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LIST OF ABBREVIATIONS 

AMT:  11C-alpha-methyl-L-tryptophan 

AUC: area under the curve 

BDI-II: Beck Depression Inventory, 2nd Edition 

CBTRUS: Central Brain Tumor Registry of the United States  

CNS: central nervous system  

DWI: diffusion-weighted imaging  

EGFR: epidermal growth factor receptor 

FDG: 2-deoxy-2[18F]fluoro-D-glucose 
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FLAIR: fluid-attenuated inversion recovery 

FWHM: full-width half-maximum  

GBM: glioblastoma 

HR: hazard ratio 

IDH: isocitrate dehydrogenase  

IDO: indoleamine 2,3-dioxygenase  

iRANO: immunotherapy-RANO  

KMO: kynurenine 3-monooxygenase 

KP:  kynurenine pathway  

KPS: Karnofsky Performance Status 

KYNU: kynureninase 

LAT: L-type amino acid transporter 

MET: L-[methyl-11C]methionine 

MGMT: O6-methylguanine–DNA methyltransferase  

MPRAGE: magnetization-prepared rapid gradient-echo  

MRI: magnetic resonance imaging  
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MRS: MR spectroscopy  

NAA: N-acetylaspartate  

NSCLC: non-small cell lung cancer  

PET: positron emission tomography  

PWI: perfusion-weighted imaging  

RANO: Response Assessment in Neuro-Oncology  

ROC: receiver-operating characteristics 

ROI: region of interest  

RPA: Recursive Partitioning Analysis 

SUV: standardized uptake value  

TDO:  tryptophan 2,3-dioxygenase  

TERT: telomerase reverse transcriptase  

T1-Gad: post-contrast T1-weighted 

TTFields: tumor-treating fields  

VD: volume of distribution  

VEGF: vascular endothelial growth factor  

VOI: volume of interest  

WHO: World Health Organization  
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I. INTRODUCTION 

 

 

I.1. Epidemiology of brain tumors 

Brain tumors are relatively rare cancer types in adults but represent the most common 

solid tumors in children. In all ages, brain tumors carry a significant mortality, and, 

therefore, are considered to be a major health care issue. The majority of newly-diagnosed 

brain masses are metastatic tumors, while the rest represent a variety of primary central 

nervous system (CNS) tumors. According to the 2016 Central Brain Tumor Registry of 

the United States (CBTRUS) report, the overall incidence rate of all primary CNS tumors 

is 22.36/100,000 in the United States [Ostrom et al., 2016]. The worldwide incidence rate 

of malignant primary CNS tumors in 2012 was 3.4/100,000 [Ostrom et al., 2016]. The 

annual average mortality rate related to primary malignant CNS tumors between 2009-

2013 in the United States was 4.32/100,000 and an estimated 16,947 deaths will be related 

to primary CNS tumors in 2017 [Ostrom et al., 2016]. Based on the Austrian Brain Tumor 

Registry, the number of primary brain tumors was 1,688 in a population of 8.2 million in 

2005 (18.1/100,000/year) [Wöhrer et al., 2009]. The incidence rate was higher in females 

than in males, and the most common primary brain tumor was meningioma and also the 

most common of all non-malignant tumors (53,2%). However the most common of all 

malignant CNS tumors was glioblastoma (46,6%) [Ostrom et al., 2016]. 

There are a few known risk factors associated with brain tumors, such as ionizing radiation 

and genetic predisposition. The most common radiation-induced tumors are gliomas, 

meningiomas and schwannomas [Fisher et al., 2007]. Oxidative stress, that may impact 

the pathogenesis of migraine-related white matter lesions by influencing cerebrovascular 
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autoregulation and vasomotor reactivity, also has a role in gliomagenesis by increased 

intracellular reactive oxygen species (ROS) [Rinaldi et al., 2016]. Genetic susceptibility 

for brain tumors may exist, however, the majority of brain tumors are sporadic [McNeill, 

2016]. On the other hand, autoimmune conditions and allergies are inversely correlated 

with glioma risk [Brenner et al., 2002; Wiemels et al., 2002; Schoemaker et al., 2006; 

Schwartzbaum et al., 2003].  

Among various types of primary CNS tumors, meningioma is the most frequently reported 

histology overall (36.6%), followed by pituitary tumors (24.1%), and glioblastoma 

(14.9%) [Ostrom et al., 2016]. In pediatric populations (ages 0-14 years), brain and other 

CNS tumors are the most common solid tumors and the cause of the majority of cancer 

mortality [de Blank PM et al., 2015]. The most common brain tumors in children are 

pilocytic astrocytoma and medulloblastoma [McNeill, 2016]. In adolescent and young 

adult populations (ages 15-39 years), the incidence rate of primary CNS tumors is 

10.71/100,000 and higher for non-malignant than malignant tumors.  

In the adult population above age 40 years, the average annual age-adjusted incidence rate 

of primary CNS tumors is 40.10/100,000. The 5-year relative survival of primary 

malignant CNS tumors between 1995-2013 was 34.7% (higher in females), but it was 

modified significantly by age, histology and clinical behavior, while in non-malignant 

CNS tumors, 5-year survival was 90.4% in the United States [Surveillance Epidemiology 

and End Results (SEER) Program, 2016].  
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I.2. Clinical manifestation of brain tumors  

In general, the most common clinical manifestations of brain tumors include seizure, focal 

neurological deficit, altered behavior, and cognitive impairment, but mood disturbance 

and depression are also common co-morbidities among these patients [Rooney et al., 

2011; Goebel et al., 2013].  

In gliomas, the age of the patients and also tumor grade have a significant effect on the 

presenting symptoms [Posti et al., 2015]. Seizure can be a common symptom in patients 

with low-grade glioma (approximately 80%) [Pallud et al., 2010; Ruda et al., 2010; Ruda 

et al., 2012] and also in patients with a younger age [Ruda et al., 2012], while in patients 

with anaplastic astrocytoma and glioblastoma, the most common manifestations are focal 

neurological deficit (such as signs of high intracranial pressure, headache, paresis) and 

cognitive deficit [Riva et al., 2006; Tanaka et al., 2012]. However, in some cases, the only 

manifestation of brain tumors is different psychiatric symptoms, such as depression, 

apathy, personality changes, anxiety, etc. [Madhusoodanan et al., 2015]. Most 

epidemiologic data related to brain tumor-associated depression have encompassed 

primarily glioma patients, where the estimated prevalence of depression ranges from 6 to 

93 % [Rooney et al., 2011]. While depression in brain tumor patients is an important 

component of the quality of life, and, possibly, survival [Rooney et al., 2011; Mainio et 

al., 2005; Pelletier et al., 2002], many patients are neither properly diagnosed nor 

adequately treated for depression. Effective treatments include antidepressants (such as 

serotonin reuptake inhibitors) and psychotherapy.  
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Meningiomas are mainly solitary tumors [Claus et al., 2005], and approximately 2-3 % of 

the population has an incidental asymptomatic meningioma [Porter et al., 2010]. One of 

the most common manifestation of meningiomas is seizure, which occurs in 13-60% of 

affected patients and is among the initial symptom in 20-50% of them [Hamasaki et al., 

2012; Lieu et al., 2000]. Studies reported that 53-90% of patients with preoperative 

seizures can be seizure-free after tumor resection [Gonzales-Martinez et al., 2008; 

Hamasaki et al., 2012; Lieu et al., 2000].  

I.3. Classification of brain tumors  

Until the recent revision in 2016, the classification of CNS tumors mainly relied on 

conventional histopathologic characteristics [Louis et al., 2007]. However, in the recently 

released 2016 World Health Organization (WHO) classification of CNS tumors, for the 

first time, molecular markers have been incorporated in addition to conventional histology 

to classify primary brain tumors, thus formulating a new concept as to how CNS tumor 

diagnoses should be established using recently recognized molecular characteristics 

[Louis et al., 2016]. This classification also added some newly recognized neoplasms and 

deleted some others that have no longer diagnostic and/or biological relevance (e.g., the 

use of oligoastrocytoma as a separate entity is now discouraged, because astrocytomas 

and oligodendrogliomas can be distinguished by specific molecular markers). Other 

changes included the addition of brain invasion as a criterion for atypical meningioma and 

the introduction of a soft tissue-type grading system [Louis et al., 2016]. In the future, the 

2016 WHO classification might be helpful to faciliatet improved diagnostic accuracy, 

more personalized and targeted patient management, as well as reliable determination of 

the prognosis and treatment response.  
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I.4. Common brain tumor types in adults 

I.4.1. Gliomas. Gliomas are a heterogeneous group of CNS tumors, derived from 

neuroglial progenitor cells. Gliomas represent approximately 27% of all primary brain 

tumors and 80% of malignant primary brain tumors [Ostrom et al., 2015]. The cause of 

glioma is still unknown, but ionizing radiation is a known risk factor, as well as genetic 

predisposition (increased risk of glioma in rare familiar tumor syndromes, such as 

neurofibromatosis type 1 and 2, Li Fraumeni syndrome, Turcot syndrome).  

Gliomas can be distinguished as oligodendrogliomas, astrocytomas and ependymomas 

based on histology and WHO grade I-IV depending on tumor malignancy (increasing 

aggressiveness with higher grade). Grade I and II (diffuse infiltrating gliomas) are low-

grade gliomas, while grade III (anaplastic gliomas) and grade IV (glioblastomas) are high-

grade gliomas. Low-grade gliomas occur more commonly in young adults (30-45 years), 

while grade III anaplastic glioma occurs around 45 years of age and glioblastoma (GBM) 

around 60 years of age, on average. Based on the new 2016 WHO classification of CNS 

tumors, nearly all of gliomas can be classified either as astrocytoma or oligodendroglioma 

[Sahm et al., 2014; Cancer Genome Atlas Research Network, 2015; Wiestler et al., 2014; 

Louis et al., 2016] (Table 1., see next page). Diagnosis of oligoastrocytomas should be 

confined to cases with an inconclusive genetic test or absence of an appropriate molecular 

test. In addition, one genetically defined subtype (ependymoma, RELA-fusion positive) 

has been accepted. This variant represents the majority of supratentorial tumors in the 

pediatric population [Louis et al., 2016].  
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Table 1. 2016 WHO Classification of CNS tumors - Gliomas 

 

2016 WHO Classification of Gliomas 

Diffuse astrocytic and oligodendroglial 

tumors  Grade Other astrocytic tumors Grade  

Diffuse astrocytoma IDH mutant II Pilocytic astrocytoma I 

Gemistocytic astrocytoma IDH mutant   Pilomyxoid astrocytoma   

Diffuse astrocytoma IDH wild-type   

Subependymal giant cell 

astrocytoma I 

Diffuse astrocytoma NOS   Pleomorphic xanthoastrocytoma II 

      

