Új, 3,4-diszubsztituált pirrolin nitroxidok szintézise és alkalmazása

Doktori (PhD) értekezés

Úr Györgyi

Interdiszciplináris Orvostudományok Doktori Iskola

Programvezető és Doktori Iskola vezetője: Prof. Dr. Sümegi Balázs Témavezető: Prof. Dr. Kálai Tamás

Pécsi Tudományegyetem, Általános Orvostudományi Kar Szerves és Gyógyszerkémiai Intézet Pécs, 2017

Tartalomjegyzék

1.	Rövidítések jegyzéke	3			
2.	Előszó	4			
3.	Bevezetés	5			
4.	Célkitűzés	. 10			
5. I	rodalmi áttekintés	. 11			
5	.1. Szén-szén kötések kialakítása nitroxid funkcióscsoport jelenlétében	.11			
5	2. A 3,4-diszubsztituált, bifunkcionális pirrolin nitroxidok szintézise	. 22			
5	.3. Heterociklusokkal kondenzált pirrolin nitroxidok szintézise	. 25			
	5.3.1. Háromtagú heterociklus kialakítása	. 25			
	5.3.2. Nitroxiddal anellált öttagú heterociklusok	. 26			
	5.3.3. Nitroxidokkal anellált hattagú heterociklusok	. 29			
	5.3.4. Nitroxiddal anellált héttagú heterociklusok, policiklusok	. 31			
6. 5	6. Saját eredmények				
6	.1. Új módszerek szén-szén kötés kialakítására és pirrolin nitroxidok				
te	ovábbalakítására	. 34			
6	2. 3,4-Diszubsztituált pirrolin nitroxidok szintézise	. 38			
6	.3. Új, nitroxidroxidokkal anellált heterociklusok és komplexképző vegyületek				
S.	zintézise	. 42			
6	.4. Biológiailag aktív pirrolin nitroxiddal anellált vegyületek szintézise	. 47			
7.	Kísérleti rész	. 55			
8.	Összefoglalás	. 78			
9.	Summary	. 83			
10.	Irodalomjegyzék	. 88			
1	0.1. A disszertáció alapjául szolgáló cikkek jegyzéke:	. 93			
1	0.2. Az értekezés tárgykörébe tartozó poszterek és előadások:	. 93			
11. Köszönetnyilvánítás					
12.	Függelék (közlemények másolatai)	. 96			

1. Rövidítések jegyzéke

- BINAP: 2,2'-bisz(difenilfoszfino)-1,1'-binaftil
- BOR: Bestmann-Ohira-reagens, dimetil-(1-diazo-2-oxopropil)foszfonát
- DBU: 1,8-diaza-biciklo[5,4,0]-7-undecén
- DCC: *N*,*N*[']-diciklohexil-karbodiimid
- DDQ: 2,3-diklór-5,6-diciano-1,4-benzokinon
- DMEDA: *N*,*N*[']-dimetil-etilén-diamin
- DMF: dimetil-formamid
- DMSO: dimetil-szulfoxid
- DPPA: difenil-foszforil-azid
- DPPH: difenilpikril-hidrazin
- EPR: paramágneses rezonancia spektroszkópia
- LAH: lítium-aluminium-hidrid
- LTMP: lítium-2,2,6,6-tetrametil-piperidin
- MRI: mágnesesrezonancia-képalkotás
- NHS: N-hidroxi-szukcinimid
- NMR: mágneses magrezonancia spektroszkópia
- PELDOR: pulzáló elektron-elektron kettős rezonancia
- TEMPON: 4-oxo-2,2,6,6-tetrametil-piperidin-1-oxil
- THF: tetrahidrofurán
- Xantphos: 4,5-bisz(difenil-foszfino)-9,9-dimetil-xantén
- X-Phos: 2-diciklohexil-foszfino-2, 4, 6, -triisopropil-bifenil

2. Előszó

A Pécsi Tudományegyetem Szerves és Gyógyszerkémiai Intézetében csaknem 60 éve végeznek tudományos kutatómunkát a heterociklusos szerves vegyületek területén. Az 1970-es években Dr. Hideg Kálmán a néhai Prof. Tigyi József akadémikus vezette Biofizikai Intézetben kezdett el foglalkozni nitroxid szabad gyökök szintézisével. Eleinte ezek a vegyületek a helyi biofizikai kutatások igényeit elégítették ki, majd később a nemzetközi kapcsolatok kiszélesedésével, az új alkalmazási területek megjelenésével az előállított vegyületek száma jelentősen növekedett. A Pécsi Tudományegyetem Biofizikai Intézetében majd a Központi Kutató Laboratóriumban néhai Belágyi József professzor úr és munkatársai foglalkoztak EPR spektroszkópiával. Intézetünk akkori munkatársai 1979-ben, itt Pécsett szervezték meg az első "Nitroxid Szimpóziumot".

A nitroxidok preparatív szerves kémiája, átlakításai és alkalmazásai témában Dr. Lex László, Dr. Csekő József, Dr. Sár Cecília, Dr. Kálai Tamás, Dr. Bognár Balázs, Dr. Kulcsár Győző készítették el doktori (PhD) értekezésüket.

A pirrolin- és piperidin-vázas stabilis nitroxidok szintézise számos nehézséget rejt magában:

- Gyakorlatilag egy kiindulási anyagból (triacetonamin) soklépéses szintézissel kell megoldani a célmolekula előállítását.
- Az ambifil nitroxid jelenlétében csak bizonyos típusú reakciók hajthatók végre.
- Többszörösen szubsztituált öttagú gyűrűknél számottevő sztérikus gátlás alakul ki, amely a reakciók megvalósítását nehezíti illetve sok esetben lehetetlenné teszi.

A Prof. Sümegi Balázs vezette Interdiszciplináris Orvostudományok Doktori Iskola PhD-hallgatójaként 2014-ben kapcsolódtam be a Hideg professzor úr által vezetett kutatócsoport munkájába Dr. Kálai Tamás témavezetésével. A PhD-értekezésemben az elmúlt 3 évben általam előállított vegyületek szintézisét foglalom össze.

A bevezetés és célkitűzések megfogalmazása után a téma irodalmi előzményeit mutatom be, ezt követi a saját eredmények tárgyalása, a kísérleti rész, majd az eredmények összefoglalása angol és magyar nyelven. Az értekezést az irodalom jegyzék zárja, amelyben római számmal helyet kaptak a saját közlemények is.

3. Bevezetés

A szabad gyökök olyan részecskék, amelyek egy vagy több párosítatlan elektront tartalmaznak,¹ általában fokozott reakciókészség jellemzi őket. Az első előállított szerves szabad gyök az 1 trifenil-metilgyök volt, melyet Gomberg izolált 1900-ban.² A jól ismert O_2 ··, ·OH, NO· és NO₂· szabad gyökökön kívül napjainkban már számos további C-, N- és O- centrumú szerves szabadgyökös vegyület ismert. Ilyen például a 2 galvinoxil, 3 fenalenil, a 4 verzadil, az 5 nitroxid (TEMPO) és a 6 difenilpikril-hidrazil (DPPH) gyök (1. ábra).

1. ábra: Néhány stabilis szabadgyökös vegyület szerkezete.

A gyökös vegyületek vizsgálatát nagymértékben elősegítette az elektron paramágneses rezonancia spektroszkópia (EPR) felfedezése és fejlődése. Az EPR elméleti alapját Stern és Gerlach 1922-ben végzett kísérlete teremtette meg, melyben egy inhomogén mágneses téren keresztül ezüstatomokból álló részecskesugarat átbocsájtva a folyamatos elosztás helvett az atomok két különböző pontban halmozódtak. Ez volt az első bizonyíték, hogy az ezüst atomok külső héján lévő 1 szabad elektron 2 spinállapotot vehet fel. A kapott eredmények azt mutatták, hogy a részecskék egy belső impulzusmomentummal rendelkeznek. Az ezt követő évtizedekben számos kutató hasonló technikát alkalmazott annak kimutatására, hogy atomok magjainak szintén kvantált egyes impulzusmomentumuk van. Rabi 1930-ban bebizonyította, hogy az elektronok spinállapotai közötti átmenet rádiófrekvenciás gerjesztéssel lehetséges. Az első EPR abszorpciós spektrumot 1945-ben Zavoisky mérte CuCl₂·2H₂O mintán 133 MHz-en. Az elektron paramágneses rezonancia spektroszkópia egy mágneses rezonancia eljárás, mely párosítatlan elektront tartalmazó rendszer vizsgálatára alkalmas és 600-700-szor érzékenyebb az NMR spektroszkópiánál. A módszer a nagy érzékenység mellett lehetőséget ad mind homogén, mind heterogén rendszerek vizsgálatára halmazállapottól függetlenül. A vizsgált rendszer energianívói a paramágneses centrum környezetében lévő elektromos és mágneses terek perturbáló hatása folytán specifikusan megváltoznak. Ez lehetőséget nyújt a molekulaszerkezet és a párosítatlan elektront hordozó atom illetve atomok vizsgálatára.⁴ A párosítatlan spinű elektronnak mágneses térben két energiaállapota lehetséges annak következtében, hogy a spin mágneses momentuma a külső elektromágneses térrel azonos, vagy ellentétes irányba mutat. A két energiaállapot között átmenetek indukálhatók a külső eletromágneses tér jelenlétében. Az átmenetek létrehozásának feltétele a következő egyenlettel írható le: $\Delta E = hv = g_e \mu_b B$. Ahol a g az úgynevezett giromágneses tényező, értéke g ≈ 2 , μ_b a Bohr-magneton ($\mu_b = 9,272 \cdot 10^{24}$ J/T), B a mágneses tér, h a Planck–állandó($h = 6,626070 \cdot 10^{-34}$ J ·s), v a mikrohullámú frekvencia. Az állandó frekvencia mellett a gyakorlatban a mágneses térerősség változásával vizsgálják az energiaadszorpciót. Az EPR készülékeket az alkalmazott térerősség szerint csoportosítják (1. táblázat).⁵

Hullámsáv	v / GHz	λ / cm	B / G
L	1.1	27	390
S	3.0	10	1070
X	9.5	3.2	3400
K	24	1.2	8600
Q	35	0.85	12500
W	95	0.31	34000
_	360	0.083	128000

1. táblázat: EPR készülékek csoportosítása az alkalmazott frekvencia szerint.

