family and social nutrition for changing it, education on healthy nutrition and physical activity. The individual level program management involves continuous longitudinal growth and nutritional status monitoring, identification of children with nutritive risk factors or with positive family history for obesity and for selective screening of metabolic parameters, and healthy lifestyle and nutrition counseling.

Although the genetic analyses of the samples started at the Department of Clinical Genetics and Child Development of University of Pécs, these investigations made the possibility to create a scientific PCR laboratory at the Department of Paediatrics of University of Pécs.

2. Leiden mutation; size at birth and later risk factors

As it was mentioned in the introduction, there has been considerable interest in the possibility that prenatal events could influence the adult life. Adults who were small at birth have been reported to have higher blood pressure and increased risk of death from ischaemic heart disease, although there are some contradictory results.

The prevalence of Leiden mutation was 7.2% in the mothers of growth retarded neonates and 18 % in the group of mothers of premature infants, the latter being significantly higher than the 6.3 % prevalence of this mutation in healthy Hungarian subjects (p<0.01). Our findings confirmed the results of Lindqvist et al (87), that the incidence rate of activated protein C (APC) resistance of women who had IUGR children did not differ from that in the healthy population.
Observations and practical consequences

Our results, however, are in concert with the findings of some studies that the presence of Factor V, Leiden mutation may have a role in premature delivery. According to our results, cardiovascular risk factors cannot be proved among children at the age of 6-10 who were born as intrauterine growth retarded. Further studies are required to determine whether which stage of pregnancy might influence birthweight and later risk factors, and it can be important at what age of children should be examined for these risk factors.

3. Impaired glucose tolerance and type 2 diabetes mellitus

T2DM in children and adolescents is regarded as an emerging problem; however, there are few reliable reports of its true population prevalence or its prevalence in obese children. As the childhood population becomes increasingly overweight, T2DM may be expected to occur in younger, prepubertal children. The young age at presentation exposes these patients to a high risk of complications in adult life.

Observations and practical consequences

According to our prevalence data of T2DM, it seems that not it is the major problem among obese youth, in spite of this, clinically healthy obese children have disturbances of carbohydrate metabolism, so screening for T2DM in children and adolescents, as suggested by the American Diabetes Association, is highly recommended.

Impaired glucose tolerance and T2DM in asymptomatic obese children can be managed with dietary and lifestyle interventions, resulting improvement of the metabolic status of these children.

According to this observation and assuming that T2DM is preventable, there are two components of the primary prevention. First of all, a populations strategy is needed, for altering the lifestyle and the environmental determinants of T2DM. Second, a high-risk strategy is needed for screening individuals at especially high risk for T2DM and bringing preventive care to them.
REFERENCES

46. Szathmári M, Vásárhelyi B, Tulassay T: Low birth weight and adult diseases. The hypothesis, the facts and the doubts. Orv Hetil 143(39): 2221-28, 2002

PUBLICATIONS IN THE ISSUE OF THE THESIS

Book chapter

Papers

ABSTRACTS WHICH CAN BE CITED IN THE ISSUE OF THE THESIS

OTHER PUBLICATIONS AND ABSTRACTS

8. Erhardt É., Harangi F.: Two cases of musculoskeletal syndrome associated with acne. Pediatric Dermatology 14/6, 456-459, 1997 **IF: 0.381**

34. Lányi É., Csernus K., Erhardt É., Molnár D.: Keringő aktív ghrelin szintjének változása orális glükózterhelés során kövér gyermekekben. (abs) Gyermekgyógyászat 55(S2): 54, 2004

ENCLOSED PUBLICATIONS

5. Erhardt É, Molnár D: 2-es típusú diabetes mellitus és elhízás gyermekkorban. Orvostovábbképző Szemle (Különszám) 12-15, 2005
LECTURES AND POSTERS IN THE ISSUE OF THE THESIS

1. A Magyar Elhízásellenes Alapítvány VII. Konferenciája
1996. szeptember 18-22., Balatonlelle
Erhardt É., Molnár D: Intrauterin tápláltság szerepe a felnőttkori elhízásban és a kardiovaszkuláris betegségekben

2. 7th International Workshop of European Childhood Obesity Group
21-22nd November, 1997, Verona, Italy
E. Erhardt, D. Molnár: Size at birth and later risk factors