Anaplastic pleomorphic 

xanthoastrocytoma III 

Anaplastic astrocytoma IDH mutant III     

Anaplastic astrocytoma IDH wild-type   Ependymal tumors   

Anaplastic astrocytoma NOS   Subependymoma I 

      Myxopapillary ependymoma I 

Glioblastoma  IDH mutant IV Ependymoma II 

Glioblastoma IDH wild-type IV Papillary ependymoma   

Giant cell glioblastoma     Clear cell ependymoma   

Gliosarcoma     Tanycytic ependymoma   

Epitheloid glioblastoma     

Ependymoma, RELA fusion-

positive II or III 

Glioblastoma NOS   Anaplastic ependymoma III 

          

Diffuse midline glioma 

H3 K27M-

mutant IV Other gliomas   

      

Chordoid glioma of the third 

ventricle II 

Oligodendroglioma 

 

  

IDH mutant 

and 1p/19q  

co-deleted 

II 

 

Angiocentric glioma I 

Astroblastoma   

Oligodendroglioma NOS       

      Mixed neuronal-glial tumors   

Anaplastic 

Oligodendroglioma 

  

IDH mutant 

and 1p/19q  

co-deleted 

III 

 

Ganglioglioma I 

Analpastic Ganglioglioma III 

Anaplastic 

Oligodendroglioma NOS   

Desmoplastic infantile 

astrocytoma I 

      

Desmoplastic infantile 

ganglioglioma I 

Oligoastrocytoma NOS II Papillary glioneuronal tumor I 

Anaplastic oligoastrocytoma NOS III 

Rosette-forming glioneuronal 

tumor I 

      

Diffuse leptomeningeal 

glioneuronal tumor*  

IDH: isocitrate dehydrogenase; NOS: not otherwised specified 

Cells with new entities shaded with grey color 

* definitive WHO Grade has not yet been assigned 
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Estimated survival of gliomas is different depending on tumor histology; 5-year survival 

rate for pilocytic astrocytoma is 94.2%, while it is only 5.5% for glioblastoma [Ostrom et 

al., 2016]. The oligodendroglial subtype has a better prognosis (10-15 years median 

survival) than the astrocytic subtype (6 years median survival) [Pignatti et al., 2002].  

Glioblastoma (WHO Grade IV astrocytoma) is the most common form of gliomas and the 

most common primary brain tumor in adults after meningiomas [Ostrom et al., 2014], 

representing approximately 45% of malignant primary brain tumors and about 15% of all 

primary brain tumors [Louis et al., 2007; Ostrom et al., 2013] with 14-16 months overall 

median survival [Stupp et al., 2009; Omuro et al., 2013]. About 90% of glioblastomas are 

primary with an older median age at time of diagnosis (~64 years), and the remaining 10% 

are secondary developing from low-grade diffuse astrocytoma or oligodendroglioma 

typically at a younger age [Wen & Kesari, 2008].  

I.4.1.1. Histopathology and prognostic biomarkers in malignant gliomas 

 

Accurate histopathological diagnosis is very important for prognosis and treatment of 

brain tumors. The most important histopathologic features of glioblastomas include 

significant necrosis, microvascular proliferation, high mitotic activity, nuclear atypia, 

high cellularity and also "pseudopalisading" [Agnihotri et al., 2013]. However, the 

differentiation between tumor grades may be challenging. Assessment of mitotic activity 

plays an essential role in tumor grading, and Ki-67 nuclear labeling index became a 

commonly used prognostic and diagnostic marker to estimate tumor proliferative activity. 

Ki-67/MIB-1 proliferative index showed a positive correlation with histological 

malignancy grade in all gliomas, but it also showed overlap between the malignancy 
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subgroups [Skjulsvik et al., 2014]. Based on this finding, Ki-67 is useful but alone not 

sufficient to determine precisely the malignancy grade.  

It has been increasingly recognized that there are key genetic tumor markers affecting 

prognosis and treatment response (Table 2.). Analysis of The Cancer Genome Atlas 

identified more than 60 genetic alterations including genetic mutations and chromosomal 

aberrations in glioblastoma [Cancer Genome Atlas, 2008; Parsons et al., 2008; Belden et 

al., 2011]. A number of prognostic and predictive genetic glioma biomarkers have 

emerged during the last decade. Prognostic biomarkers provide information about the 

length of survival regardless of treatment [Simon, 2010; Tezak et al., 2010]. Predictive 

biomarkers compare the effect of certain therapy in patients with and without biomarkers 

and could differentiate the effect of this treatment on the outcome. Main prognostic factors 

for gliomas include age, clinical performance status (commonly evaluated by the 

Karnofsky Performance Status (KPS) Scale [Schag et al., 1984]), and extent of initial 

resection. In addition, several specific molecular biomarkers have important prognostic 

or predictive significance in malignant gliomas [Wilson et al., 2014] (Table 2.), as 

detailed in the upcoming section.  
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Table 2. Most important genetic molecular biomarkers in gliomas 

Glioma biomarker Effect Survival 

IDH1 mutation 

 

Common in secondary GBM (85%). 

Younger patient population. 

No cellular protection against oxidative 

damage. 

better 

1p/19q deletion Independent prognostic biomarker. 

GBM with oligodendroglial component. 

Favorable response to chemo- and 

radiotherapy. 

better 

MGMT promoter 

methylation 

32-68% of primary GBM. 

75% of secondary GBM. 

Predictor of response to alkylating agent. 

better 

EGFR overexpression 
 

Augmentation of tumor angiogenesis, 

cell proliferation, cell survival. 

worse 

TP53 mutation Mainly in secondary GBM (62%), diffuse 

and anaplastic astrocytomas. 

Strong association with IDH1 mutation in 

diffuse astrocytomas. 

worse 

TERT mutation TERT upregulation and survival of tumor 

cells. 

worse 

 

The most significant GBM genetic biomarkers include isocitrate dehydrogenase-1 (IDH1) 

mutation, 1p/19q co-deletion (GBM with oligodendroglial component, 4.2/27.2 %), O6-

methylguanine–DNA methyltransferase (MGMT) promoter methylation, epidermal 

growth factor receptor (EGFR) overexpression (approximately in 50% of GBM) and 

TP53 mutation (Table 2.). Based on the presence of IDH1 mutation, GBMs can be 

separated into two subgroups:  IDH1 wild-type or primary glioblastoma, which are more 

likely to carry EGFR amplification, occur in older population, and have a worse 

prognosis; while IDH1 mutated (secondary) glioblastomas are more likely to carry TP53 

mutation, occur in younger population, and have a better prognosis [Appin et al., 2014].  
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In addition, several studies reported a significant association between human telomerase 

reverse transcriptase (TERT) mutation and gliomas. Telomer length is an important 

mechanism involved in the immortalization of cancer cells. TERT mutation presents 

frequently in glioblastomas (69%) and oligodendrogliomas (72%), but it is less common 

in astrocytomas (38%) [Yuan et al., 2016]. Also gliomas with only TERT mutation are 

primary GBMs, associated with poor overall survival, while secondary GBMs have a low 

frequency of TERT promoter mutations [Eckel-Passow et al., 2015; Yuan et al., 2016]. 

Based on the developing genetic profile of glioblastomas, Verhaak et al. [2010] classified 

4 different molecular subgroups of GBMs, such as proneural, neural, classical and 

mesenchymal. Patients with classical and mesenhcymal GBM subtypes showed 

significantly better survival with the use of concurrent temozolomide, while the survival 

was not changed in the proneural subtype. IDH1 mutations were mostly found in 

proneural gliomas, while NF1 alteration was associated with mesenchymal subtype and 

EGFR alterations were associated with classical subtype [Wang et al., 2016]. They also 

reported that 75% of primary GBMs switched transcriptional subtype at relapse, whereas 

secondary GBMs were more stable. 

 

I.4.1.2. Treatment options and prognosis of malignant gliomas  

 

 

Current standard treatment for glioblastoma includes surgical resection (gross total or 

partial tumor resection) followed by radiotherapy and concurrent systemic chemotherapy 

with temozolomide ("Stupp regimen") [Stupp et al., 2005]. A phase III clinical trial 

showed that temozolomide added during (75 mg/m2 per day) and after (150-200 mg/m2, 

5 days every 28 days for six cycles) standard radiotherapy (60 Gy to the tumor) has a 
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positive effect on median overall survival (14.6 vs. 12.1 months) and the 2-5-year survival 

rate, compared with radiotherapy alone [Stupp et al., 2005; 2009]. During the initial 2-3 

months of treatment, 20-30% of patients show clinical deterioration 

("pseudoprogression") and apparent MRI progression due to therapy-related injury to the 

blood-brain barrier [Brandsma et al., 2008]. Based on this, in patients who have clinically 

asymptomatic progressive lesion after the end of chemoradiotherapy with temozolomide, 

adjuvant temozolomide should be continued [Brandsma et al., 2008]. However, if the 

early progression is not definitely "pseudoprogression", biopsy might be indicated. In 

recurrent glioblastoma management, re-resection can be offered in selected cases; also the 

patients can be enrolled in an ongoing clinical trial.  

Other, novel therapies of glioblastomas are also being investigated. These include 

molecularly targeted therapies (including inhibition of angiogenesis pathways by vascular 

endothelial growth factor (VEGF) ligand blocker bevacizumab), immunotherapy and 

gene therapy [Delgado-Lopez et al., 2016]. Studies have shown a high response rate (30-

50%) to bevacizumab given alone or in combination with irinotecan, associated with 35-

50% estimated 6-month progression-free survival in patients with recurrent tumor 

[Friedman et al., 2009; Vredenburgh et al., 2007; Kreisl et al., 2009]; however, two phase 

III clinical trials failed to show an overall survival benefit from bevacizumab treatment 

[AVAGlio trial and RTOG-0825 trial, Weller & Yung, 2013]. Recently, a new treatment 

modality, Tumor-Treating Fields (TTFields) administered through an alternating electric 

field device (NovoTTF-100A or Optune), aimed to disrupt tumor cell division, has been 

presented as a promising new tool for delaying progression of glioblastoma [Kirson et al., 

2004; 2007; 2009; Stupp et al., 2012; 2015]. In patients with recurrent disease, TTFields 
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therapy proved to be as efficacious as temozolomide without its systemic side effects 

[Stupp et al., 2012; Bosnyák et al., 2017; Mittal et al., 2017]. In a recent study, TTFields 

combined with temozolomide, utilized as upfront therapy in newly diagnosed 

glioblastoma, provided a 4-month survival benefit as compared to temozolomide alone 

[Stupp et al., 2015]. Combined TTFields therapy and bevacizumab is still under 

investigation [Delgado-López & Corrales-García, 2016]. 