Az utóbbi két évtizedben az EPR is rohamosan fejlődött, a hagyományos készülékek miniatürizálása mellett elterjedtek az időfelbontásos és impulzusos besugárzást alkalmazó módszerek, Fourier-transzformációs készülékek, ill. az "X-band" készülékhez képest nagyobb mágneses térerővel dolgozó készülékek (K-, Q-, W-band).

Az EPR spektroszkópiában technikai okokból az abszorpciós görbe [S = S(B)] első differenciálhányadosát [dS/dB = f(B)] ábrázolják (2. ábra).

2. ábra: EPR abszorpciós görbe és első deriváltja.

Az EPR spektrumok legfontosabb sajátossága a hiperfinom szerkezet, ami a spektrumvonalak egyedi felhasadását jelenti. A felhasadás oka a párosítatlan elektron közelében lévő, zérustól különböző mágneses momentumú magok mágneses terével történő kölcsönhatás.

3. ábra: Az elektron és a ¹⁴N kölcsönhatásának energiaátmenetei.

A ¹⁴N magspinje az m = 1, 0, -1 mágneses kvantumszámoknak megfelelően három lehetséges beállással rendelkezik. A nitroxidgyököt hordozó molekulák oldatainak tipikus EPR-spektruma az elektronspin és a ¹⁴N izotóp magspinje közötti hiperfinom kölcsönhatása következtében három azonos intenzitású jelből áll (3. ábra).

A nitroxidok tanulmányozása az elmúlt hat évtizedben önálló tudományterületté fejlődött.

Az első, irodalomban leírt nitroxid a **7** Frémy-só vagy más néven a kálium nitrozodiszulfonát (K₂[NO(SO₃)₂) volt, amelyet Edmond Frémy fedezett fel 1845-ben.⁶ A Frémy-sót napjainkban széleskörűen alkalmazzák erős oxidálószerként.^{7,8} Piloty és Graf Schwerin⁹ szintetizálta az első heterociklusos nitroxidot, a **8** porfirexidet (porphyrexide) 1901-ben (4. ábra).

4. ábra: Az első stabilis nitroxidok.

A stabilis nitroxid szabad gyökök szintézisével Rozantsev és munkatársai kezdek el folalkozni az 1950-es években. Sikerült olyan stabilis szabadgyökös szerves vegyületeket leírniuk, ahol a párosítatlan elektron a nitrogén és az oxigén között delokalizálódik. A triacetonamin oxidációjával a 4-oxo-2,2,6,6-tetrametil-piperidin-1-oxilhoz (TEMPON) jutottak. Ebből a vegyületből kiindulva számos öt- és hattagú vegyület volt szintetizálható.^{10,11} A nitroxid funkcióscsoportot más gyűrűrendszerek is tartalmazhatják. Néhány gyakrabban előforduló típust az 5. ábra¹² mutat be.

5. ábra: Gyakrabban előforduló gyűrűs nitroxidok.

McConnell és munkatársai piperidin-oxil és pirrolidin-oxil típusú nitroxidokat olyan reaktív csoportokkal láttak el, amelyek szelektíven reagálnak fehérjék funkciós csoportjaival, így sikerült eljutniuk az első spinjelölő (SL) reagensekhez.¹³

Az EPR biofizikai alkalmazását az tette lehetővé, hogy az élő szervezet molekulái jórészt diamágnesesek, így az EPR spektrumánál nincs "háttér zaj".

A spinjelölés, mint vizsgálati eljárás három fő lépésre bontható:

- A spinjelölő molekula megtervezése és szintézise
- A biomolekula jelölése
- Az EPR spektrum felvétele és kiértékelése.

Az első lépés ebben a folyamatban a szerves vegyész feladata, az utolsót általában a biofizikusok végzik.

Az elmúlt években a szabadgyökös vegyületek kutatása önálló tudományterületté fejlődött az orvostudomány, a fizika és a kémia területén.¹⁴

A stabilis nitroxid szabad gyökökről azon kívül, hogy spinjelzőként alkalmazzák őket fehérjék szerkezetének a vizsgálatára, kimutatták azt is, hogy ezen vegyületek, valamint amin prekurzoraik antioxidáns,^{15,16} szuperoxid diszmutáló^{17,18} és kataláz¹⁹ hatással is rendelkeznek. Továbbá ezeknek a vegyületeknek napjainkban számos új alkalmazása is elterjedt. Használják őket MRI²⁰ és EPR²¹ kontrasztanyagként, sejtszaporodást²² és bakteriális biofilm kialakulását²³ gátló anyagként, polimerizációs folyamatok mediátoraként²⁴ valamint akkumulátorok redox aktív anyagaként.²⁵

4. Célkitűzés

A kutatási téma célja olyan új szelektív módszerek kidolgozása, amelyek az ambifil kémiai sajátságú, stabilis nitroxidok esetében is alkalmazhatók, szem előtt tartva az előállított vegyületek későbbi biológiai, orvostudományi, biofizikai felhasználhatóságát.

- Új módszerek szén-szén kötés kialakítására. (a)
- Új módszer a C-B, C-N, C-S, C-Sn, C-I kötések kialakítására és az új vegyületek szelektív továbbalakítására. (b)
- Új heterobifunkcionális és homobifunkcionális spinjelző vegyületek szintézise.
 (c)
- Biomolekulák (nukleinsavak, gyógyszerek) spinjelölése. (d)
- Heterociklusokkal kondenzált nitroxidok szintézise, különös tekintettel a komplexképző vegyületekre. (e)

 $R', R = CO_2Me, CO_2H, CHO, CH_2OH, - C \equiv CH$

5. Irodalmi áttekintés

5.1. Szén-szén kötések kialakítása nitroxid funkcióscsoport jelenlétében

A szén-szén kötés kialakítására leggyakrabban elektrofil-nukleofil szénatomok reakciójával kerül sor, amelyhez a megfelelő funkcióscsoporto(ka)t kell először kialakítani a nitroxid gyűrűn.

A triacetonamin brómozott származéka, az α , α '-dibróm-keton számos nitroxid szabad gyök szintézisének fontos kiindulási alapanyaga. A **21** ketonból Favorszkijátrendeződéssel, majd az azt követő hidrogén-peroxidos, Na₂WO₄ által katalizált oxidációval állították elő a **22** észtert. A **22** vegyület hidrolízise a **23** karbonsavhoz vezetett, melyet aktív észteren keresztül a **24** alkohollá alakítottak bórhidrides redukcióval. A **24** alkoholt aktív MnO₂-dal a **25** aldehiddé oxidálták, valamint az alkohol metánszulfonsav észterét LiBr-dal reagáltatva a **26** allil-bromidhoz jutottak.^{26,27} A **26** paramágneses brómvegyületből NaSSO₂CH₃-tal alakították ki a **27** reverzibilis, tiolspecifikus spinjelző metántioszulfonát reagenst. (6. ábra)

6. ábra: Pirrolin nitroxidok szintézise.

A 2,2,6,6-tetrametil-1,2,3,6-tetrahidropiridin-származékoknak a szintézisét intézetünkben Hideg professzor úr és munkatársai dolgozták ki a 80-as években. A **28**²⁸ karbonsavból kiindulva a fentiekhez hasonló reakciókban kapták a **29** alkoholt, a **30** aldehidet, a **31** brómvegyületet valamint a **32** metántioszulfonátot. (7. ábra)²⁹

7. ábra: 1,2,3,6-tetrahidropiridin típusú nitroxidok szintézise.

A szén-szén kötés kialakítása a szintetikus szerves kémia meghatározó átalakításai közé tartozik. A klasszikus szén-szén kötés létrehozására alkalmas módszerek – mint az ionos mechanizmusú aldol reakció, Claisen-Schmidt-kondenzáció, a Wittig-reakció, a Grignard-reakció, a 2+2 és a 2+4 cikloaddíció – mellett az elmúlt években az átmeneti fémek (Pd, Cu, Ru, Rh, Pt) által katalizált keresztkapcsolási reakciók is széleskörben használatosak a szintetikus szerves kémiában és tapasztalataink szerint a nitroxidok jelenlétében is használhatók voltak.

Hideg és munkatársai a Wittig-reakció alkalmazási lehetőségeit vizsgálták aldehidcsoportot tartalmazó pirrolin nitroxidok esetében. A **25** aldehid trifenil-metil-foszfónium-jodiddal a **33** 2,2,5,5-tetrametil-3-vinil-pirrolin nitroxidot eredményezte, míg allil-trifenil-foszfónium sóval a **34** nitroxid triént adta. A **34** vegyület NMR spektruma alapján megállapították, hogy az *E*-izomer keletkezett. A **30** tetrahidropiridin aldehid trifenil-metil-foszfónium-jodiddal a **35** alként adta. A Wittig-reakciók nagy hátránya, hogy melléktermékként trifenil-foszfin-oxid keletkezik, amelytől kromatográfiás tisztítással tudtak megszabadulni (8. ábra).³⁰

8. ábra: Az α,β-telítetlen aldehidek Wittig-reakciója.