3. A Magyar Elhízásellenes Alapítvány XII. Konferenciája
1999. szeptember 19-20., Siófok

4. 9th European Childhood Obesity Group Workshop
8-10th October 1999, Malmö-Lund, Sweden

5. Magyar Diabetes Társaság XV. Kongresszusa
2000.04.13-16., Tihany
Erhardt É., Molnár D., Stankovics J., Török K.: Kardiovaszkuláris kockázati tényezők, intrauterin növekedés, Leiden mutáció

6. A Gyermekendokrinológiai Szekció ENDOPED Tudományos Ülése
2001. május 18-19, Hortobágy, Máta
Erhardt É., Czakó M., Molnár D., Kosztolányi Gy. Soltész Gy.: Beta3-adrenoreceptor gén polimorfizmus előfordulása kövér gyermekekben

7. Magyar Gyermekdiabetológiai szekció Tudományos Ülése
2001. 09.27.-30., Zalakaros
Erhardt É., Molnár D., Soltész Gy.: Csökkent glucose tolerancia előfordulása kövér gyermekekben

8. 8th Middle European Workshop on Paediatric Endocrinology (MEWPE)
16-18th November, 2001, Bled, Slovenia

9. 12th European Childhood Obesity Group Workshop
23-25 May, 2002, Prague, Czeh Republic

10. Magyar Diabetes Társaság XVI. Kongresszusa
2002.05.30.-06.02., Debrecen
Erhardt É., Csernus K., Molnár D., Soltész Gy.: A 2-es típusú diabetes ritka, az IGT viszont gyakori tünetmentes, kövér gyermekekben
11. 28th Annual Meeting of the International Society for Pediatric and Adolescent Diabetes (ISPAD)
18-21 September 2002, Graz, Austria

12. 12th European Congress on Obesity
29 May-1 June 2003, Helsinki, Finland
E. Erhardt, M. Czakó, D. Molnár: *The Trp64Arg polymorphism of the β3-adrenergic receptor gene in healthy and obese Hungarian children*

2003. június, Szeged
Erhardt É., Csernus K., Molnár D., Soltész Gy.: *Szénhidrát-anyagcserezavarok kövér gyermekekben*

14. 13th European Childhood Obesity Group Workshop
25-27 September, 2003, Tenuta Moreno, Mesagne (BR), Italy
E. Erhardt, D. Molnár: *A rare complication that can be ignored (felkért, plenáris előadás)*

15. Magyar Gyermekdiabetológiai szekció Tudományos Ülése
2003. 10.17.-18., Szeged
Erhardt E., Czakó M., Molnár D., Kosztolányi Gy., Soltész Gy.: *β3-adrenoreceptor gén Trp64Arg polimorfízmus*

16. A Magyar Diabetes Társaság XVII. Kongresszusa
2004. április 22-25., Tihany
Erhardt É., Czakó M., Molnár D., Kosztolányi Gy., Soltész Gy.: *A β3-adrenoreceptor gén, Trp64Arg polimorfízmus előfordulása normál és kövér, magyar gyermekekben.*

17. 13th European Congress on Obesity
26-29 May, 2004, Prague, Czech Republic
E. Erhardt E., K. Csernus, M. Czakó, D. Molnár: *Frequencies of single-nucleotide polymorphisms of some candidate genes playing role in thermogenesis in Hungarian children (poster).*

18. XIV. Symposium of Polish Pediatric Endocrinology
15-17 October, 2004, Wisła, Poland
E. Erhardt: *Is type 2 diabetes mellitus a significant problem in European children? (felkért, plenáris előadás)*

19. 14th European Congress on Obesity
1-4 June, 2005, Athen, Greece
E. Erhardt, K. Csernus, D. Molnár: *Examination of synergetic effects of some candidate genes playing role in thermogenesis (poster).*
20. ECOG International Workshop
29 Sept-1 Oct, 2005, Vienna, Austria

21. Obezitológiai szimpózium és továbbképző tanfolyam
2005. október, Pécs
Erhardt É: A gyermekkori elhízás helyzete és kezelése (felkért előadás)

22. Gyermekkori Diabetes és Obesitas Továbbképző Tanfolyam
2006. március, Pécs
Erhardt É: 2-es típusú diabetes mellitus (felkért előadás)