I.4.2. Meningiomas. Meningiomas are the most common primary CNS tumors in adults. 

Meningioma incidence increases with age, and these tumors occur about twice as often in 

women as in men. Meningiomas are mostly benign and slowly growing [Ostrom et al., 

2013], but they also could recur and progress into a malignant form [Louis et al., 2007].  

Meningiomas have 13 histological subtypes and three grades of malignancy [Perry et al., 

2007]. The overall classification of meningiomas and also the grading did not undergo 

any recent revision. The most important predictor of the recurrence risk in meningiomas 

is the WHO histological grade, which is based on the local invasiveness and cellular 

features of atypia [Louis et al., 2007]. In the 2016 WHO classification, brain invasion 

joins the mitotic count of 4 or more as a histological criterion that can be enough for 

diagnosing an atypical meningioma, WHO grade II. Approximately 70-80% of 

meningiomas are grade I with 9 histological subtypes, from which meningothelial, fibrous 

and transitional are the most common. Grade II tumors represent up to 20% of all 

meningiomas and include 3 subtypes, atypical, chordoid and clear-cell variant. Finally, 

grade III accounts for 1-28% of meningiomas and include papillary, rhabdoid and 

anaplastic forms [Perry et al., 2007; also see Table 3.].  



19 
 

Table 3. 2016 WHO Classification of CNS tumors - Meningiomas  

2016 WHO classification of meningiomas 

Subtypes of Meningioma Grade 

Meningothelial meningioma I 

Fibrous meningioma I 

Transitional meningioma I 

Psammomatous meningioma I 

Angiomatous meningioma I 

Microcystic meningioma I 

Secretory meningioma  I 

Lympholasmacyte-rich meningioma I 

Metaplastic meningioma I 

Brain invasive II 

Chordoid meningioma II 

Clear cell meningioma II 

Atypical meningioma II 

Papillary meningioma III 

Rhabdoid meningioma III 

Anaplastic (malignant) meningioma III 

 

However, a recent study reported that in the WHO classification, concordance in the 

histological grading of meningiomas is still suboptimal [Rogers et al., 2016], especially 

in the diagnosis of grade II meningiomas. Biomolecular markers also have a role in 

grading: different histological types have different molecular alterations [Bi et al., 2016], 

and subgroups can be defined based on their genetic profile [Brastianos et al., 2013; Lee 

et al., 2010]. TERT promoter mutations are associated with meningiomas with higher 

grade and also with those with higher risk for recurrence and progression [Koelsche et al., 

2013; Goutagny et al., 2014; Sahm et al., 2015]. This mutation seems to be superior to 
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histological grade to predict recurrence-free survival [Sahm et al., 2015], and it might be 

useful to establish the progression risk of meningiomas. In addition, the presence of 

progesterone receptor is more frequent in benign meningioma and associated with better 

prognosis, while the expression level of VEGF was greater in atypical and anaplastic 

meningiomas predictive for higher risk of recurrence. Deletion of 14q was an independent 

prognostic marker for tumor recurrence [Saraf et al., 2011]. 

Initial treatment of meningiomas is gross total surgical resection including the involved 

dura [Goldbrunner et al., 2016]. The extent of resection, defined by the Simpson grade 

(Grade I-V) [Simpson, 1957], remains an important prognostic factor of recurrence risk 

even today [Winther & Torp, 2016]. As an alternative treatment, stereotactic radiosurgery 

can be done for small tumors or fractionated radiotherapy for larger or previously treated 

meningiomas. Also, if the complete resection of the tumor is not possible, external-beam 

radiation or partial resection with adjuvant chemotherapy are options [Saraf et al., 2011]. 

However, in elderly patients or asymptomatic, incidentally discovered meningiomas, 

observation (watchful waiting) is also a reasonable therapeutic option. Radiation therapy 

is frequently recommended after surgery for high-grade meningiomas, although it may 

not be completely efficacious. Chemotherapeutic options still remain very limited. The 5-

year recurrence rate after surgery is 12% for grade I, 41% for grade II, and 56% for grade 

III meningioma. In grade I meningiomas, MRI follow-up is recommended annually for 5 

years, and every two years afterwards. In grade II tumors, imaging is recommended at 6 

months, then annually, while in grade III, MRI should be done every 3-6 months 

[Goldbrunner et al., 2016].  
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I.4.3. Brain metastases. Brain metastases are the most common intracranial tumors in 

adults. Although the exact prevalence of brain metastases is unknown, they may occur 

approximately in 20-40% of patients with cancer [Arnold & Patchell, 2001; Soffietti et 

al., 2002]; however, at the time of the diagnosis, in 8-15% of the patients, the primary 

tumor is unknown (CUP: cancer of unknown primary) [Bartelt & Lutterbach, 2003]. Lung 

and breast cancer as well as melanoma are the most common cancer types to develop brain 

metastases, while metastases from kidney, colorectal region, prostate, testis and ovary are 

less frequent [Soffietti et al., 2002; Schouten et al., 2002]. Mean overall survival has been 

dismal, although the majority of the patients survive at least 6 months after the diagnosis 

[Sperduto et al., 2012]. Early detection of metastatic brain tumors, when only a single or 

few lesions are present, may allow focal therapy, such as tumor resection or stereotactic 

radiosurgery. The main goal of the treatment is improving quality of life by palliating 

symptoms [Hall et al., 2000; Wong et al., 2008]. The recent therapeutic options include 

surgery, stereotactic radiosurgery (SRS), whole brain radiotherapy (WBRT), systemic 

therapy and palliative therapy only. Corticosteroids can alleviate symptoms of brain 

metastases, such as edema and neurological symptoms of increased intracranial pressure; 

however, treatment with corticosteroids alone is indicative of poor survival [Soffietti et 

al., 2002]. Baseline symptoms of fatigue, nausea, appetite loss and also depression, were 

significantly related to shorter overall survival in patients with brain metastases [Wong et 

al., 2016]. The most adequate therapy for patients with brain metastases is based on 

several prognostic scores [e.g., Recursive Partitioning Analysis (RPA), Score Index For 

Radiosurgery (SIR), Basic Score for Brain Metastases (BSBM)], which could be a useful 

tool for treatment management [Venur et al., 2015]. RPA classification is a widely used 
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and reliable prognostic score for brain metastases patients. The main prognostic factors 

for survival are KPS, control of primary tumor (3 months without active chemotherapy 

means that the primary tumor is controlled), age, and the status of extracranial disease. 

Based on these factors, three classes were separated using RPA classification. Class I 

includes patients with best survival (KPS>70, controlled primary tumor, age<65 years, 

only brain metastases; had a median 7.1 months survival), while class III (with a,b,c 

subgroups) includes patients with the worst survival (KPS<70; median 2.3 months). The 

rest of the patients were grouped Class II [Venur et al., 2015]. 

I.5. Neuroimaging in brain tumors 

Brain tumors are diagnosed typically when they cause symptoms, when patients may 

undergo a brain CT scanning in the acute setting; however, conventional MR imaging 

with contrast administration is the standard clinical method for initial diagnosis of brain 

tumors and plays an important role for differentiation, presurgical evaluation, treatment 

planning, and post-treatment follow-up. In addition, advanced MRI techniques, such as 

diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and MR 

spectroscopy (MRS) add important information for tumor diagnosis and management and 

are also promising techniques in the identification of potential molecular characteristics 

of brain tumors [Castellano & Falini, 2016]. Molecular imaging with positron emission 

tomography (PET) also plays an increasing role in selected subgroups of patients with 

pre- and post-treatment brain tumors, both in adults and in pediatric brain tumors [Gulyás 

& Halldin, 2012; Juhász & Bosnyák, 2016]. 
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I.5.1. Conventional MRI in the initial diagnosis of primary brain tumors 

Low-grade gliomas are typically seen as a non-enhancing lesion on MRI, while grade III 

anaplastic glioma and GBM often present as contrast-enhancing lesions on MRI. The 

typical radiographic features of GBM on post-contrast T1 images include thick irregular 

ring of heterogeneous enhancement surrounding a central necrosis, often with a larger 

area of peritumoral hyperintensity on fluid-attenuated inversion recovery (FLAIR) and 

T2-weighted sequences, representing the region of tumor infiltration and vasogenic 

edema [Osborn et al., 2010; Zinn & Colen, 2013]. Although conventional MRI (e.g. 

FLAIR) is able to detect even very small brain lesions, as we have proven in migraine 

[Erdélyi-Bótor et al., 2017], due to its relatively good spatial resolution, it has a limited 

ability to differentiate low-grade from high-grade (infiltrative) tumors and also 

recurrent/progressing brain tumors from radiation injury. In fact, in infiltrative tumors, 

such as glioblastoma, neoplastic cells extend beyond the tumor area detected by 

conventional MRI into areas of normal-appearing white matter [Osborn et al., 2010].  

Meningiomas can be diagnosed by conventional MRI, such as pre- and post-contrast T1-

weighted, T2-weighted and FLAIR images; however, MRI has a limited ability to 

differentiate low-grade from high-grade meningiomas or tumor tissue from non-specific 

tissue changes, such as radiation necrosis [Cha, 2009]. Meningiomas usually present as a 

solitary, enhancing lesion attached to the dura mater. Typical appearance of grade I 

meningiomas is isointense on pre- and show enhancement on post-contrast T1-weighted 

MRI, while iso- or hyperintense on FLAIR images. Thickening of the dura at the 

perimeter of the tumor (called dura-tail) can be seen on post-contrast images [Takeguchi 
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et al., 2004]. Grade II meningiomas cannot be distinguished clearly from grade I tumors 

by MRI, while anaplastic meningiomas (grade III) are often irregularly shaped [Zhang et 

al., 2008], and also invasion of the cortex and diffuse growth might be seen [Lin et al., 

2014].  CT is useful to detect the calcification within the tumor, as well as hyperostosis 

of adjacent bones and intraosseous tumor growth, especially in skull-base meningiomas. 

I.5.2. Conventional MRI in recurrent gliomas: RANO criteria 

In current clinical practice, conventional MRI, such as T2-weighted, FLAIR, and, 

particularly, pre- and post-contrast T1-weighted MRI are the gold standard diagnostic 

tools not only in the initial diagnosis but also in post-treatment evaluation of brain tumors. 