A **33** aszimmetrikus dién brómaddíciójával előállították a **36** dibrómvegyületet, majd ebből alkoholos KOH-dal végzett eliminációs reakcióban a **37** acetiléncsoportot tartalmazó pirrolin nitroxidhoz jutottak (9. ábra).³¹

9. ábra: Paramágneses acetilén előállítása.

Claisen-Schmidt-kondenzációban a 25 α , β -telítetlen aldehid metil-ketonokkal a 38 *a*-*d* vegyületeket adta (10. ábra).³²

10. ábra: Az α,β-telítetlen aldehid Claisen-Schmidt-kondenzációja.

A szén-szén kötés kialakításának további módja az **39** vegyületből történő malonészter szintézis. ²⁷ A **39** mezilátot dimetil-malonáttal alkilezve kapták a **40** vegyületet. A reakció során a **41** dialkilezett származék is keletkezett, ami egy biradikális vegyület. A **40** vegyület KOH-dal végzett parciális hidrolízisével a **42** vegyület keletkezett (11. ábra).³³

11. ábra: Malonészter szintézisek a 39 vegyülettel.

A 22 vegyület Michael-addíciója szintén szén-szén kötés kialakításával járt és a 43 vegyületet adta.³⁴ A 43 vegyület KMnO₄-tal, bázis jelenlétében végzett Nef-reakciójával jutottak el a 44 telített aldehid észterhez. Ennek NaBH₄-del történő redukciója a 45 paramágneses 1,4-diolt adta, melyet meziláton keresztül a 46 dijódvegyületté alakítottak. A 46 dijódvegyület lúgos közegben végzett eliminációja a 47 paramágneses szimmetrikus diént eredményezte (12. ábra).³¹

12 ábra: A szimmetrikus paramágneses dién szintézise.

A 47 szimmetrikus paramágneses diénnel végzett Diels-Alder-reakció számos lehetőséget nyújtott izoindolin-típusú nitroxidok kialakítására. A 47 dién reakciója a 4maleimido-TEMPO-val a 48 biradikális vegyületet eredményezte. Amikor a 47 diént acetilén-monokarbonsav- és acetilén-dikarbonsav-észterekkel reagáltatták a 49 és 51 Diels-Alder- adduktokhoz jutottak. A 49 vegyületet MnO₂-dal, az 51 vegyületet pedig 2,3-diklór-5,6-diciano-1,4-benzokinonnal (DDQ) aromatizálva kapták az 50 és 52 észtereket³¹ közepes termeléssel. A diént fullerénnel (C₆₀) reagáltatva a fullerénekre is jellenző [4+2] addíciós reakcióban³⁵ az 53 paramágneses cikloadduktumot kapták.³¹ A 47 paramágneses diént 1,4-benzokinonnal vagy metil-1,4-benzokinonnal 2M LiClO₄ oldatban reagáltatva, majd aktív MnO₂-dal és DDQ-val aromatizálva 54, 55 naftokinonokhoz jutottak. Az 54 vegyület és 47 dién ismételt Diels-Alder-reakciójával az 56 biradikális vegyületet kapták. A 47 diént az antranilsavból *in situ* képzett dehidrobenzollal reagáltatva, majd ezt követően DDQ-val aromatizálva jutottak el az 57 paramágneses benzo[*f*]izoindol vázas nitroxidhoz.³⁶ (13 ábra)

13. ábra: Diels-Alder-reakcióval szintetizált szénciklusok.

Intézetünkben a 3,4-diszubsztituált pirrolin ill. pirrolidin nitroxidok szintézisének egyik lehetséges útját Sár és munkatársai dolgozták ki. A **24** paramágneses allil-alkoholból [3,3]-szigmatróp átrendeződési reakciókkal a 4-es helyzetben exociklusos kettős kötést tartalmazó észtert kapták (14. ábra).³⁷

14. ábra: A paramágneses allil-alkohol szigmatróp átrendeződési reakciója.

Az 1980-as években Hideg és munkatársai vizsgálták Grignard-reagens alkalmazását új pirrolin-nitroxidok jelenlétében. Kiindulási vegyületként a 3-as helyzetben szubsztituált pirrolin-aldehidet alkalmazták. A **25** aldehid reakciója metil-magnéziumjodiddal vagy etil-magnézium-bromiddal szekunder alkoholokat eredményezett, amelyet MnO₂-dal oxidálva dia- és paramágneses ketonokat kaptak. A módszer hátránya, hogy *O*-alkilezett **61**, **62** termék is keletkezik (15. ábra).³²

15. ábra: α, β-Telítetlen-aldehid reakciója Grignard-reagenssel.

Bebizonyosodott, hogy a pirrolin nitroxidok lítium-organikus vegyületekkel is képesek a szén-szén kötések kialakítására. A **23** karbonsav metil-lítiummal és butil-lítiummal való reakciója során nitroxid-metil-keton és butil-ketonok keletkeznek. A reakció során melléktermékként *N*-metoxi és *N*-butoxi származékok is keletkeznek, mivel a lítiumorganikus vegyületek könnyen reakcióba lépnek a nitroxidok N-O csoportjával (16. ábra).³⁸

16. ábra: α, β-Telítetlen-karbonsav reakciója lítium-organikus vegyületekkel.

A boronsavak az elemorganikus vegyületek fontos csoportját képezik. Használhatóak különböző keresztkapcsolási reakciókban, de jól alkalmazhatók mint vicinális diolokhoz, szénhidrátokhoz kötődő reagensek is.^{39,40} A boronsavak fontos kiindulási alapanyagai a palládium-katalizálta Suzuki-keresztkapcsolási reakcióknak. Intézetünk munkatársainak a paramágneses boronsavak szintézisére több módszert sikerült kifejleszteniük. A **67** vinil-bromidból, amely a 4-oxo-TEMPO⁴² Favorszkij-gyűrűszűküléses reakciójának egyik mellékterméke, a **68** *O*-acetilvegyületet alakították ki, amelyet THF-ban, 2 ekvivalens butil-lítiummal -78°C-on a megfelelő vinil-lítummá alakítottak.⁴² Közben felismerték, hogy az *O*-alkileződést ki lehet védeni az *O*-acetil származék használatával. A kétszeresen lítiált származékot trimetil-boráttal reagáltatva, savas hidrolízis után kapták a **69** vinil-boronsavat.⁴³ Ezt a könnyebb izolálhatóság és tisztíthatóság miatt pinakollal a **70** észterré alakították.⁴⁴ A **67** vegyületből egylépéses reakcióban boronsavbisz(pinakolil)-észterrel, PdCl₂(PPh₃)₂ katalizátorral, kálium-fenolát⁴⁵ jelenlétében szintén a **70** észtert kapták (17. ábra).⁴³

17. ábra: Paramágneses boronsavak szintézise.

A **69** vinil-boronsav kiindulási alapanyagként szolgált poliaromás és heterociklusos brómvegyületekkel végzett Suzuki-reakcióban is. A **71a** 1-brómpirén pirrolin nitroxiddal a **72a** kettős (spin és fluoreszcens)⁴⁶ szenzorvegyületet eredményezte. A **69** pirrolin nitroxid a **71b** 2-brómfluorénnel a **72b**, **71c** 4-bróm-benzofenonnal a **72c**, a **71d** 2-brómpiridinnel pedig a **72d** vegyületet adta (18. ábra).⁴³

18. ábra: A 69 paramágneses boronsav Suzuki-reakciói.

A **70** paramágneses pinakol-boronsav Suzuki-reakciója 5-bróm-2,4-di-*terc*-butoxipirimidinnel⁴⁷ a **73** vegyülethez vezetett, majd ebből állították elő a **74** paramágneses uracilszármazékot (19. ábra).⁴³

19. ábra: A paramágneses uracil előállítása.

A β-bróm-α,β-telítetlen aldehidek számos reakciója ismert. A **75** aldehid Sonogashirareakcióban fenil-acetilénnel a **76** vegyületet adta. Az ebből képzett spontán aldoxim gyűrűzárással kapták a **77** 2-fenil-piridin-oxiddal kondenzált heterociklusos vegyületet. A Pd-katalizált keresztkapcsolási reakciók használhatók a nitroxidhoz kapcsolt heterociklusok szintézisére is, mivel a nitroxidcsoport nem módosul a reakcióban. A **37** acetilénvegyület Sonogashira-reakciója 2-jód-anilinnel a **78** 2-szubsztituált indollá zárt gyűrűt eredményezte (20. ábra).⁴⁸

20. ábra: A pirrolin nitroxidok Sonogashira-reakciói.

A **79** β -bróm- α , β -telítetlen észtert fenil-boronsavval reagáltatva Suzuki-kapcsolási reakcióban előállították a **80** 4-fenilszármazékot (21. ábra).⁴⁸

21. ábra: A β-bróm-α,β-telítetlen észter Suzuki reakciója.

A pirrolin nitroxiddal anellált heterociklusok egyik fontos kiindulási anyaga a **81**³¹ dialdehid. A **81** dialdehid vinil-magnézium-bromiddal a **82** diolt eredményezte. Ezt gyűrűzárásos metatézises reakcióval Grubbs II-katalizátor jelenlétében a **83** vegyületté alakították. A **83** vegyületet MnO₂-dal oxidálva a **84** pirrolin nitroxiddal kondenzált 1,4benzokinonhoz jutottak, melynek ciklopentadiénnel és LiClO₄-tal ⁴⁹ éterben történő reakciója a **85** adduktumot adta (22. ábra).⁵⁰

22. ábra: A 85 vegyület szintézise a 81 dialdehidből.

Az átmenetifém katalizált reakciók további példája a Heck-kapcsolás. A 86^{51} 3,5dimetoxi-sztirol a 87^{52} paramágneses vinil-jodiddal Pd(OAc)₂ jelenlétében a 88 rezveratrol analogont adta⁵³ (23. ábra).