23. X. Családorvosi konferencia
2007.10. 06., Budapest
Erhardt Éva: Az elhízás genetikája (felkért előadás)
OTHER LECTURES AND POSTERS

1. A Magyar Elhízásellenes Alapítvány III. Konferenciája
 1994 szeptember, Balatonlelle
 Erhardt É., Molnár D.: A bioelektromos impedancia analízis értékelése
gyermekében

 Erhardt É., Kardos M., Harangi F.: Acne kapcsán fellépő musculoskeletalis
 szindróma két esete

 Gyermekreumatológiai Szekció, Győr
 Erhardt É., Kardos M., Harangi F.: Acne kapcsán fellépő musculoskeletalis
 szindróma két esete

4. 4th International Workshop of European Childhood Obesity Group
 Nov. 1994, Pécs
 Erhardt É., Molnár D.: Body composition of children by skinfold and BIA methods
 (poster)

5. Nemzetközi Radiológiai Kongresszus, a Magyar Gyermekradiológiai Társaság
 szervezésében
 1995 szeptember, Szentendre
 Weisenbach J., Kozári A., Erhardt É.: Hypophysis microadenoma diagnosztikus
 csapdái

6. A Magyar Elhízásellenes Alapítvány IV. Konferenciája
 1995 szeptember, Balatonlelle
 Erhardt É., Molnár D.: Hasznos támpontot nyújt-e a diétás felmérés az elhízás
 kezelésében?

7. A Magyar Atherosclerosis Társaság Gyermekszekciójának Ülése
 1995 október, Veszprém
 Erhardt É., Molnár D.: Hasznos támpontot nyújt-e a diétás felmérés az elhízás
 kezelésében?

8. 6th European Congress on Obesity
 May 1995, Copenhagen, Denmark
 Erhardt É., Molnár D., Schutz Y.: No blunted postprandial thermogenesis in obese
 adolescents (poster)

9. 6th Annual Meeting of Alpe-Adria Study Group of Pediatric Endocrinology and
 Diabetology
 15th-16th December, 1995, Verona, Italy
 Erhardt É., Molnár D.: No blunted postprandial thermogenesis in obese children

10. 6th European Congress on Obesity
 May 1995, Copenhagen, Denmark
 Molnár D., Erhardt É., Csábi Gy., Schutz Y.: Increased postabsorptive fat oxidation
 in obese adolescents

-43-
11. A Gyermekendokrinológiai Munkacsoport ENDOPED-MILLECENTUM tudományos ülése
1996. május 3-4., Szombathely
Erhardt É., Kozári A., Decsi T., Juricskainé Dávid Zs., Soltész Gy.: Sporadikus és familiáris Addison-kór
Kozári A., Erhardt É., Pintér Á., Szilágyi K., Magyarlaki T., Kálmán E., Soltész Gy.: Hashimoto betegség talaján kialakuló follicularis pajzsmirigy carcinoma

12. Vth Congress of European Society for Pediatric Dermatology
September 4-8, 1996, Rotterdam
Erhardt É, Harangi F, Kardos M, Várszegi D: Two cases of musculoskeletal syndrome associated with acne. (poster)

13. 7th Annual Meeting of Alpe-Adria Study Group of Pediatric Endocrinology and Diabetology
November 7-9th, 1996, Bolzano
E. Erhardt, R. Hermann, A. Kozári, G. Soltész: Familial, X-linked Addison disease

14. A Gyermekendokrinológiai Munkacsoport ENDOPED tudományos ülése
1997. április 24-26., Nyíregyháza
Erhardt É., Horváth Örs P, Környei V., László T., Soltész Gy.: Tartós hypertonia hátterében felfedezett gravis hypertensio

15. A Magyar Elhízás Ellenes Alapítvány X. Konferenciája
1997. szeptember 18-21, Dobogókő
Erhardt É., Molnár D.: A Prader-Willi syndroma új diagnosztikai lehetőségei molekulárgenetikai módszerekkel

16. I. Slovak-Hungarian Symposium of Pediatric Endocrinology and Diabetology
E. Erhardt, P. Horváth Örs, V. Környei, T. László, Gy. Soltész: Case report of a phaeochromocytoma discovered in the background of a permanent high blood pressure