In post-treatment evaluation, pseudo-progression and also pseudo-response (for example, 

after treatment with antiangiogenic agents) are a common challenge. Progressive disease 

may be diagnosed by Response Assessment in Neuro-Oncology (RANO) criteria in high-

grade gliomas [Eisele et al., 2016]. Main criteria of tumor progression include a 25% 

increase in the sum of perpendicular diameters of the enhancing mass detected in 4-week 

intervals; or a new lesion or substantially worsened T2/FLAIR signal, or clinical decline 

(Table 4).  
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Table 4. RANO criteria in high-grade gliomas  

 

RANO - High-grade glioma 

Imaging modality MRI or CT 

Imaging intervals At least 4 weeks 

Measurable Disease Up to 5 contrast-enhancing lesions 

  

Characterized by ≥10 mm longest and ≥5 mm 

perpendicular diameter 

Response Assessment   

Complete response (CR) Disappearance of all enhancing disease for ≥4 weeks 

  No new lesions 

  Stable or improved T2/FLAIR 

  No more than physiological steroids 

  Clinically stable or improved 

Partial response (PR) ≥50% decrease in the sum of perpendicular diameters of 

enh. disease for ≥4 weeks 

  No new lesion 

  Stable or improved T2/FLAIR 

  Stable or decreased steroid dose 

  Clinically stable or improved 

Stable Disease Changes do not qualify for CR, PR or progressive 

disease 

  No new lesion 

  Stable or improved T2/FLAIR 

  Stable or decreased steroid dose 

  Clinically stable or improved 

Progressive Disease ≥25% increase in the sum of perpendicular diameters of 

enhancing disease for ≥4 weeks 

  Or new lesion 

  Or substantially worsened T2/FLAIR 

  Or substantial clinical decline 
 

There are also some criteria to distinguish complete therapeutic response from pseudo-

response. Pseudo-response is defined as a decrease of contrast enhancement without a true 

anti-tumor effect, which can be seen in 20–60 % of patients who receive VEGF-targeted 

therapy (i.e., bevacizumab) for high-grade glioma and is attributed to normalization of 

abnormally permeable blood vessels within the tumor [Eisele et al., 2016]. 
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Recently, clinical trials with immunotherapy have been initiated in brain tumors. RANO 

criteria may not correctly capture treatment responses during such treatment.  Therefore, 

immunotherapy-RANO [iRANO] criteria have been developed to establish appropriate 

imaging criteria optimized to follow the immune therapy response [Okada et al., 2015]. 

The iRANO recommends that if there is radiographic progression without clinical 

progression, immunotherapy should be continued and MRI repeated after 3 months. 

Progressive disease should be established only if the follow-up MRI shows further 

progression. Otherwise, if the repeat MRI is stable or shows improvement, the 

immunotherapy should be continued [Eisele et al., 2016]. In addition, iRANO 

recommends the minimal use of steroids because of their potentially negative effects on 

the efficiency of immunotherapies [Okada et al., 2015]. 

Despite its widespread clinical use, conventional MRI is not a reliable technique in 

differentiation of real tumor recurrence from radiation injury or pseudo-progression, 

which might be associated with temozolomide chemotherapy [Macdonald et al., 1990; 

Eisele et al., 2016]. Therefore, advanced MRI techniques play an increasingly important 

role in the post-treatment evaluation of brain tumors.  

I.5.3. Advanced MRI (MR Spectroscopy, Perfusion, and Diffusion Imaging) 

In the last decade, advanced MRI techniques have been under intense investigations as 

promising diagnostic tools in both newly diagnosed and previously treated brain tumors 

[Barajas et al., 2010; Dhermain et al., 2010]. DWI, PWI and MRS can provide detailed 

physiologic information about several tumor characteristics, such as vascularisation, 

microperfusion, and cellularity [Al-Okaili et al., 2006; Zinn & Colen, 2013], and they 
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have shown a promise in the post-treatment evaluation of malignant gliomas [Dhermain 

et al., 2010]. DWI can estimate tumor density and can be useful to differentiate non-

enhancing tumor area from peritumoral edema in white matter [Bruzzone et al., 2012]. 

PWI can predict the tumor grade based on the assessment of angiogenesis and blood brain 

barrier permeability [Law et al., 2004; Bruzzone et al., 2012;]; also it might be an 

important diagnostic tool during antiangiogenic therapy [Law, 2009]. In addition, MR 

perfusion can play a significant role in neuro-oncology as a noninvasive diagnostic tool 

for prognosis and response to therapy [Law, 2009]. 

MR spectroscopy measures tumor-related changes of various metabolites, such as choline, 

creatine, N-acetylaspartate (NAA) or lactate, which can be associated with the tumor 

grade [Al-Okaili et al., 2006]. Changes in these metabolites can also estimate the 

proliferation rate of tumor cells (based on choline/NAA) and presence of necrosis (lipids 

or lactate peak) [Young, 2007; Dhermain et al., 2010].  

Imaging correlates of tumoral genomic changes (radiogenomics) is an intensely 

investigated topic of tumor biology to establish correlations between MRI parameters and 

genetic expression patterns [ElBanan et al., 2015]. In the near future, these approaches 

can play an important role in pretreatment evaluation, treatment planning, and also in the 

post-treatment follow-up of patients with malignant glioma.  

I.5.4. PET imaging 

In neuro-oncology, molecular imaging with PET can play an important additional role in 

diagnosis and management. PET can detect and characterize different types of tumors, 
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including brain tumors, based on their metabolic properties, such as altered glucose, 

nucleoside and amino acid metabolism.  

I.5.4.1. FDG-PET: 2-deoxy-2[18F]fluoro-D-glucose (FDG) PET has evolved over the 

past three decades into a key clinical PET modality in detecting both intra- and 

extracranial tumors. Increased FDG uptake is common in highly proliferating cells 

because the tumor cells have increased expression of glucose transporters and hexokinase, 

the enzyme that converts glucose (and FDG) to a phosphorylated product [Smith, 2001]. 

FDG uptake is proportional to glucose uptake although not quantitatively equal to glucose 

metabolism. In neuro-oncology, the primary goal of FDG-PET is differentiation of 

malignant from benign lesions and distinguishing recurrent tumors from radiation injury. 

The main advantages of FDG include its relatively long half-life (110 minutes due to F-

18) and its streamlined radio-synthesis. However, inflammatory lesions also accumulate 

FDG [van Waarde & Elsinga, 2008], and the high baseline of glucose metabolism in the 

cerebral gray matter can diminish the contrast between malignant tumors and normal brain 

tissue. Also, FDG uptake is low in most low-grade gliomas, and FDG-PET also shows 

limited specificity in identifying recurrent tumors. Therefore, clinical applications of other 

types of PET tracers, such as radiolabeled amino acids, have been tested during the last 

decade. 

I.5.4.2. Amino acid PET: Most tumors have higher amino acid uptake and metabolism 

than normal cells. This difference is the basis of the high sensitivity of amino acid PET in 

cancer imaging [Huang & McConathy, 2013]. The most widely tested amino acid PET 

tracers in brain tumor imaging include L-[methyl-11C]methionine (MET), 18F-fluoroethyl-

tyrosine (FET), and 18F-fluoro-L-dihydroxy-phenylalanine (FDOPA); the group at Wayne 



29 
 

State University has also introduced the human use of 11C-alpha-methyl-L-tryptophan 

(AMT) in cancer imaging (Juhasz et al., 2006 [brain tumors]; 2009 [lung cancer]; 2012 

[breast cancer]; see also review in Juhasz et al., 2014). MET is the most widely studied 

PET tracer in brain tumor imaging, although it is labeled with the short half-life (20 min) 

carbon-11 positron-emitting isotope [Glaudemans et al., 2013; Galldiks et al., 2011]. 

Similar to FDG, FET is labeled with F-18, which has a 110 min half-life more suitable 

for routine clinical applications [Heiss et al., 1999; Wester et al., 1999]. Both MET- and 

FET-PET can detect and differentiate newly diagnosed and recurrent gliomas, and provide 

useful information in initial treatment planning and response monitoring [Dunet et al., 

2012; Gulyas & Halldin, 2012; Nihashi et al., 2013; Glaudemans et al., 2013; Gotz & 

Grosu, 2013]. FDOPA, originally developed to measure dopamine synthesis [Eidelberg et 

al., 1993; Matsubara et al., 2011], is used in a few centers for brain tumor imaging; it has 

with similar kinetic characteristics to FET [Becherer et al., 2003; Schiepers et al., 2007; 

Chen et al., 2006; Fueger et al., 2010].  

The L-type amino acid transporters (LATs) play a central role in amino acid transport 

from the blood to brain and tumor tissue. LAT1, LAT2, LAT3 and LAT4 all transport  

neutral amino acids, but LAT1 is most widely expressed in primary human cancers and 

cancer cell lines and plays a significant role in survival and tumor growth [Imai et al., 

2010; Alkonyi et al., 2012; Zitron et al., 2013]. The metabolic fate of various amino acid 

PET tracers after initial transport is variable: they can be trapped without any metabolic 

changes (such as the case of FET), may get incorporated into proteins (such as MET) 

and/or metabolized via different metabolic pathways (FDOPA or AMT).   
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1.5.4.3. AMT-PET: 11C-alpha-methyl-L-tryptophan (AMT) was developed originally to 

estimate brain serotonin synthesis rates [Diksic et al., 1990; 1991]. Increased cortical 

AMT uptake can also to identify epileptogenic foci in patients with drug resistant 

epilepsy, especially in patients with various developmental abnormalities and lesions 

[Chugani et al., 1998; Juhasz et al., 2003]. In initial studies of AMT-PET in brain tumors, 

high tryptophan uptake was detected in a variety of low-grade and high-grade brain 

tumors [Juhasz et al., 2006, Juhász et al., 2011; Alkonyi et al., 2012]. In addition to 

measuring static tumoral AMT uptake, tracer kinetic analysis [Patlak et al., 1983] was 

found to be useful in differentiation low-grade tumor types [Juhasz et al., 2011], estimate 

tumor proliferative activity [Juhasz et al., 2012], and differentiate recurrent tumor from 

radiation necrosis [Alkonyi et al., 2012, Kamson et al., 2013, Bosnyák et al., 2015]. We 

have also demonstrated that combination of AMT-PET with advanced MRI, such as 

diffusion tensor imaging, can facilitate non-invasive estimation of tumor cellularity 

[Jeong et al., 2015]. 