23. ábra: A 89 paramágneses vinil-jodid Heck-reakciója.

5.2. A 3,4-diszubsztituált, bifunkcionális pirrolin nitroxidok szintézise

Intézetünkben már számos bifunkcionális spinjelző reagenst szintetizáltak, amelyek a reaktív karon kívül tartalmaznak valamilyen második szubsztituenst is. Ez a második kar lehet egy kémiailag inert illetve kémiailag reaktív szubsztituens is.

Az egyik első megoldás az volt, hogy az **58**³⁷ vegyületet nátrium-borohidrides redukcióval a **89** alkohollá alakították, majd ebből a **90** brómvegyülethez jutottak nukleofil szubsztitúcióval (24. ábra).⁵⁴ Ezt alakították tovább hetero-bifunkcionális spinjelző vegyületté.

24. ábra: A 90 brómvegyület előállítása.

Fotoaktiválható karként a 4-azido-ftálimidet használták. A **91** azidoftálimidet fázistranszfer reakcióban alkilezték a **90** paramágneses bromiddal. Az így kapott **92** paramágneses ftálimid származékot ezután *O*-acilszármazékká alakították. Az acetilezésre azért volt szükség, mert paramágneses csoport jelenlétében gyökös mechanizmus szerint nem lehet allilhelyzetben brómozni, viszont csak így van lehetőség második funkcióscsoport kialakítására. A **93** diamágneses *O*-acetilezett származékot gyökös mechanizmusú reakcióban *N*-bróm-szukcinimiddel brómozták, melynek eredményeként a **94** diamágneses allil-bromid keletkezett. Az acetilcsoportot a Zemplén-féle dezacetilezéssel^{55,56} távolították el. A **95** brómvegyületet ezután nátriummetántioszulfonáttal reagáltatva jutottak el a **96** hetero-bifunkcionális nitroxid

szabadgyökös vegyülethez, mely fotoaktiválható és SH-specifikus karokkal rendelkezik (25. ábra).⁵⁴

25. ábra: A 96 hetero-bifunkcionális nitroxid szintézise.

Az SH-specifikus funkcióscsoportokat tartalmazó nitroxidokat a fehérjék másodlagos szerkezetének a kialakításában fontos szerepet betöltő tiolcsoport jelölésére használják.

A **96** molekulával a papain fehérje egyik SH oldalláncát módosították. Itt a ftálimidcsoport nagy térkitöltése miatt a fotoaktiválással létrejövő merevebb szerkezet már nem volt az ESR spektrum perturbációját befolyásoló hatás.⁵⁷

A **47** szimmetrikus paramágneses diénből 1,4-brómaddícióval állították elő a **97** dibrómvegyületet. Ezt NaSSO₂CH₃-tal reagáltatva kapták a **98**³¹ bisz-metántioszulfonát spinjelző reagenst (26. ábra), melyet Hubbell és kutatócsoportja alkalmazott lizozim cisztein pontmutánsaiban keresztkötő spinjelölésre.⁵⁸ Az új reagens az i és i+3 vagy i és i+4 helyeken cisztein pontmutánsokat tartalmazó α -hélix jelölésével alkalmassá válik a fehérje konformációs változások követésére és a spinjelző saját mozgásának csökkenése révén pontosabb távolságmérést tesz lehetővé.

26. ábra: A 98 bisz-metántioszulfonát spinjelző reagens szintézise.

Egy másik lehetőség, hogy az SH-reaktív csoportot tartalmazó diszubsztituált spinjelző vegyületek egyik szubsztituense kovalens kötés kialakítására alkalmas, míg a pirrolin gyűrű 4-es helyzetében lévő szubsztituens a másodlagos kölcsönhatások révén csökkenti a gyűrű sajátmozgását. A második szubsztituens többféleképpen beépíthető.

Intézetünkben továbbfejlesztették a Rozancev és munkatársai által bevezetett⁵⁹ 3,4diszubsztituált a 4-es helyzetben brómatomot tartalmazó pirrolin nitroxidok szintézisét. A **99** karbonsavat klórhangyasav-etil-észterrel a **100** észterré alakították. Ebből ammónia hozzáadásával a **101** amidhoz, ennek vízeliminációjával 3 lépés után pedig a **102** nitrilhez jutottak. A **100** aktív észter redukciója a **103** alkoholt adta. Ezt MnO₂-dal a **75** β -bróm- α , β -telítetlen aldehiddé oxidálták. A **103** alkoholt meziláton keresztül a **104** brómvegyületté alakították. A **104** allil-bromidból kialakították a **105**⁶⁰ metántioszulfonát vegyületet (27. ábra).⁶⁰

27. ábra: A 3-szubsztituált-4-bróm-pirrolin nitroxid szintézise.

Hasonlóan a brómatomhoz a **89** alkoholból kialakíthatók voltak azon 3,4-diszubsztituált pirrolin nitroxidok, amelyek etil- ill. hidroxietil- nem reaktív szubsztituenst tartalmaztak (28. ábra).⁶¹

28. ábra: 3,4-diszubsztituált etil- és hidroxietil-pirrolin nitroxid.

5.3. Heterociklusokkal kondenzált pirrolin nitroxidok szintézise

A heterociklusokhoz a nitroxidok egy vagy két σ-kötésen keresztül kapcsolhatók. Az utóbbi esetben a vegyületek lehetnek kondenzált- vagy spirovegyületek. Intézetünkben már számos heterociklushoz kapcsolt pirrolin, tetrahidropiridin és piperidin nitroxidot szintetizáltak. A vegyületek előállítását általában klasszikus módszerekkel vagy palládium katalizált keresztkapcsolási reakciókkal valósították meg.

5.3.1. Háromtagú heterociklus kialakítása

A **25** aldehidet lúgos közegben hidrogén-peroxiddal oxidálták a **108** epoxikarbonsavvá.⁶² A pirrolidinnel anellált epoxigyűrű meglehetősen stabilis molekulának bizonyult. A molekula átmenetet képez a 3,4-diszubsztituált pirrolidin nitroxidok és a nitroxiddal anellált heterociklusok között. A **108** epoxi-karbonsav **109** vegyesanhidridjét redukálva jutottak a **110** alkoholhoz, amit a **111** halogénvegyületen keresztül a **112** SHszelektív reagenssé alakítottak (29. ábra).

29. ábra: Epoxi metántioszulfonát szintézise a 25 aldehidből.

5.3.2. Nitroxiddal anellált öttagú heterociklusok

Intézetünkben az első nitroxiddal anellált heterociklust 1982-ben állították elő. Ez egy kén tartalmú heterociklus, amit a **25** aldehidből tioglikolsav-etilészterrel kaptak (30. ábra).³⁸

30. ábra: Dihidrotiofén gyűrűt tartalmazó nitroxid előállítása.

Az elkövetkező években számos új kéntartalmú pirrolin nitroxiddal anellált heterociklust sikerült szintetizálniuk intézetünk munkatársainak. A **75** β -bróm- α , β -telítetlen aldehid tioglikolsav-metil-észterrel való reakciójával a **114** tiofénszármazékot Fiesselmann-szintézissel⁶⁵ állították elő (31. ábra).⁶⁰

31. ábra: Tiofénnel kondenzált pirrolin nitroxid előállítása.

A tiofén szintéziséhez hasonlóan a megvalósították a szelenofén gyűrű kialakítását is. A **75** β -bróm- α , β -telítetlen aldehidet frissen előállított Na₂Se-del reagáltatták nitrogén atmoszférában víz/DMF elegyében. A keletkezett adduktumot klórecetsav-etil-észterrel alkilezték, majd NaOEt-tal kondenzációs reakcióban a **115** karbonsav és a **116** szelenofén észter elegyét kapták. A **75** brómaldehidből kiindulva hasonló körülmények között állították elő bróm-nitrometánnal a **117** 2-nitro-szelenofént, klór-acetonitrillel pedig a **118** paramágneses szelenofén származékot (32. ábra).⁶⁴

32. ábra: Paramágneses szelenofének szintézise a β-bróm-α,β-telítetlen aldehidből.

A 102^{60} bróm-nitril reakciója nátrium-aziddal és ammónium-kloriddal a 120 4,4,6,6tetrametil-4,6-dihidro-pirrolo[3,4-c]pirazol-5-iloxil gyököt eredményezte. A 102 brómnitrilt nátrium-aziddal, DMF-ben reagáltva, jutottak el a 119 β -azido- α , β -telítetlen nitrilhez, melynek gyűrűzárásával szintén a 120 pirazol származékot kapták, igazolva, hogy a reakció a 119 azidon keresztül játszódik le (33. ábra).⁶⁵

33. ábra: A 4,4,6,6-tetrametil-4,6-dihidro-pirrolo[3,4-c]pirazol-5-iloxil gyök előállítása.

A **121**⁶⁶ 4-bróm-4-nitro-piperidin *N*-oxidból a hidrogén-bromidot eliminálva DBU-val, acetonitrilben kapták a **122** vegyületet, majd ezt nátrium-aziddal, dimetil-szulfoxidban főzve jutottak el a **123** kondenzált triazolszármazékhoz (34. ábra).⁶⁵

34. ábra: A 4,4,6,6-tetrametil-6,7-dihidro-[1,2,3]triazolo[4,5-c]piridin-5-iloxil előállítása.

A **124** 4-oxo-TEMPO-ból etil-karbazáttal egy hidrazonszármazékot kaptak, melynek szulfinil-kloridos gyűrűzárási reakciója a tiadiazolhoz kondenzált hattagú nitroxidhoz vezetett (35. ábra).⁵²

35. ábra: A 4,4,6,6-tetrametil-6,7-dihidro-[1,2,3]tiadiazol[5,4-c]piridin-5-iloxil gyök előállítása.