17. A Gyermekendokrinológiai Munkacsoport ENDOPED tudományos ülése
1998. május 14-16, Dobogókő
Erhardt É., Sólyom J., Homoki J., Dávid Zs., Soltész Gy.: Vérfolt 17-hdroxiprogesteron és vizelet steroid profil vizsgálatok összehasonlítása adrenogenitális syndromában szenvedő gyerekekben

18. Magyar Gyermekgyógyász Társaság Dél-dunántúli Területi Szervezetének Kongresszusa
1998. szeptember 25-26., Mosdós

19. Pécs-Tübingen-Nürnberg Trilateral Symposium on Endocrinology
May 2nd, 1998, Nürnberg, Germany
Erhardt É., David Zs., Soltész Gy.: Follow-up of adrenogenital syndrome in children based on plasma 17-OH-progesterone and urinary steroid metabolites

-44-
20. Satellite Symposium of the 8th International Congress of Obesity
4th September, 1998, Paris, France
D. Molnár, T. Decsi, I. Burus, K. Török, É. Erhardt: *Effect of weight reduction on plasma total antioxidative capacity in obese children*

21. 8th International Child Neurology Congress, Pre-Congress Satellite on Rett syndrome
11-12th September, 1998, Bled, Slovenia
E. Erhardt, K. Hollódy, D. Molnár, K. Borvendég: *Body composition of Hungarian Rett syndrome girls (poster)*

22. Middle European Congress on Paediatric Endocrinology
13-15th November 1998, Szépalma (Zirc), Hungary
E. Erhardt, R. Hermann, S. Davidovics, E. Kálmán, A. Kozári, G. Soltész: *Graves disease associated with papillary thyroid carcinoma*
R. Hermann, E. Erhardt, G. Soltész: Neurofibromatosis with Noonan’s phenotype

23. Magyar Humángenetikusok Konferenciája
1998. október 18-21., Szeged
Erhardt É., Morava É., Decsi T., Czakó M., Kosztolányi Gy.: *Súlyos újszülöttkori hypotonia Prader-Willi regió deléciójával*

24. A Gyermekendokrinológiai Munkacsoport ENDOPED Tudományos Ülése
1999. május 7-9, Szeged
Erhardt É., Soltész Gy.: *Szükséges-e minden Turner syndromás gyermeket növekedési hormonnal kezelni?*

25. A Magyar Humángenetikai Társaság II. Kongresszusa
1999. augusztus 25-29., Pécs
Erhardt É., Adamovich K., Vincellér M.: *Opitz C syndrome oesophagus atresiával*

26. Magyar Diabetes Társaság Gyermekdiabetológia szekció Tudományos Ülése
1999. október 15-16., Győr
Erhardt É., Kozári A., Hermann R., Harangi F., Soltész Gy.: *Dermatomyositis és diabetes együttes előfordulása*

27. Middle European Workshop on Paediatric Endocrinology
19-21 November, 1999, Emmersdorf, Austria
E. Erhardt, E. Morava, M. Czakó, T. Decsi: *Severe muscular hypotonia in a newborn infant*

28. A Gyermekendokrinológiai Munkacsoport ENDOPED Tudományos Ülése
2000. május 12-13, Seregélyes
Erhardt É., Hermann R., Kozári A., Kajtár P., Oberritter Zs., Tornóczky T., Soltész Gy.: *Virilizáló mellékvese tumor*

29. 11th European Congress on Obesity
30 May-2 June 2000, Vienna, Austria
30. A MGYT Dél-dunántúli Területi Szervezet Tudományos Ülése 2000. szeptember 22-23, Szigetvár
Erhardt É., Morava É., Adamovich K., Decsi T.: Újszülöttkori izomhypotonia egy ritka syndroma kapcsán

Hermann R., Kozári A., Erhardt É., Soltész Gy.: Diabetes, Addison kór és hypothyreosis együttel előfordulása

32. A Magyar Reumatológusok Egyesülete Gyermekreumatológiai Szekció Ülése 2000.10. 27., Budapest
Erhardt É., Hermann R., Kozári A., Harangi F.: Dermatomyositis előfordulása diabetes mellitusos betegen

33. A Gyermekendokrinológiai Szekció ENDOPED Tudományos Ülése 2002. május 3-4., Győr
Erhardt É., Sólyom J., Kozári A., Hosszú É., Soltész Gy.: Hyperinsulinaemiás hypoglycaemia és normoglykaemia