Tryptophan and AMT are mostly transported into brain tumor tissue via LAT1 [Alkonyi 

et al., 2012; Haining et al., 2012; Juhasz et al., 2012]. However, AMT, unlike tryptophan, 

is not incorporated into proteins, because of the added methyl group in the alpha position 

[Diksic et al., 1990; Nagahiro et al., 1990]. Tryptophan can be metabolized via the 

immunomodulatory kynurenine pathway (KP) (Figure 1), which plays a key role in 

tumoral immune tolerance [Uyttenhove et al., 2003; Munn & Mellor, 2007]. AMT can 

also undergo enzymatic conversion via the initial and rate-limiting KP enzyme 

indoelamine 2,3-dioxygenase (IDO), and trapped as a labeled metabolite [Chugani et al., 

2000; Batista et al., 2009]. 
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Figure 1. Key transporter, metabolites and enzymes of the kynurenine pathway. LAT1: L-

type amino acid transporter; IDO: Indoleamine 2,3-dioxygenase; TDO: Tryptophan 2,3-

dioxygenase; KAT: Kynurenine aminotransferase; KMO: Kynurenine 3-monooxygenase; 

KYNU: Kynureninase; 3-HAAO: 3-Hydroxyanthranilic acid oxygenase. Tumoral conversion of 

tryptophan to kynurenine can be mediated by 3 enzymes: IDO1, IDO2 and TDO2.  

 

High expression and activity of IDO is known to induce an immunosuppressive tumoral 

microenvironment by creating immunosuppressive metabolites such as L-kynurenine 

[Munn and Mellor, 2007]. High kynurenine concentration can lead to suppression of 

natural killer cells and generation of regulatory T cells, thus promoting the escape of 

tumor cells from the host immune response. IDO is overexpressed in various tumors, 

including malignant gliomas [Uyttenhove et al., 2003; Batista et al., 2009; Pilotte et al., 

2012; Mitsuka et al., 2013]. High IDO protein expression, detected by immunostaining, 

was found in primary brain tumors showing high AMT trapping [Batista, 2009; Alkonyi 

et al., 2012]. Based on these studies, high AMT uptake and accumulation may be an 
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imaging marker of high LAT1 and IDO activity, respectively. Conversion of tryptophan 

to kynurenine can be mediated by three distinct enzymes: IDO1, IDO2 as well as 

tryptophan 2,3-dioxygenase 2 (TDO2), all of which could be targeted by inhibitors to 

alleviate tumoral immune resistance to enhance the effects of chemo- or immunotherapy 

[Opitz et al., 2011; Austin & Rendina, 2014]. 

 

II. OBJECTIVES 

The overall aim of our studies was to explore the potential clinical use of AMT-PET in 

both newly diagnosed and recurrent brain tumors. We focused on applications where 

amino acid PET has not been used or validated before. The objectives of four published 

studies are summarized below. 

In Study 1, we had two main goals: i. To evaluate if prognostic molecular markers in 

primary (IDH1 wild-type) glioblastomas are associated with a specific pattern of amino 

acid uptake or metabolism on PET imaging and/or MRI variables; ii. To determine if pre-

treatment tryptophan uptake measured by PET has a prognostic value for overall survival 

in the same group.  

In Study 2, we evaluated the clinical value of high AMT uptake in brain regions outside 

the contrast-enhancing tissue in post-treatment glioblastomas. Specifically, we tested if 

non-enhancing brain regions showing increased AMT uptake predict the spatio-temporal 

pattern of tumor progression during imaging follow-up. 
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In Study 3, we explored the potential role of abnormal tryptophan metabolism in brain 

tumor-associated depression. The overall goal was to determine if abnormal brain 

tryptophan metabolism in non-tumoral brain regions, measured by PET, could be an 

imaging biomarker for brain tumor-associated depression. 

In Study 4, we evaluated mechanisms and potential clinical significance of abnormal 

tryptophan uptake and metabolism in WHO grade I–III meningiomas using AMT-PET 

with detailed tracer kinetic analysis. We also assessed if AMT kinetic characteristisc are 

related to meningioma expression of key enzymes of the kynurenine pathway. 

In the next sections, we first describe the common imaging protocol and analysis 

approaches used in all studies, and then provide details on subjects and results for each 

individual study.  
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III. METHODS 

III.1. Magnetic Resonance Imaging  

Diagnostic MRI scans with routine pre/post-gadolinium T1 (T1-Gad), T2-weighted, and 

FLAIR axial images acquired closest in time (typically within 2 weeks) to the AMT-PET 

were used in our studies. MRI was performed on one of three 3T scanners located at the 

Detroit Medical Center / Karmanos Cancer Institute campus, using similar parameters: (i) 

Siemens MAGNETOM Trio TIM (Siemens Medical Solutions, Malvern, Pennsylvania); 

(ii) GE Signa HDxt  (GE Medical Systems, Milwaukee, Wisconsin); or (iii) Philips 

Achieva TX (Philips Medical Systems Inc., Da Best, the Netherlands). 

In Study 2 (post-treatment tumor progression), we also reviewed T1-Gad MRI scans 

acquired after AMT-PET during clinical follow-up, and further analyzed the first MRI 

that showed a clear progression (enlargement) of the contrast-enhancing lesion, in those 

patients where such a progression occurred within the 2-year follow-up period. 

III.2. AMT-PET acquisition 

The AMT-PET studies were performed using a GE Discovery STE PET/CT scanner (GE 

Medical Systems, Milwaukee, WI) or a Siemens EXACT/HR whole-body positron 

emission tomograph (Siemens Medical Systems, Knoxville, TN) located at the PET 

Center, Children’s Hospital of Michigan in Detroit. Both scanners have a 15-cm field of 

view and generate 47 image planes with a slice thickness of 3 mm. The reconstructed 

image in-plane resolution was 7.5±0.4 mm at full-width half-maximum (FWHM) and 

7.0±0.5 mm at FWHM in the axial direction (reconstruction parameters: Hanning filter 

with 1.26 cycles/cm cutoff frequency) for the Siemens scanner. The GE scanner has a 
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similar resolution, with FWHM of 7.5 mm (isotropic), and images from this scanner were 

reconstructed with an iterative reconstruction (2 iterations, 16 subsets, 8-mm axial 

smoothing). The AMT tracer was synthesized using a high-yield procedure as previously 

outlined [Chakraborty et al., 1996]. For AMT-PET scanning, patients fasted for 6 hours 

to ensure low blood tryptophan levels. A slow bolus of AMT (3.7 MBq/kg=1mCi/kg) was 

injected intravenously over 2 minutes. For collection of timed blood samples, a second 

venous line was established. In the initial 20 minutes of the scan following tracer injection, 

a dynamic PET scan of the heart was performed to obtain the blood input function from 

the left cardiac ventricle noninvasively. The blood input function was continued beyond 

these initial 20 minutes by using venous blood samples (0.5 mL/sample, collected at 20, 

30, 40, 50, and 60 min after AMT injection). At 25 minutes after tracer injection, a 

dynamic emission scan of the brain (7×5 min) was obtained. Measured attenuation 

correction, scatter, and decay correction were applied to all PET images. 

III.3. AMT-PET Image Processing  

For visualization of AMT uptake in the brain, averaged activity images 30–55 minutes 

post injection were created and converted to an AMT standardized uptake value (SUV) 

image. For quantification of AMT transport and accumulation, a Patlak graphical analysis 

was performed using the dynamic brain PET images and blood input function [Patlak et 

al., 1983; Juhasz, et al., 2006]. This approach provides two kinetic parameters: The y 

intercept of the Patlak plot (see an example below in Figure 9, below in the Results 

section) yields the tracer’s apparent volume of distribution (VD'), which is indicative of 

the net transport of tryptophan into the tissue of interest (tumor or cortex). The slope of 

the Patlak plot reflects the unidirectional uptake of tracer into the tissue (K-complex) and 



36 
 

correlates with tryptophan metabolism via the serotonin synthesis pathway in cortex 

[Chugani & Muzik, 2000]. In brain tumors with no evidence of serotonin synthesis, the 

most likely mechanism of an increase in AMT K-complex is tumoral accumulation in the 

form of kynurenine metabolites if key enzymes such as IDO (or TDO) are present and 

active [Chugani & Muzik, 2000]. In addition, the ratio between K and VD′ yields 

parameter k3′, an estimate of the k3 parameter that characterizes the irreversible trapping 

of AMT, presumably due to enzymatic conversion to α-methyl-L-kynurenine.  

III.4. Multimodal Image Analysis 

For multimodal image analysis, the 3D Slicer 3.6.3 software suite was used 

(http://www.slicer.org; Brigham and Women’s Hospital, Inc.) [Kikinis & Pieper, 2011] 

as described previously [Kamson et al., 2014]. First, a transformation matrix was created 

by co-registration of the summed AMT-PET images to the T1-Gad volumetric image 

volumes (magnetization-prepared rapid gradient-echo [MPRAGE] protocol on Siemens 

or MPRAGE-equivalent sequence on GE and Philips scanners) as well as FLAIR images 

using the Fast Rigid Registration module [Mattes et al., 2003]. This transformation matrix 

was then applied to the summed AMT-PET image and to the dynamic AMT-PET images 

loaded via the 4D image module of 3D Slicer. Regions of interest (ROIs) were drawn on 

the tumor mass in tumor regions with MPRAGE contrast enhancement and/or T2/FLAIR 

signal changes on MRI, and the ROIs were then applied on the co-registered AMT SUV 

as well dynamic PET images, where applicable. As a reference (background) region, at 

least 3 ROIs were drawn on the homotopic cortex (normal on MRI) contralateral to the 

tumor, and the values from these ROIs were averaged. The 3D Slicer was also used for 

threshold-based volume of interest (VOI) analysis [Kikinis & Pieper, 2011]. The volume 
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of increased AMT SUV in and around the contrast-enhancing area was determined based 

on a cutoff threshold (>65 % increase as compared to contralateral cortical AMT SUV) 

that provided excellent accuracy to differentiate progressing high-grade gliomas 

associated with short survival versus those with stable course and longer survival in our 

recent study [Kamson et al., 2014]. Voxels surviving this 65% cutoff threshold were 

summed and their volume (i.e., PET+ volume) was expressed in cm3.  

III.5. Tumor histopathology, glioma molecular markers and enzymes of the 

kynurenine pathway  

Routine histopathology of all tumor specimens were performed at the Pathology 

Department of Wayne State University and reviewed by a board certificate pathologist 

who determined tumor type and grade. Ki-67 nuclear labeling (expressed in %) was used 

to determine the tumor proliferation index. Analysis of glioma molecular markers and key 

enzymes of the kynurenine pathway (KP) were performed at the Neuro-Oncology 

Research Laboratory, Department of Neurosurgery, Wayne State University. In Study 1, 

glioma markers including IDH1 mutation, EGFR amplification and MGMT promoter 

methylation status have been determined [Bosnyák et al., 2017]. In Study 4, expression 

of 5 key enzymes of the KP, such as IDO 1/2, TDO2, KYNU and KMO were assessed by 

immunohistochemistry in all meningioma samples [Bosnyák et al., 2015].  
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IV. SUBJECTS, STUDY DESIGN AND RESULTS OF THE INDIVIDUAL 

STUDIES  

Our multimodal imaging studies included groups of adult patients with a variety of pre- 

and post-treatment brain tumors. A summary of the patient populations in the four studies 

is provided in Table 5. All studies were approved by the Institutional Review Board of 

Wayne State University and written informed consent was obtained from all participants. 