A toluolszulfonsavamidot alkilezve a **97** dibrómvegyülettel, majd DDQ-val aromatizálva, valamint a képződő tozilcsoportot hidrolizálva jutottak el a **127**³¹ pirrolo[3,4-c]pirrolvázas vegyülethez. A **97** dibrómot nátrium acetáttal reagáltatva, majd azt hidrolizálva a bisz(3,4-hidroximetil)pirrolin nitroxidot kapták, majd ennek parciális oxidálásával jutottak a **128** 3-formil-4-hidroximetil pirrolin nitroxidhoz, melyet BF₃·Et₂O-tal a **129**³⁶ furán gyűrűvel anellált pirrolin nitroxiddá alakítottak (36. ábra).

36. ábra: Pirrolin nitroxiddal kondenzált öttagú heterociklusok szintézise a **97** dibrómvegyületből.

5.3.3. Nitroxidokkal anellált hattagú heterociklusok

A **130** β -bróm- α , β -telítetlen észtert 2-hidroxi-fenil-boronsav-észterrel reagáltatták Suzuki-kapcsolási reakcióban, majd báziskatalizált átrendeződéssel a **131** paramágneses kumarinhoz anellált pirrolin nitroxidot kapták (37. ábra).⁶⁷

37. ábra: Az 1,1,3,3-tetrametil-4-oxo-2,3-dihidrokumarin[3,4-c]pirrol-2-iloxil szintézise a β-bróm-α,β-telítetlen észterből.

A **75** aldehidet 2-amino-fenil-boronsav-észterrel reagáltatva Suzuki-reakcióban a **132** angulárisan kondenzált kinolin származékot kapták. Továbbá, **75** β -bróm- α , β -telítetlen aldehidet anilinnel reagáltatva *N*,*N*-dimetil-formamidban a lineárisan kondenzált **133** kinolinhoz jutottak (38. ábra).⁶⁷

38. ábra: Paramágneses kinolinok szintézise a 75 aldehidből.

A **99** β -bróm- α , β -telítetlen karbonsavat réz(I)-katalizált reakcióban a **134** laktonná zárták pentán-2,4-dionnal, DMF-ban (39. ábra).⁵⁰

39. ábra: Az 1,1,3,3,6-pentametil-4-oxo-1,3-dihidropirano[3,4-c]pirrol-2-iloxil szintézise a **99** karbonsavból.

A **76** aldehidet hidrogén-peroxiddal és nátrium-klorittal oxidálva kapták a **135** karbonsavat, melynek arany(III)-kloriddal végzett gyűrűzárása a **136** laktont eredményezte (40. ábra).⁵⁰

40. ábra: Az 1,1,3,3-tetrametil-4-oxo-6-fenil-1,3-dihidropirano[3,4-c]pirrol-2-iloxil gyök szintézise a **76** aldehidből.

A 97 dibrómot nátrium-acetáttal reagáltatva, majd MnO₂-dal oxidálva kapták a 81 dialdehidet, melyet hidrazinnal a 137 piridazinná ciklizáltak. A következőkben a 97 dibrómból bisz(izotiurónium) sót alakítottak ki. Az ebből felszabadított ditiol vegyület, már enyhe oxidáció hatására intramolekuláris diszulfiddá ciklizálódott (41. ábra).³¹

41. ábra: Pirrolin nitroxiddal kondenzált hattagú heterociklusok szintézise a 97 dibrómvegyületből.

A 47 dién hetero-Diels-Alder-reakcióban, etil-glioxaláttal, LiClO₄ éteres oldatában a 139 pirano[3,4-c]pirrol vázas vegyületet adta, nitrozobenzollal, kloroformban pedig a 140 pirrolo[2,3-d][1,2]oxazinvázas vegyülethez jutottak.⁶⁸ Szintén hetero-Diels-Alder-reakcióval a 47 diénből *N*-(butoxikarbonil-metilén)-p-toluol-szulfonamiddal a 141³⁶ paramágneses spinjelölt pikolinsavat sikerült előállítaniuk (42. ábra).

42. ábra: Paramágneses hattagú heterociklusos vegyületek kialakítása a 47 diénből.

5.3.4. Nitroxiddal anellált héttagú heterociklusok, policiklusok

A **142**³⁷ aldehidet 2-amino-tiofenollal DBU jelenlétében, acetonitrilben 1,4-addíciós reakcióban reagáltatták és a **143** 1,1,3,3-tetrametil-2,3-dihidro-1*H*-pirrolo-[3,4-b]benzo[1,5]tiazepin-2-acetátot kapták. A keletkezett termék NaOCH₃-tal szobahőmérsékleten végzett dezacetilezése, majd katalitikus MnO₂-dal való oxidációja a **144** nitroxidot eredményezte (43. ábra).⁶⁹

43. ábra: A 144 benzo[1,5] tiazepin szintézise.

A **75** β -bróm- α , β -telítetlen aldehid 2-merkaptobenzimidazollal [3+3] ciklokondenzációs reakcióban, 2,1 ekv. DBU-val acetonitrilben refluxoltatva a **145** 11-

hidroxi-1,1,3,3-tetrametil-1,2,3,11-tetrahidro-benzimidazo[2,1-b]pirrolo[3,4e][1,3]tiazin-2-iloxil gyököt adta (44. ábra).⁶⁹

44. ábra: A **145** 11-hidroxi-1,1,3,3-tetrametil-1,2,3,11-tetrahidro-benzimidazo[2,1b]pirrolo[3,4-e][1,3]tiazin-2-iloxil gyök szintézise.

A **76** aldehid itterbium(III)-triflát katalizálta többkomponensű-reakcióban⁷⁰ izatinanhidriddel és etanolaminnal a **146** pentaciklusos 4-(2-hidroxietil)-1,1,3,3-tetrametil-5oxo-11-fenil-1,2,3,3b,4,5-hexahidro-pirrolo[3[°],4[°]:3,4]pirido[1,2-a]kinazolin-2-iloxil gyököt eredményezte (45. ábra).⁵⁰

45. ábra: A 146 pentaciklusos vegyület szintézise.

A **122** nitrovegyületből kiindulva, azt metil-izociano-acetáttal reagáltatva THF-ban, DBU jelenlétében a **147** kondenzált pirrol származékhoz jutottak Barton-Zardreakcióban. Ezt di-*terc*-butil-dikarbonáttal, kálium-*terc*-butilát jelenlétében a **148** *N*-*terc*butoxikarbonil származékká alakították. A **148** vegyület dietil-acetiléndikarboxiláttal refluxoltatva a **149** adduktot eredményezte (46. ábra).⁶⁵

46. ábra: A pirrolo-piridin típusú vegyület szintézise és további reakciói.

6. Saját eredmények

6.1. Új módszerek szén-szén kötés kialakítására és pirrolin nitroxidok továbbalakítására

Új módszert dolgoztunk ki az acetiléncsoportot tartalmazó pirrolin nitroxidok szintézisére. Korábban ezt paramágneses aldehidekből kiindulva, három lépésen keresztül sikerült megvalósítani: Wittig-reakció, brómaddíció majd elimináció.

Paramágneses aldehidet dimetil-(1-diazo-2-oxopropil)foszfonáttal⁷¹ (Bestmann-Ohirareagens) reagáltatva metanolban, 2 ekvivalens K₂CO₃ jelenlétében kaptuk az acetiléncsoportot tartalmazó pirrolin nitroxidokat: a $25^{26} \alpha, \beta$ -telítetlen aldehidből a 37 3etinil-pirrolin nitroxidot, a 81^{31} dialdehidből a 150 bisz-acetilént, a 151^{48} 4-fenil-3-formilpirrolin nitroxidból a 152 3-etinil-4-fenil-pirrolin nitroxidot, a 128^{36} 3-formil-4hirdoximetil-pirrolin nitroxidból a 153 3-etinil-4-hidroximetil-pirrolin nitroxidot valamit a 154^{72} paramágneses pikolil aldehidből a 155 2-etinilpiridint (2. táblázat)^I. A termelések közepes értékeket mutattak. A szén-szén kötés kialakítása során, bár a folyamat karbén képződéssel járt (47. ábra),⁷³ a nitroxid funkcióscsoport nem lépett reakcióba.

47. ábra: A Bestmann-Ohira reagens és a 25 aldehid reakciójának mechanizmusa.

Kiindulási anyag	R	Termék	Termelés %
25	N N O O	37	52
81	N O	150	42
151	Ph N N O	152	34
128		153	58
154	O. N N s ^{r⁵}	155	37

2. táblázat: Paramágneses acetilénvegyületek előállítása

Kizárólag e módszer volt alkalmas a **150** vegyület előállítására **81** dialdehidből, mert a Wittig-reakcióban keletkező trién spontán elektrociklizációs reakciója miatt a **157** izoindolin⁷⁴ nitroxidot kaptuk (48. ábra).

48. ábra: A 81 dialdehid szén-szén kötés kialakításával járó reakciói.

Megjegyezzük, hogy a kereskedelemben kapható Bestmann-Ohira reagens nagyon drága (213 USD/1 g), de az irodalomból jól ismert módszerrel előállítható.⁷⁵ Így a korlátozottan rendelkezésre álló aldehidből (pl. a **154**) a megfelelő acetilén előállítására igen előnyös.

A **150** bisz-acetilénről bebizonyosodott, hogy alkalmas további szén-szén kötések kialakítására, Sonogashira-kapcsolással a **158** paramágneses jódvegyülettel CuI, PPh₃ és Pd(PhCN)₂Cl₂ jelenlétében a **159** triradikális vegyületet adta 9%-os termeléssel (49. ábra).^I Hasonló merev triradikális vegyületeket szintetizáltak Böde Béla és munkatársai.⁷⁶ Az ilyen típusú gyökcentrumot tartalmazó vegyületeket PELDOR kísérletekben alkalmazták mint modellvegyületeket távolságmérésre és gyök-gyök kölcsönhatások vizsgálatára, továbbá többszörösen spinjelzett biomolekulák viselkedésének a modellezésére.