34. Magyar Diabetes Társaság XVI. Kongresszusa 2002.05.30.-06.02., Debrecen
Erhardt É., Csernus K., Molnár D., Soltész Gy.: A 2-es típusú diabetes ritka, az IGT viszont gyakori tünetmentes, kövér gyermekben

Erhardt E., Kozári A., Sárkány I., Kovács J., Soltész Gy.: Újszülöttkori hyperthyrotropiaemia két esete

36. Middle European Society for Paediatric Endocrinology (MESPE) 14-15 November 2003, Köszeg, Hungary
Adrenal and bone neoplasm in a young child (poster)

37. MGYT és a Magyar Endokrinológiai és Anyagcsere Társaság Gyermekendokrinológiai Szekciójának Tudományos Továbbképző konferenciája 2004.03.26-27., Lillafüred
Leptin (felkért előadás)

38. A Gyermekendokrinológiai Szekció ENDOPED Tudományos Ülése 2004. ápr. 30.-máj. 1., Pécs
Erhardt É., Kozári A., Kajtár P., Rózsai B., Illés T., Tornóczky T., Soltész Gy.: Li-Fraumeni szindróma

40. A MGYT Dél-dunántúli Területi Szervezet Tudományos Ülése 2004. szeptember 24-25., Mosdós
Erhardt É., Kozári A., Lányi É., Dóczi T., Hudák I., Gömöri É., Soltész Gy.: Cushing betegség csapdái
41. Novo Nordisk Endokrin hétvége
2005. április 8-9., Visegrád
Erhardt É: Testősszetétel meghatározása kövér gyermekekben

42. Fiatal Diabetológusok Találkozója
2005. április 21-23., Siófok
Erhardt É: Insulinanalógok a gyermekdiabetológiában

43. A Gyermekendokrinológiai Szekció ENDOPEDE Tudományos Ülése
2005. ápr. 29.-máj. 1., Lillafüred
Erhardt É., Kozári A., Lányi É, Hudák I, Gömöri É, Dóczi T, Soltész Gy: M. Cushing (harmadszor és talán utoljára...)
Erhardt É, Soltész Gy, Sólyom J: Prader-Willi syndromas gyermekek növekedési hormon kezelése (Protokoll vitaindító)

44. Magyar Gyermekdiabetológiai szekció Tudományos Ülése
2005. október, Székesfehérvár
Erhardt É., Sándor Gy., Kozári A., Soltész Gy.: Cystas fibrosis, csökkent glucose tolerancia, nephropathia (esetismertetés)
ACKNOWLEDGEMENTS

It was a great pleasure for me to carry out this work at the Department of Paediatrics, Medical Faculty, University of Pécs. A thesis is supposed to be a contribution by one person for a PhD; there are still a lot of people who have helped me out over the years. I have been fortunate enough to have the support of so many people and without it this would not have been possible.

Firstly, I would like to express my gratitude to Professor Molnár who invited me as a medical student to join his research group, and supported me throughout all my experimental and clinical studies. His open-minded personal and professional merits provided a continuing inspiration not only for me, but for all people in the group. He was always sensitive for new theories thereby creating a helpful, warm atmosphere for young people.

I am extremely grateful to Professor Soltész who “introduced” me to Endocrinology and Diabetes. He greatly supported all my works and encourages me to perform these studies.

I cannot express my so many thanks to Professor Méhes, who unfortunately could not live this thesis. He was my first teacher in Paediatrics who always supported me, and he contributed to create a unique warm and friendly atmosphere at the Department.

Special thanks to Professor Kosztolányi who helped me a lot to start the genetic studies and continuously encourages me to perform this work.

This work would not have been possible without help, especially technical contribution in genetic studies, of Márta Czakó and Anna Erdélyi. Márta Czakó became one of my best friends during the years.

I am also grateful to Ágnes Angster for their support in clinical data and sample collection.

I would like to thank several colleagues and the staff of Endocrine Unit for their valuable contribution.

I would not have been able to carry out my PhD work without the love and continuous support of my husband and my little son. Most importantly of all, I would like to thank my parents and my sister for helping me during my life. It is through their encouragement and care that I have made it through all the steps to
reach this point in life, and I could not have done it without them. My family has always taken care of me.