In all studies, the statistical analysis was performed using IBM SPSS Statistics for 

Windows, Version 19.0 (IBM Corp., Armonk, NY), 21.0., or 23.0. A p value of <0.05 

was considered significant.  

Table 5. Summary of tumor types in the four studies 

Gr.: Grade; GBM: Glioblastoma 

  

  

Meningioma 

 

Low-grade 

(WHO Gr. 

II) 

glioma 

WHO 

Gr. III 

glioma 

GBM 

(WHO  

Gr. IV) 

Metastasis 

 

Total 

No. 

Treatment pre post  pre post post pre post pre   

                    

STUDY I.           21     21 

                    

STUDY II.             12   12 

                    

STUDY III. 9 1 2 1 1 3 1 3 21 

                    

STUDY IV. 16 0 16 0         32 

                    

Total No.  25 1 18 1 1 24 13 3 86 
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IV.1. Study 1 – AMT-PET imaging of prognostic glioblastoma markers and survival  

                                          (Bosnyák et al. Clin Nucl Med, 2017) 

 IV.1.1. Patient population  

Twenty-one patients (14 males, mean age: 62 years) with a brain mass suspicious for 

glioblastoma underwent presurgical MRI and AMT-PET scanning followed by surgical 

resection and standard chemoradiation. In all patients, IDH1 wild-type glioblastoma was 

confirmed by histopathology. Thirteen patients had gross total tumor resection, while 8 

had subtotal resection at initial surgery. Five patients underwent a second resection after 

tumor recurrence, and two patients received additional chemotherapy (bevacizumab and 

bevacizumab with irinotecan in one case each). The median survival time was 14.8 

months, and 13 of the 21 patients (62%) had >1-year survival.  

IV.1.2. Study design and statistical analysis 

Tumor volumes on T2 and T1-Gad MRI were defined as described previously [Kamson 

et al., 2013]. Contrast-enhancing volumes were created by segmentation of post-contrast 

abnormalities semi-automatically, while T2 images were segmented manually to avoid 

erroneous inclusion of cerebrospinal fluid in the volume of interest. MRI characteristics 

(T2 and T1-Gad volume), tumoral AMT uptake variables (tumoral SUV, VD' and K, their 

tumor/cortex ratios), PET-based metabolic tumor-volume, and MRI/PET volume ratios 

were correlated with prognostic molecular markers (EGFR amplification and MGMT 

methylation status) and overall survival.  

Group comparisons were performed using the Mann-Whitney U-test. Univariate 

correlations were performed using the Spearman’s rank correlation. After identifying the 
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PET variable(s) with a significant correlation with overall survival, a receiver-operating 

characteristic (ROC) analysis was performed to identify the optimal threshold for 

differentiating patients who were alive at 1-year follow-up from those who had died. 

Using this cutoff threshold, a Cox-regression analysis was done to obtain a hazard ratio 

(HR) for survival in patients having above- vs. below-threshold values.  

IV.1.3. Results 

IV.1.3.1 Relation of AMT-PET variables to glioma molecular markers. Mean Ki-67 

labeling index was 30% (range: 10-70%), MGMT promoter methylation was present in 

7/19 (37%; not available in 2 cases), while EGFR amplification was detected in 6/20 

tumors (30%; not available in 1 case). EGFR amplification was associated with lower T1-

Gad volume (P=.04), lower T1-Gad/T2 volume (P=.04) and T1-Gad/PET volume ratios 

(P=.02). Tumors with MGMT promoter methylation showed lower metabolic volume 

(P=.045) and lower tumor/cortex AMT K ratios than those with unmethylated MGMT 

promoter (P=.009).  

IV.1.3.2. Prognostic value of AMT-PET for survival. Overall survival showed a significant 

positive correlation with tumor/cortex SUV-ratios (r=0.49; P=.023), indicating longer 

survival in those with higher pre-treatment tumoral tryptophan uptake (Figure 2.).  
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Figure 2. Representative examples of MRI (T1-Gad) and AMT-PET in a patient with high (A) 

vs. low (B) AMT uptake associated with different survival. (A) A 54 year-old male with a right 

frontal glioblastoma, measured with a 2.59 tumor/cortex AMT SUV-ratio, above the ROC-defined 

threshold of 1.94. He survived for more than 2 years after the PET scan. (B) A 68 year-old male 

with a right frontal glioblastoma showing a below-threshold tumor/cortex AMT SUV-ratio (1.56). 

He survived for only 7 months. 

 

 

The ROC analysis showed high area under the curve (AUC) for AMT SUV-ratios (0.94; 

P=.001). Using the optimal 1.94 tumor/cortex SUV-ratio as the cutoff threshold, 1-year 

survival was correctly predicted with 100% sensitivity and 88% specificity. Cox-

regression analysis showed that AMT SUV-ratios above 1.94 were prognostic for long 

survival (HR: 30.2 [95% CI: 3.5-259]; P=.002) (Figure 3.). Estimated mean overall 

survival was 26 months in patients with high (above-threshold) vs. 8 months in those with 

low (below-threshold) tumor/cortex AMT uptake ratios. 
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Figure 3. Kaplan-Meijer survival curves in patients with high (green) vs. low (blue) AMT uptake 

ratios (based on the cutoff threshold of 1.94 tumor/cortex SUV ratio, determined by an ROC 

analysis based on 1-year survival). Patients with above-threshold ratios had a substantially longer 

cumulative survival (HR: 30.2 [95% CI: 3.5-259]; P=.002). 

 

 

IV.2. Study 2 - AMT-PET to predict progression of post-treatment glioblastoma  

 

         (Bosnyák et al., J Neurooncol, 2016) 

IV.2.1. Patient population  

We investigated 12 patients (6 males, mean age: 61 years) with glioblastoma verified by 

histopathology, who underwent previous surgical resection followed by chemoradiation 

(Stupp regimen). All patients had a post-treatment AMT-PET scanning following an MRI 

that showed possible tumor progression (contrast-enhancing area) verified by a board-

certified neuro-radiologist. After the AMT-PET scan, all patients were followed for up to 

2 years with serial MRI scans at 1- to 2-month intervals until clear progression of the 

contrast-enhancing lesions was noted.  
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IV.2.2. Study design and analysis 

IV.2.2.1. Image analysis: The volume of increased AMT SUV in and around the contrast-

enhancing area was determined based on a cutoff threshold (>65% increase as compared 

to contralateral cortical AMT SUV) which can differentiate accurately high grade gliomas 

with short survival from those with longer survival [Kamson et al., 2014]. Voxels 

surviving this cutoff threshold were summed and their volume (i.e., PET+ volume) was 

expressed in cm3. In addition, the area of contrast enhancement was delineated on the T1-

Gad images, and its volume (Gad+ volume) was also calculated [Kamson, et al., 2013]. 

Subsequently, we also calculated the volume of increased (above-threshold) AMT SUV 

located outside the contrast-enhancing volume (i.e., Gad–/PET+ volume). The mean 

(SUVmean) and maximum (SUVmax) AMT SUV were also measured in this area. 

Furthermore, we measured the maximum distance (in mm) between the outer edge of the 

area with increased AMT uptake and the edge of the Gad+ volume. Subsequently, we 

repeated the volumetric analysis on the MRI scans showing radiographic evidence for 

clear T1-Gad progression (present in ten patients), after these MR images were also co-

registered with both the AMT-PET and the initial MR images. On the same MRI scans, 

showing T1-Gad tumor progression, we measured the Gad+ volume extending beyond 

the boundaries of the increased AMT uptake measured at baseline. 
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IV.2.2.2. Statistical analysis: Wilcoxon signed rank test was utilized for the comparison 

of the PET+ volume extending beyond the Gad+ volume before versus after MRI 

progression. Time to MRI progression was compared between subgroups showing 

different patterns of progression using Mann–Whitney U test. Further, AMT-PET and T1-

Gad volume parameters as well as SUVmean and SUVmax measured in the Gad-/PET+ areas 

were correlated with the time to progression using Spearman’s rank correlations.  

IV.2.3. Results  

In 10 patients with clear progression of the contrast-enhancing lesion (1-17 months after 

the PET scan), the non-enhancing PET+ volumes predicted the location of new 

enhancement, which extended beyond the PET+ brain tissue in six. In these six patients, 

the Gad+ region after progression not only invaded the PET+ brain tissue but extended 

considerably beyond it, with a widely varied volume (7.8–45 cm3) (Figure 4.).  

 

Figure 4. Glioblastoma progression with a large contrast-enhancing area and high AMT uptake 

in the left temporal region. The PET+ area extended anterior to the Gad+ lesion (arrow), with an 

SUVmax of 5.4. T1-Gad MRI 5 months later showed extension of the contrast enhancement into 

the anterior temporal lobe encompassing and extending beyond the baseline PET+ region. 
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In the other four patients with tumor progression, the Gad+ volume expansion mirrored 

the PET+ volume but with no or minimal extension beyond the PET+ area (Figure 5A). 

Two patients underwent second surgery and active glioblastoma was verified by 

histopathology. All patients showed clinical progression and deceased within 1-20 

months. In two patients, with no PET+ area beyond the initial contrast enhancement, MRI 

remained stable during the 2-year follow-up (Figure 5B).  

 

Figure 5A. T1-Gad MRI and co-registered MRI/AMT-PET fusion images of patient showing a 

left medial fronto-parietal contrast-enhancing lesion (arrows) suspicious for glioblastoma 

recurrence 4 months after initial treatment. High AMT uptake was seen in the same region (upper 

panel), extending superior (and also inferior and lateral) to the contrast-enhancing lesion (lower 

panel), with an SUVmax of 4.7. After MRI progression, 1 month later, the Gad+ mass grew into 

and filled the original PET+/Gad- area. 
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Figure 5B. T1-Gad MRI and MRI/AMT-PET fusion images of a left parieto-occipital tumor. The 

PET+ area was congruent with the bulk of the Gad+ lesion; no progression during the 2-year 

follow-up; SUVmax was below 4 (3.8). 