49. ábra: A 159 triradikális vegyület előállítása Sonogashira-reakcióval.

A 22 vegyület elektrofil addíciója klórhangyasav-metil-észterrel szintén szén-szén kötés kalakításával jár. A 22 észtert lítiálva -78 °C-on, THF-ban, lítium-tetrametil piperidinnel (LTMP), azt deptotonálva a β -szénen, majd az elektrofillel reagáltatva kaptuk a 160 diésztert, 33%-os termeléssel. A diésztert később a 161 dikarbonsavvá hidrolizáltuk. Korábban a 161 dikarbonsavat 11 lépésen keresztül állítottuk elő.^{31,50} A 22 vegyületből kiindulva, ezt a folyamatot egy kétlépéses reakcióúttal valósítottunk meg (50. ábra).^{II}

50. ábra: A 160 diészter előállítása.

A β-szénen történő deprotonálás alkalmazható volt C-I ill. C-Sn kötések kialakítására is. Így állítottunk elő új 3,4-diszubsztituált pirrolin nitroxidokat. A **22** észter Li-sóját
elemi jóddal reagáltatva kaptuk a **162** jód-észtert 38 %-os termeléssel, tributil-ónkloriddal pedig **163** ónszármazékot szintetizáltuk hasonló hozammal (51. ábra).^{II}

51. ábra: A 162 és 163 3,4-diszubsztituált pirrolin nitroxidok előállítása.

A 162 β -jód- α , β -telítetlen észter továbbalakítási lehetőségeit is megvizsgáltuk. Sonogashira-kapcsolási reakcióban⁴⁸ trimetilszilil-acetilénnel, trietil-aminban, Pd(Ph₃P)₂Cl₂ és CuI jelenlétében 53%-os termeléssel kaptuk a 164 szililezett vegyületet. A 164 vegyületet izoláltuk, azonban a 165-t és a 162 dehalogéneződésével képződő 22 észtert nehéz volt kromatográfiásan elkülöníteni. A védőcsoport eltávolítását a 164 vegyületről tetrametil-ammónium-fluoriddal végeztük el, amely a 165 etinilcsoportot tartalmazó pirrolin nitroxid észtert adta, 45 %-os termeléssel (52. ábra).^{II}

52. ábra: A β-jód-α,β-telítetlen észter Sonogashira-kapcsolási reakciója.

A **163** paramágneses tributil-ónvegyület reakciója jódbenzollal Stille-kapcsolási reakcióban⁷⁷ DMSO-ban, CuCl, LiCl és Pd(PPh₃)₄ jelenlétében a **80** fenil-észtert adta 24%-os termeléssel. Bár ez a reakció gyengébb hozamot eredményezett, mint a korábban

közölt Suzuki-kapcsolás⁴⁸, mégis a legjobb tudásunk szerint ez az első paramágneses ónvegyülettel végzett Stille-kapcsolás (53. ábra).^{II}

53. ábra: A 163 paramágneses tributil-ónvegyület Stille-kapcsolási reakciója.

6.2. 3,4-Diszubsztituált pirrolin nitroxidok szintézise

Korábban már beszámoltunk a 3,4-diszubsztituált, 4-es helyzetben brómot tartalmazó pirrolin nitroxidoknak a szintéziséről, amikor a β -bróm- α , β -telítetlen karbonsavból kiindulva több lépésen keresztül alakítottak ki allil-brómvegyületet, majd ebből metántioszulfonátot, amely egy SH-specifikus spinjelölő vegyület.⁶⁰ Ennek az analógiájára dolgoztuk ki az általunk előállított β -jód- α , β -telítetlen észter továbbalakítási lehetőségeit.

A 162 vegyületet hidrolizálva 10%-os NaOH/metanol elegyében, szobahőmérsékleten 48 órán át kevertetve, majd kénsavval savanyítva a 166 karbonsavhoz jutottunk. Bombacsőben karbonil-diimidazollal, THF-ban reagáltattuk, majd a keletkezett termékhez -78 °C-on cseppfolyós ammóniát adtunk. A keletkezett terméket kromatográfiás módszerrel izoláltuk és így kaptuk a 167 amidot, melyet *p*-toluolszulfonil-kloriddal, száraz piridinben a 168 nitrillé alakítottunk. A 169 3-hidroximetil-4-jód pirrolin nitroxid előállítása nagy kihívást jelentett a számunkra, mivel a 166 karbonsav lítium-alumínium-hidriddel (LAH) való redukciója még -78 °C-on is dehalogéneződéssel járt. Egy 2010-es irodalomból vett módszer szerint, amelyet kínai kutatók, Yat Sun⁷⁸ és munkatársai alkalmaztak, sikerült előállítanunk a 169 hidroximetil vegyületet, aktív észteren keresztül. A reakciót a következőképpen végeztük el: 166 karbonsavat klórhangyasav-etil-észterrel, trietil-amin jelenlétében, száraz éterben reagáltatva kaptuk a vegyes-anhidrid észtert, amelyhez THF-ban feloldva, -78 °C-on, ekvivalens mennyiségű NaBH4-et és száraz etanolt adtunk. A keletkezett 3-hidroximetil-4-jód

pirrolin nitroxidot 55 %-os termeléssel állítottuk elő. Ezt meziláton keresztül a **170** allilbromiddá alakítottuk, majd NaSSO₂CH₃-tal végzett nukleofil szubsztitúciós reakcióban kaptuk a **171** SH-specifikus spin jelölő metántioszulfonátot. A **169** alkohol aktív MnO₂dal, kloroformban oxidálva a **172** aldehidet adta, mely a továbbiakban fontos kulcsintermediernek bizonyult a Sonogashira keresztkapcsolási reakcióknál. A **166** vegyületetből *N*-hidroxi-szukcinimiddel, *N*,*N*'-diciklohexil-karbodiimid jelenlétében állítottuk elő a **173** szukcinát észtert, amely egy aminspecifikus spinjelölő vegyület (54. ábra).^{III}

54. ábra: A 3-szubsztituált-4-jód pirrolin nitroxidok szintézise.

A metil-4-bróm/4-jód-3-karbetoxi-pirrolin nitroxidokat Buchwald-Hartwig-keresztkapcsolási reakciókban vizsgáltuk.^{III} Tudomásunk szerint ez volt az első próbálkozás a paramágneses jódtartalmú nitroxidok aminálására, réz- és palládium-katalizált reakciókkal. Ez a módszer alkalmas volt sp² szén-nitrogén kötések kialakítására. A **79** 4bróm-3-karboxi-pirrolin metil-észter aminálása nem bizonyult túl eredményesnek, mivel a terméket csak 12 %-os kitermeléssel sikerült előállítanunk. Megfigyeltük azonban, hogy amikor a **162** jód-észtert feleslegben vett acetamiddal reagáltattuk, CuI, *N,N'*-dimetiletilén-diamin és K₂CO₃ jelenlétében⁷⁹ a **174** 4-acetamido-3-karboxi-pirrolin nitroxid metil-észterét kaptuk, viszonylag gyenge, de az előzőnél jobb, 24%-os termeléssel. Ezt követően a **174** vegyület hidrolízise NaOH-dal az amidcsoport hidrolízisét eredményezte, ami a **175** β-amino észter képződésével járt. A β-amino észterek a szerves szintézisek fontos építőelemei⁸⁰, de sajnos eddigi próbálkozásaink a **175** vegyület továbbalakítására, beleértve a Ba(OH)₂-dal végzett további hidrolízist, sem vezettek eredményhez.

Hasonló réz-katalizálta reakciókkal vizsgáltuk a **158** és **87** jódvegyületek továbbalakíthatóságát is. Így a **158**⁵² 3-jód-pirrolin nitroxidból kaptuk a **176** 3-acetamido pirrolin nitroxidot, 8 %-os termeléssel. Azonban a **87** jódvegyület hasonló reakciókörülmények között 66 %-os termeléssel a **177** 4-acetamido-piridin származékot adta, feltehetőleg az utóbbinál jelentkező kisebb sztérikus gátlás miatt. Ez a sztérikus gátlás adhat magyarázatot a **174** vegyület alacsony hozamára is (55. ábra).^{III}

55. ábra: A paramágneses halogénvegyületek Buchwald-Hartwig-keresztkapcsolási reakciói.

A 22 észterből lehetőség volt újabb 3,4-diszubsztituált pirrolin nitroxidok előállítására, C-S ill. C-B kötések kialakításával. A 22 észter lítium sóját 2-izopropoxi-4,4,5,5tetrametil-1,3,2-dioxaborolánnal reagáltatva alacsony, 11%-os termeléssel kaptuk a 178 boronsav pinakolátot. A keletkezett termék alacsony hozama véleményem szerint a pinakolát észter nagy térkitöltésével magyárazható, a boronsav pinakolát kromatográfiás izolálása nagy kihívást jelentett a számunkra. Hasonló körülmények között a 22 észter difenil-diszulfiddal a 179 fenil-szulfid származékot adta. Ezt kromatográfiás módszerrel nem sikerült tisztán elválasztanunk a kiindulási észtertől. A reakcióelegy hidrogénperoxiddal való oxidálása során Na_2WO_4 jelenlétében, metanolban a **180** fenilszulfont adta, ami sokkal polárosabb vegyület, mint a **22** észter, így flash kromatográfiás módszerrel izolálható volt (56. ábra).^{II}

56. ábra: A 178 és a 179 3,4-diszubsztituált pirrolin nitroxidok előállítása.