 

There was a negative correlation between both AMT SUVmean and SUVmax and time to 

progression (after PET) (SUVmean: r = -0.77, p = 0.003; SUVmax: r = -0.69, p = 0.014), 

indicating a faster progression in those with higher AMT uptake in the non-enhancing 

brain. Patients with SUVmax>4 progressed within about 5 months, while patients with 

SUVmax<4 were progression-free on MRI scans at least 6 months.  

 

IV.3. Study 3 - Tryptophan metabolism in brain tumor-associated depression  

  (Bosnyák et al., EJNMMI Research, 2015) 

IV.3.1. Patient population  

Study population included 21 patients (mean age: 57 years) with a variety of brain tumors. 

Histopathology verified 10 WHO grade I meningiomas, 8 WHO grade I-IV gliomas 

(including n=1 grade I, n=2 grade II, n=1 grade III and n=4 grade IV) and 3 patients with 
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brain metastases. Four out of 21 patients had previous resective surgery before with or 

without subsequent chemoradiation. Follow-up MRI showed tumor progression or 

recurrence in all 4 patients, and one patient had clinical progression as well. None of the 

21 patients had a history of clinical depression and were not on any antidepressant 

medication at the time of AMT-PET. KPS in all patients was 70 or higher. Six of the 21 

patients were on dexamethasone (which did not affect AMT kinetic values in a previous 

study [Juhász et al., 2012]), 10 patients had a history of seizure(s), and 12 were on 

antiepileptic medication at the time of the PET scan.  

IV.3.2. Study design and analysis 

IV.3.2.1. For the assessment of depression, the Beck Depression Inventory, 2nd Edition 

(BDI-II) was used [Beck et al., 1996]. The BDI-II is a self-reported measure that identifies 

the presence and severity of symptoms of depression. There are 21 items on the BDI-II 

each rated on a four-point Likert scale (0–3). The measure yields a total score, and the 

cutoffs for depression severity are as follows: 0–13 = no/minimal depression, 14–19 = 

mild depression, 20–28 = moderate depression, and 29–63 = severe depression. The 

psychometric properties of the scale have been well established, and the measure is widely 

used with both clinical and research samples including different cancer patient groups 

[Rooney et al., 2011; Mainio et al., 2005; Pelletier et al., 2002; Dozois et al., 1998; Storch 

et al., 2004]. 

IV.3.2.2. Statistical analysis: First, BDI-II depression scores were compared among three 

tumor types (gliomas, meningiomas, metastases) using the Kruskal-Wallis test. BDI-II 

depression scores were also correlated with tumor type, histologic grade (in primary brain 
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tumors), tumor size, and AMT-PET variables in the whole group as well as subgroups 

(patients with a primary brain tumor, patients with an intraaxial tumor [glioma or 

metastasis], and patients with a newly diagnosed tumor) using Spearman’s rank 

correlations. AMT kinetic variables (K-complex or K and VD') were compared between 

depressed (BDI-II score >13) and non-depressed patients, as well as between 

moderately/severely depressed patients (BDI-II score ≥20) vs. the rest of the patients, 

using the Mann-Whitney U test. 

IV.3.3. Results 

The mean BDI-II score of the 21 patients was 12±10 (range: 2–33); clinical levels of 

depression were identified in seven patients (33 %). High BDI-II scores were most 

strongly associated with high thalamic AMT K values (Figure 6) both in the whole group 

(p= 0.004) and in the subgroup of 18 primary brain tumors (r = 0.68, p = 0.004).  

 

Figure 6. Positive correlation between thalamus AMT K values, measured by PET, and BDI-II 

depression scores (Spearman's rho = 0.63, p = 0.004). 
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Frontal and striatal VD’ values were higher in the depressed subgroup than in non-

depressed patients (p < 0.05) (Figure 7); the group difference was even more robust when 

moderately/severely depressed patients were compared to patients with no/mild 

depression (frontal: p = 0.005; striatal: p < 0.001). Tumor size, grade, and tumor type were 

not related to depression scores. 

 

Figure 7. Comparison of AMT-PET variables in patients with no/mild depression vs. moderate/ 

severe depression. Frontal and striatal VD' values were significantly higher in patients with 

moderate/ severe depression (Frontal VD': 0.43 vs. 0.31, p = 0.005; striatal VD': 0.61 vs. 0.35; p 

< 0.001). 
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IV.4. Study 4 - Tryptophan metabolism in meningiomas  

            (Bosnyák et al., Neuro-Oncology, 2015) 

IV.4.1. Patient population  

In this study, we enrolled 47 patients (26 males) with meningioma (n=16, mean age: 56.9 

years) and glioma (n=31, mean age: 42.9 years) who underwent presurgical MRI and 

AMT-PET scanning followed by surgical resection. Meningioma was confirmed in 16 

patients (n=10 grade I; n=5 grade II and n=1 grade III) by histopathology, 21 patients had 

low-grade glioma (n=12 grade II oligodendroglioma, n=4 grade II mixed oligo-

astrocytoma, n=5 grade II astrocytoma), while the remaining 10 patients had grade III 

glioma (n=5 astrocytoma, n=3 mixed oligo-astrocytoma, and n=2 oligodendroglioma). 

IV.4.2. Study design and statistical analysis 

AMT-PET parameters and tumor size (maximum area) were compared between the 

meningioma and glioma subgroups using unpaired t tests. The optimal cutoff threshold of 

the best AMT-PET parameter to differentiate meningiomas from gliomas (both low-grade 

and high-grade, separately) was established by ROC analysis, and the differentiating 

accuracy of the parameter was calculated. Further, AMT-PET variables in the 

meningioma group were correlated with patient age, tumor size, and histological grade as 

well as the Ki-67 labeling index (%), using Pearson’s correlations. To test the accuracy 

of the best PET parameter (k3′) to differentiate low-grade and high-grade meningiomas, a 

ROC analysis was performed again. Confidence intervals for the AUC and accuracy using 

the optimum threshold from the ROC were calculated using bootstrapping with 10 000 

bootstrap replicates. To determine the accuracy of the best AMT-PET parameter for 
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differentiating grade I versus grade II-III meningiomas, an optimal cutoff threshold was 

again established using ROC analysis, and the sensitivity and specificity of the parameter 

for differentiating these two meningioma grade groups were calculated. Immunostaining 

scores of the different KP enzymes were compared using a Wilcoxon signed-rank test. 

Enzyme expression scores between low-grade and high-grade meningiomas were 

compared using the Mann-Whitney U test. Finally, we correlated KP enzyme 

immunostaining scores with AMT-PET kinetic parameters using the Spearman's rank 

correlation. 

IV.4.3. Results 

This study described 3 novel findings. First, meningioma grade showed a significant 

positive correlation with AMT k3′tumor/cortex ratio (p = 0.003), and this PET parameter 

distinguished grade I from grade II/III meningiomas with a 92% accuracy (Figure 8.).  

 

Figure 8. WHO grade I meningiomas showed lower tumor/cortex k3′-ratios than grade II–III 

meningiomas. A k3′-ratio threshold of 0.3 (based on the ROC analysis; the threshold level is 

indicated by a dotted line) distinguished these two subgroups with 100% sensitivity and 88% 

specificity (92% accuracy). The value of the only grade III meningioma is indicated by the gray 

circle. 



52 
 

Second, kinetic AMT parameters could differentiate meningiomas from both low-grade 

gliomas (97% accuracy by k3′ratios) and high-grade gliomas (83% accuracy by K ratios) 

(Figure 9.). Finally, among 3 initial KP enzymes (IDO1, IDO2, and TDO2), TDO2 

showed the strongest immunostaining, particularly in grade I meningiomas (Figure 10.). 

TDO2 also showed a strong negative correlation with AMT k3′ratios (p = 0.001). 

 

Figure 9. AMT-PET summed images and corresponding Patlak curves of a meningioma and a 

low-grade glioma. Both tumors showed high AMT standardized uptake values but very different 

AMT kinetics. The slope of the glioma curve was much steeper than the meningioma curve, 

indicating higher K value. In contrast, the y intercept was much lower in the glioma, indicating 

lower volume of distribution (VD′). The x axis represents transformed time (“blood time”) in 

minutes. CT=tracer concentration in tumor tissue; Cp=tracer concentration in plasma. 
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Figure 10. Immunostaining for five key enzymes of the kynurenine pathway in a grade I and a 

grade III meningioma. For the initial rate-limiting enzymes, both tumors showed 

TDO2>IDO2>IDO1 immunostaining. Between the two downstream enzymes, KYNU showed 

stronger staining as compared to KMO. The grade III meningioma showed an overall weaker 

immunostaining for the same enzymes as compared to the grade I tumor.  Original magnification 

is 20×. The length of the scale bar is 50 μm and applies to all images. 
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V. DISCUSSION 

V.1. Study 1.  

This is the first study to report a link between prognostic genetic glioma biomarkers and 

tumoral amino acid uptake in glioblastomas. In a GBM group with IDH1 wild-type 

glioblastomas, MGMT promoter methylation was associated with lower AMT-PET-based 

metabolic volumes and K-ratios. This correlation suggests that MGMT promoter 

methylation may affect tumoral amino acid metabolism that can be captured by PET 

imaging. In addition, EGFR amplification was associated with lower T1-Gad/PET and 

lower T1-Gad/T2 volume ratios. This finding is consistent with the notion that EGFR 

amplification leads to EGFR overexpression that promotes angiogenesis and aggressive 

tumor growth leading to glioma cell infiltration [Furnari et al., 2015]. Low T1-Gad/T2 

ratio in EGFR-amplified glioblastomas is consistent with infiltrative edema as a result of 

enhanced angiogenesis and tumor cell invasion in the non-contrast-enhancing brain [Aghi 

et al., 2005]. Our data also demonstrate larger relative areas with high tryptophan uptake 

beyond the contrast-enhancing tumor mass in EGFR-amplified glioblastomas. Increased 

amino acid uptake outside the contrast-enhancing tumor mass can mark glioma cell 

infiltration, as demonstrated by previous studies employing PET-image guided biopsy. 

 

Our second major finding in this study is that high AMT tumor/cortex uptake ratio was a 

strong prognostic imaging marker associated with a markedly longer survival in this 

patient group. This was an unexpected finding, as previous amino acid PET studies 

demonstrated a correlation between high tracer uptake and shorter survival [Kim et al., 

2005; Galldiks et al., 2012; Kobayashi et al., 2015; Yoo et al., 2015]. This difference 
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could be potentially explained by several factors, including the differences in the studied 

tumor populations and the different metabolic pathways of AMT vs. other amino acid 

PET tracers in the tumor microenvironment (see further details in Bosnyák et al., 2017).  

 

Altogether, our data demonstrate specific MRI and AMT-PET characteristics associated 

with prognostic molecular markers in IDH1 wild-type glioblastoma. Importantly, high 

AMT uptake ratios on PET were found to be a robust prognostic imaging marker, 

regardless of other, molecular or clinical prognostic factors. Therefore, molecular imaging 

of tryptophan metabolism is worth further studies for prognostic imaging in patients with 

newly-diagnosed glioblastoma.   

 

V.2. Study 2. 

Malignant gliomas show high tryptophan uptake on PET imaging [Juhász et al., 2006; 

2014; Kamson et al., 2013]. In this study we demonstrated that amino acid PET imaging 

with AMT could complement conventional contrast-enhanced MRI not only for detecting 

glioma recurrence but also predicting the location and timing of subsequent tumor 

progression. We found that high tryptophan uptake in post-treatment gliomas commonly 

extends beyond the MRI contrast-enhancing area suspicious for tumor recurrence. Also, 

subsequent progression of the contrast-enhancing area filled the originally contrast 

negative, but PET+ area and in many cases, extended beyond this area. Thus, this PET+ 

but MRI contrast negative areas indicate brain regions at high risk for tumor progression.  

Another major finding of this study is the negative correlation between the AMT SUV 

and time to T1-Gad MRI progression, indicating that higher AMT uptake in non-
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enhancing areas could predict earlier glioma progression. Patients with AMT SUVmax 

above 4 showed an early tumor progression (within 5 months), while patients with 

SUVmax<4 stayed stable or had late progression (during 2-year follow-up). Thus, AMT 

SUVmax could be an imaging biomarker for imminent tumor progression, which may 

prompt more frequent MRI follow-up or targeted interventions.  

Despite these encouraging results, our study has some inherent limitations, such as the 

small study population; therefore, the findings will need further confirmation in a larger 

cohort of patients. In the future, larger, prospective studies could refine the role of amino 

acid PET imaging in subgroups showing various patterns of MRI progression and also 

could help optimize cutoff thresholds and test if other amino acid PET tracers provide 

similar or better results. 

 

V.3. Study 3.  

This is the first study to assess imaging correlates of cerebral tryptophan metabolism in 

brain tumor-associated depression. We found a high rate of depression in our group of 

patients with a variety of brain tumors, who were not diagnosed and treated before for 

depression. Higher depression scores were related to variations in tryptophan kinetic 

variables in several cortical and subcortical structures contralateral to the tumors in brain 

regions showing no apparent MRI abnormalities.  

Our findings demonstrated that abnormalities of tryptophan transport and metabolism in 

the thalamus, striatum, and frontal cortex, measured by PET, are associated with 

depression in patients with brain tumor. Specifically, depressed patients showed higher 
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AMT VD values (suggesting higher tryptophan transport) in the frontal cortex and 

striatum, two key components of the fronto-striatal network, previously implicated in 

depressive symptoms [Furman et al., 2011]. These findings may suggest an imbalance 

between tryptophan metabolism via the serotonin and kynurenine pathways, which may 

play a role in tumor-associated depression. Altered tryptophan metabolism in non-tumoral 

brain, measured by PET, may be a novel imaging marker of brain tumor-associated 

depression. 

Several FDG-PET studies showed depression-related variations in brain structures similar 

to the structures detected in our present study, including fronto-temporal cortices and the 

basal ganglia [Tashiro et al., 2000; 2001; Inagaki et al., 2007; Kumano et al., 2007]. Also 

consistent with this, FDG-PET studies performed in patients with major depressive 

disorder (not associated with cancer) showed decreased brain metabolism in similar brain 

regions, including the prefrontal cortex, basal ganglia, and temporo-parietal cortices 

[Baxter et al., 1989; Drevets et al., 1997]. Overall, these data strongly suggest that the 

main neural substrates of depression are similar in cancer patients and those with major 

depression. The above mentioned structures, showing metabolic changes in depressed 

patients, are parts of specific brain circuits that play a role in depressive symptoms, such 

as the fronto-striatal and limbic circuits. 

One concern with the use of the BDI-II in subjects with a somatic disease is that the total 

score may, at least partially, reflect the disease severity rather than clinical depression. In 

our study, an exploratory analysis showed that the somatic subscale scores had the 

strongest correlation with thalamic AMT uptake, while the cognitive-affective scores also 
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correlated with fronto-striatal tryptophan kinetic variables (data not shown in the 

manuscript). 

This study has some limitations, such as small number of patients; therefore, potential 

tumor-type-specific effects could not be completely excluded (although major effects 

were not detected). Also, our analysis was confined to a limited number of brain regions 

and did not include some potentially relevant structures, such as the amygdala. 

Despite these limitations, our findings demonstrate that tryptophan transport and 

metabolism in the thalamus, striatum, and fronto-temporal cortex are associated with 

depression in patients with a brain tumor. The observed imaging abnormalities may 

indicate an imbalance between the serotonin and kynurenine pathways. Altered 

tryptophan metabolism in non-tumoral brain, measured by PET, may be a novel imaging 

marker of brain tumor-associated depression. 

 

V.4. Study 4.  

In this study of meningiomas, the most clinically important finding is the high accuracy 

of AMT-PET to distinguish grade I versus grade II-III meningiomas. This accuracy seems 

to be better than the differentiating accuracy reported for MET-PET. For example, Arita 

et al. did not find any correlation between methionine uptake and proliferative activity, 

microvessel density, and histological grade [Arita et al., 2012]. We have demonstrated 

that kinetic analysis of tryptophan uptake by PET can differentiate low-grade versus high-

grade meningiomas, which might be useful in optimal clinical management decisions. A 

second finding is that AMT-PET kinetic parameters showed a striking difference between 
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meningiomas and both grade II and grade III gliomas. As a result, meningiomas could be 

differentiated from high-grade gliomas with 83% accuracy; the accuracy was even higher 

for low-grade gliomas (97%), although these are rarely mistaken for meningiomas. While 

most meningiomas can be reliably identified on conventional MRI, up to 15% follow an 

atypical pattern [Buetow et al., 1991; Harting et al., 2004]. These morphological features 

can mimic a malignant glioma with necrotic changes. Thus, AMT-PET kinetic analysis 

may supplement MRI in selected cases to establish tumor type before treatment. The exact 

processes underlying the striking difference in tryptophan kinetics in meningiomas versus 

gliomas remain unclear, but there are several potential mechanisms (see details in 

Bosnyák et al., 2015). 

In addition, the presence of multiple KP enzymes in grade I-III meningiomas supports the 

opportunity of pharmacological targeting of the KP, including TDO2, which appears to 

play a role (in addition to IDO1 and IDO2) in abnormal tryptophan metabolism in 

meningiomas. The preferential expression of TDO2 in meningiomas is a novel finding 

that certainly deserves further attention. In previous studies, TDO2 was found to be 

expressed in malignant gliomas, with or without co-expression of IDO1 or IDO2 [Opitz 

et al., 2011]. Our results suggest that TDO2 may play a key role in conversion of 

tryptophan to kynurenine and downstream metabolites in meningiomas, potentially 

contributing to tumor-induced immunosuppression. Future studies are warranted to 

determine the role and effect of the KP enzymes in meningioma immune tolerance and 

tumor proliferation. Molecular imaging with AMT or other radiotracers targeting the KP 

could be instrumental for monitoring in vivo treatment effects in future clinical trials with 

KP enzyme inhibitors. 
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VI. Summary 

New Findings: 

 We have detected link between prognostic genetic glioma biomarkers (such as 

IDH, MGMT, EGFR) and tumoral amino acid uptake in glioblastomas. Specific 

MRI and AMT-PET characteristics associated with prognostic molecular markers 

in IDH1 wild-type glioblastoma. 

 High AMT tumor/cortex uptake ratio was a strong prognostic imaging marker 

associated with a markedly longer survival in primary (IDH1 wild-type) 

glioblastomas.  

 AMT-PET could complement conventional contrast-enhanced MRI not only for 

detecting glioma recurrence but also predicting the location and timing of 

subsequent tumor progression. 

 Negative correlation between the AMT SUV and time to T1-Gad MRI 

progression, indicating that higher AMT uptake in non-enhancing peritumoral 

areas could predict earlier glioma progression. 

 Link has been found between imaging of cerebral tryptophan metabolism in brain 

tumor-associated depression. Abnormalities of tryptophan transport and 

metabolism in the thalamus, striatum, and frontal cortex, measured by PET, are 

associated with depression in patients with brain tumor. 

 AMT-PET is able to distinguish grade I versus grade II-III meningiomas with high 

accuracy. 
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 AMT-PET kinetic parameters also showed a striking difference between 

meningiomas and both grade II and grade III gliomas. Meningiomas could be 

differentiated from high-grade gliomas with 83% accuracy and with 97% accuracy 

from low-grade gliomas using AMT-PET. 

 

My studies have built upon previous observations demonstrating that AMT-PET is useful 

in evaluation of various brain tumors. The four studies summarized above included a 

diverse group of brain tumors and described several novel, previously unexplored clinical 

applications of this PET modality in both pre- and post-treatment assessments. These 

studies illustrate the versatility of tryptophan PET imaging and also highlight the 

additional information we can derive from tracer kinetic analysis and multi-modality 

imaging by combining quantitative PET and MRI variables. The results provided proof-

of-principle data for the potential utility of this imaging approach to assess molecular 

characteristics of various brain tumors, obtain objective prognostic biomarkers, and 

understand potential mechanisms of tumor-associated depression. In a preliminary study, 

we have also recently demonstrated the ability of AMT-PET to monitor the early 

treatment response to Tumor-Treating Fields therapy in recurrent glioblastoma (Bosnyák 

et al., 2017). While these data are very promising, it should be noted that AMT-PET is 

not widely used in clinical radiology mostly because of the short half-life of C-11 (20 

min). In order to overcome this limitation, there have been recent efforts to develop novel, 

F-18 labeled tryptophan analogs, to image tryptophan transport and metabolism via the 

kynurenine pathway. The initial results are promising, e.g., with the synthesis of 1-(2-18-

fluoroethyl)-L-tryptophan [Henrottin et al., 2016; Xin & Cai, 2017], which showed robust 
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tumor uptake and kinetics similar to AMT in patient-derived xenograft models 

[Michelhaugh et al., 2017]. The favorable clinical results with AMT-PET, outlined in this 

thesis, will provide the motivation for further work in this field toward improved, 

clinically feasible molecular imaging methods for the evaluation of metabolism of 

tryptophan (and other amino acids) in human cancers.  Further multimodal studies 

incorporating advanced, quantitative MRI with PET imaging are also expected to improve 

pre- and post-treatment assessment of brain tumors in the near future. 
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