Az acetilénvegyületek jelentősége megnőtt mind a szén-szén kötés kialakítására irányuló, mind az 1,3-dipoláros cikloaddíciós reakciók⁸¹ széleskörű elterjedésével. Ezért megvizsgáltuk, hogy az általunk előállított etinilcsoportot tartalmazó pirrolin nitroxidokat hogyan módosíthatjuk. A **150** bisz-acetilénből 1,3-dipoláros cikloaddíciós reakcióban, CuI jelenlétében, dimetil-szulfoxidban kaptuk a **181** 3,4-bisz(triazolil)pirrolin nitoxidot, 30%-os termeléssel (57. ábra).^I

57. ábra: A 181 3,4-bisz(triazolil)pirrolin nitroxid előállítása.

A **153** alkohol az Appel-reakció körülményei között,⁸² trifenilfoszfánnal és CBr₄-dal, diklórmetánban a **182** allil-bromidot eredményezte. Vizes acetonban, 2 ekvivalens NaN₃ hozzáadásával 46%-os termeléssel kaptuk a **183** 3-etinil-4-azidometil pirrolin nitroxid gyököt, amely egy stabil azid-acetilén keresztkötő spinjelző reagensnek tekinthető. A **182** allil-bromid további nukleofil szubsztitúciós reakciója fölöslegben vett NaSSO₂CH₃-tal vizes acetonban a **184** tiol⁸³- és azid-specifikus spinjelölő vegyületet adta (58. ábra).¹

58. ábra: Azid- és tiol-specifikus spinjelző vegyületek előállítása a 153 alkoholból.

Ugyan azidok bioortogonális spinjelölésére inkább a ciklooktin származékot használják,⁸⁴ de a nem aktivált acetilén is reakcióba vihető vízoldható Cu(I) – komplexszel.⁸⁵

6.3. Új, nitroxidroxidokkal anellált heterociklusok és komplexképző vegyületek szintézise

A pirrolin nitroxiddal anellált heterociklusos vegyületek kialakításának egyik lehetséges módja a Pd-katalizált keresztkapcsolási reakciók alkalmazása.

A korábban már közölt **75** bróm-aldehidet pirrolin nitroxiddal anellált heterociklusok kialakítására számos esetben alkalmazták intézetünk munkatársai.^{67, 69} A Buchwald-Hartwig amidálási reakcióban a **75** β-bróm-α,β-telítetlen aldehid acetamiddal termékelegyet eredményezett. Azonban egy 2004-es irodalomból vett módszer alapján, amelyet Manley és munkatársai⁸⁶ írtak le, pirrolin nitroxiddal anellált heterociklust sikerült előállítanunk. A **75** vegyületet fenilecetsavamiddal reagáltatva, Pd₂(dba)₃ és

Xantphos katalizátorok, valamint Cs_2CO_3 bázis jelenlétében kaptuk a **185** pirrolo[3,4b]piridin-2(*5H*)-on származékot, viszonylag jó, 53%-os termeléssel (59. ábra).^{III}

59. ábra: Az 5,5,7,7-tetrametil-3-fenil-6,7-dihidro-1H-pirrolo[3,4-b]piridin-2(5H)-on-6-iloxil gyök szintézise.

Tovább vizsgáltuk a C-N kötés kialakítására alkalmas reakciókat, így olyan származékot kívántunk előállítani, ahol ez intramolekulárisan is megvalósítható volt. Dietil-malonátot (5 ekv.) alkileztünk a **104** brómvegyülettel K₂CO₃ (10 ekv.) jelenlétében, acetonban. A terméket nem izoláltuk, így a nyers diésztert NaOH-dal hidrolizáltuk, majd kénsavval savanyítva kaptuk a **186** karbonsavat 56 %-os termeléssel. A keletkezett karbonsavat imidazolid képződésén keresztül, cseppfolyós ammóniával kezelve a **187** amiddá alakítottunk. Ennek gyűrűzárását száraz *terc*-butanolban, K₂CO₃ bázis, Pd(OAc)₂, X-Phos és fenil-boronsav katalizátorok jelenlétében végeztük el, ami 57 %-os termeléssel a **188** nitroxiddal anellált piperidin-2-on típusú vegyületet adta (60. ábra).^{III}

60. ábra: Az **188** 5,5,7,7-tetrametil-3,4,6,7-tetrahidro-1H-pirrolo[3,4-b]piridin-2(5H)on-6-iloxil előállítása.

Sikerült elvégeznünk az imidazol és benzimidazol *N*-vinilezési reakcióját paramágneses vinil bromidokkal különböző reakciókörülmények között (3. táblázat). A **75**¹² vegyület imidazollal kapcsolva, Cs₂CO₃ és CuI katalizátor jelenlétében DMF-ban⁸⁷ nem adta a kívánt terméket. Fontos azonban megemlítenünk, hogy a **75** vegyület imidazollal Et₃N és MgSO₄ jelenlétében, DMF-ban 150 °C-on⁸⁸ mikrohullámú besugárzás hatására nyomokban a **191** vegyületet keletkezését eredményezte. Amikor a **75** vegyületet imidazollal vagy benzimidazollal reagáltattuk, Pd(OAc)₂/BINAP/Cs₂CO₃ rendszer jelenlétében,⁸⁹ száraz toluolban, meglepően tapasztaltuk, hogy a keletkezett termék 45%-os termelést mutatott. A **67** nem aktivált vinil-bromidot ugyanezen reakciókörülmények között imidazollal reagáltatva nem tapasztaltunk termékképződést (61. ábra,^{IV} 3. táblázat).

Nitroxid Reakciókörülmények Termék Termelés № Azol (%) _ CuI, Cs₂CO₃, DMF, 120 °C 75 189 0 1 2 75 Et₃N, MgSO₄, DMF, 150 °C (µW) 191 189 5 Pd(OAc)₂, BINAP, Cs₂CO₃, toluol, 110 °C 3 75 189 191 45 4 75 190 Pd(OAc)₂, BINAP, Cs₂CO₃, toluol, 110 °C 192 27 Pd(OAc)₂, BINAP, Cs₂CO₃, toluol, 110 °C 5 67 189 0 Pd(OAc)₂, BINAP, Cs₂CO₃, toluol, 110 °C 75 193 194/195 27/376 Et₃N, MgSO₄, DMF, 150 °C (µW) 7 75 193 194/195 7/42

61. ábra: A paramágneses vinil-bromidok keresztkapcsolási reakciói imidazolokkal.

^{3.} táblázat: A paramágneses vinil-bromidok imidazolokkal való keresztkapcsolásának reakciókörülményei.

A **193** 2-amino-benzimidazol *N*-vinilezése a **75** β-bróm-α,β-telítetlen pirrolin nitroxid aldehiddel Pd-katalizálta reakcióban a **194** polikondenzált heterociklust eredményezte, 27%-os termeléssel, valamint melléktermékként a **195** Schiff-bázist kapuk 37%-os terléssel. A **195** Schiff-bázis képződését tömegspektrometriás méréssel támasztottuk alá. A Ho és munkatársai⁸⁸ által kifejlesztett módszer alkalmazásával, Et₃N és MgSO₄ jelenlétében, mikrohullámú besugárzás hatására a keletkezett termékek hozamát nem sikerült javítanunk. A **194** vegyület 7%-os a **195** Schiff-bázis pedig 42% termeléssel keletkezett számos további nem beazonosított melléktermék kíséretében (62. ábra).^{IV}

62. ábra: A β-bróm-α,β-telítetlen pirrolin nitroxid keresztkapcsolási reakciója

2-amino-benzimidazollal.

Régóta foglalkoztat bennünket a paramágneses komplexképző ligandumok szintézise.⁹⁰ A **172** jód-aldehidet Sonogashira-keresztkapcsolási reakcióban 2-etinilpiridinnel trietilaminban, CuI és PdCl₂(PPh₃)₂ katalizátorok jelenlétében 50 °C-on reagáltattuk, ami a **196** vegyületet adta 41%-os termeléssel. Megjegyezzük, hogy hasonló körülmények között a **75** bróm-aldehid 2-etinilpiridinnel való reakciója sajnos nem hozta a várt termék képződését. A **196** vegyület gyűrűzárási reakcióját metanolos-ammóniával, AgOTf katalizátor jelenlétében,⁹¹ mikrohullámú besugárzás alatt, kvarc bombacsőben végeztük el, melynek eredményeként kaptuk a **197** paramágneses α, α '-dipiridil vegyületet, amely feltételezésünk szerint komplexképzésre alkalmas átmeneti fémekkel (63. ábra).^{III}

63. ábra: A 197 paramágneses α,α'-bipiridil típusú komplexképző vegyület szintézise.

A vegyület komplexképző sajátosságát Cu^{2+} ionokkal, spektrofotometriás módszerrel vizsgáltuk meg. A Job Plot diagram alapján (64. ábra) arra következtetésre jutottunk, hogy a **197**/Cu²⁺ komplex 2:1 aránya megegyezik az α, α '-dipiridil/Cu²⁺ komplex arányával. A **197** vegyület komplexképző sajátossága miatt esetlegesen alkalmazható fehérjék átmeneti fémeket tartalmazó prosztetikus csoportjainak módosítására.^{III}

Az α, α' -dipiridil típusú vegyület komplexképző sajátosságát megvizsgátuk Fe²⁺ ionokkal is, ekkor vörös színű oldatot kaptunk ($\lambda_{max} = 520$ nm) víz-etanol elegyében.

64. ábra: A 197/Cu²⁺ komplex Job Plot diagrammja.

A **155** paramágneses 2-etinilpiridin Sonogashira-kapcsolása 2-jód-benzaldehiddel, trietil-aminban, CuI és $PdCl_2(PPh_3)_2$ katalizátorok jelenlétében a **198** vegyületet eredményezte, melynek gyűrűzárása metanolos ammóniában, AgOTf katalizátor⁹¹ jelenlétében, mikrohullámú besugárzás alkalmazásával a **199** paramágneses 2,2'-dipiridil analogont adta (65. ábra).^I A **199** vegyület komplexképző sajátosságát Cu²⁺ ionnal, acetonitrilben, spektrofotométriás módszerrel vizsgáltuk meg. A mért eredményeket a 351 nm-es hullámhosszra vonatkoztattuk, amely a továbbiakban a Cu²⁺ ion koncentrációjával növekedett, a K_d = 13 dm⁻³/mol-lal volt egyenlő és a telítettség itt is a ligandum/fém 2:1 arányánál következett be.

65. ábra: A 199 pirrolo[3,4-c]piridin komplexképző vegyület előállítása.

6.4. Biológiailag aktív pirrolin nitroxiddal anellált vegyületek szintézise

A **160** diészter parciális hidrolízisével, melyet száraz metanolban, 1 ekvivalens NaOH hozzáadásával⁹² szobahőmérsékleten végeztünk el, a **200** vegyületet kaptuk. A reakció során azonban nemcsak a **200** karbonsav észter keletkezett, hanem melléktermékként jelen volt még a **161** dikarbonsav is. A keletkezett oldatot kénsavval savanyítva pH=2 értékig, diklórmetános extrakcióval a **200** vegyületet tudtuk kinyerni a reakcióelegyből, majd kloroformmal folytatva az extrakciót a **161** vegyületet is megkaptuk (66. ábra).^{II}

66. ábra: A 160 diészter parciális hidrolízise.

Felismerve a spinjelölt nukleinsavak fontosságát, DeCoen és munkatársai⁹³ által nemrégiben publikált irodalom inspirált minket arra, hogy megpróbáljunk spinjelölt uracilt előállítani. A **200** karbonsav észterből erre lehetőségünk is nyílt.

A monometil-észtert először egylépéses reakcióban difenil-foszforil-aziddal (DPPA), trietil-aminban reagáltatva savaziddá alakítottuk, majd a reakcióelegyet toluolban melegítve, Curtius-átrendeződéssel kaptuk az izocianát intermediert, melyhez 2-nitrobenzilamint adva alakítottuk át a megfelelő 2-nitrobenzil-karbamáttá. A kapott 2-nitrobenzil-karbamátot nem sikerült kromatográfiás módszerrel tiszta állapotban izolálnunk, így a nyers terméket zártuk gyűrűvé. 1,1 Ekvivalens kálium-tercier-butiláttal, száraz THF-ban kaptuk a **201** 3-(2-nitrobenzil) csoportot tartalmazó spinjelölt uracilt, melyet flash kromatográfiás módszerrel 34%-os temeléssel izoláltunk. A 2-nitrobenzil csoport lehasítása a **202** spinjelölt uracil származékot eredményezte (67. ábra).^{94, II}

67. ábra: A 202 spinjelölt uracil előállítása.

A 2-nitrobenzil védőcsoport eltávolítása mind fotokémiai, mind pedig bázis katalizált reakciókkal elvégezhető volt. A nitrobenzil védőcsoport fotokémiai lehasítása régóta ismert az irodalomban (68. ábra).^{95,96}

68. ábra: A 2-nitrobenzil védőcsoport fotokémiai hasítása.

A karbamát gyűrűzárása során a reakció előrehaladását vékonyréteg kromatográfiás módszerrel követtük és észrevettük, hogy megjelenik egy nem várt vegyület foltja. A **201** gyűrűzárt terméket flash kromatográfiás módszerrel izoláltuk, a nem várt foltról pedig bebizonyosodott, hogy azonos a fotokémiai 2-nitrobenzil védőcsoport eltávolítása után kapott **202** spinjelölt uracil származékkal. Ezért, úgy gondoltuk, hogy a **201** gyűrűzárt 2-nitrobenzil védőcsoportot tartalmazó uracil származékot megpróbáljuk fölöslegben vett KO*t*-Bu-tal (2,1 ekvivalens) THF-ban reagáltatni. A reakció meglepő eredményt hozott a számunkra, ugyanis a **202** uracilszármazék keletkezett 52%-os termeléssel.

Az irodalomban nem találtunk arra példát, hogy a 2-nitrobenzil védőcsoport eltávolítható bázis jelenlétében is. Ezért a lehasadáshoz a következő mechanizmust javasoljuk (69. ábra).^{II}

69. ábra: A 2-nitrobenzil védőcsoport lehasítása KOt-Bu-tal.

A paramágneses 4-bróm/4-jód-3-karbaldehid pirrolin nitroxidokat Cu- és Pd-katalizálta aminálási reakciókban acetamidinnel és guanidinekkel is reagáltattuk. A reakció optimalizálása érdekében a **75** és **172** vegyületeket különböző reakciókörülmények között (4. táblázat) reagáltattuk Cs₂CO₃ jelenlétében, melynek eredményeként nitroxiddal anellált pirimidin származékokat kaptunk. A pirimidin gyűrűvel anellált nitroxidok előállítása azért volt kecsegtető, mert fontos építőkövei különböző növényvédő szereknek és gyógyszermolekuláknak⁹⁷ (70. ábra, 4. táblázat).

№	X	Oldószer	Kat./ligandum	Termék	Termelés (%)
1	Ι	toluol	-	203	11
2	Ι	toluol	CuI/DMEDA	203	0
3	Ι	t-BuOH	Pd(OAc) ₂ /X-Phos/PhB(OH) ₂	203	12
4	Ι	toluol	Pd ₂ (dba) ₃ /Xantphos	203	25
5	Br	toluol	Pd ₂ (dba) ₃ /Xantphos	203	41
6	Br	toluol	Pd ₂ (dba) ₃ /Xantphos	204	23
7	Br	toluol	Pd ₂ (dba) ₃ /Xantphos	205	0
8	Br	DMF	Pd ₂ (dba) ₃ /Xantphos	205	35

70. ábra: Spinjelölt pirimidinszármazékok előállítása.

4. táblázat: A spinjelölt pirimidinszármazékok előállításának reakciókörülményei.

A 172 4-jód-3-karbaldehid pirrolin nitroxid reakciója az acetamidinnel feleslegben vett bázis jelenlétében, argon atmoszféra alatt, 110 °C-on, 16 órát melegítve katalizátor hozzáadása nélkül a 203 vegyületet adta, gyenge, 11%-os hozammal (Ne1). Hasonló reakciókat írtak le Popov és munkatársai,⁹⁸ viszont náluk a termelések sokkal jobb értékeket mutattak (64-82 %).

A fent említett Cu- ill. Pd-katalizálta reakciókat a továbbiakban a jobb hozam elérése érdekében különböző ligandumok hozzáadásával végeztük el: *N*,*N*'-dimetil-etilén-diamin (DMEDA) vagy X-Phos vagy Xantphos (4. táblázat). A CuI/DMEDA (\mathbb{N} 2) katalizálta reakcióban a **172** vegyület az acetamidinnel nem adott terméket. Pd(OAc)₂/X-Phoskatalizálta reakcióban viszont ugyanolyan termelést kaptunk, mint amikor katalizátor alkalmazása nélkül végeztük el a reakciót. Amikor a **75** β -bróm- α , β -telítetlen-aldehid reakcióját vizsgáltuk Pd₂(dba)₃/Xantphos kombinációban, meglepődéssel tapasztaltuk, hogy a keletkezett termék hozama közepes, azaz 41%-os volt (\mathbb{N} 5), ugyanez a reakció a **172** β -jód- α , β -telítetlen aldehiddel (\mathbb{N} 4) 25%-os termelést adott, feltehetően a bekövetkezett dehalogéneződés miatt. Ugyanakkor a reakciónál lényeges a reakcióelegy átkeverhetősége, így a méretnövelési kísérletek (5-10 mmol) nem vezettek reprodukálható eredményhez.

A továbbiakban a **75** 4-bróm-3-karbaldehid pirrolin nitroxidot guanidinnel reagáltattuk a fentiekben leírt reakciókörülmények között és így kaptuk a **204** paramágneses 2-aminopirimidinnel anellált pirrolin nitroxidot 23 %-os termeléssel (№6).

A 4-aminobenzoszulfonamid származékokat széleskörben alkalmazzák antimikrobás anyagként,⁹⁹ ezért a **75** 4-bróm-3-karbaldehid pirrolin nitroxidot szulfaguanidinnel reagáltatva paramágnesesen módosított szulfonamidhoz kívántunk eljutni. Az előbbiekhez hasonló reakciókörülmények között, 2 ekvivalens bázis hozzáadásával a **75** bróm aldehid szulfaguanidinnel, Pd₂(dba)₃/Xantphos katalizálta rendszerben, toluolban nem adott terméket. A bázis mennyiségét a reakcióban először csökkentettük (1,3 ekvivalens), mert a szulfaguanidint ikerionként reagáltattuk, nem pedig HCl sóként mint előzőekben az acetamidinnél és a guanidinnél. Miután a bázis mennyiségét 2,3 ekvivalenssel növeltük, azt tapasztaltuk, hogy ekkor sem kaptunk terméket. Amikor az oldószert DMF-re cseréltük, a fentiekben leírt reakciókörülményeket alkalmazva kaptuk a **205** spinjelölt szulfonamidot 35%-os termeléssel (70. ábra).^{III}

A szulfonamidokat mint bakteriosztatikumokat még manapság is alkalmazzák fertőzések kezelésére, bár a humán gyógyászati alkalmazásuk a kialakult rezisztencia miatt korlátozott, ugyanakkor az állatgyógyászat még széleskörűen használja ezt a hatóanyag típust. Ez utóbbi miatt a szennyvizekben a szulfonamidok és azok metabolitjai előfordulhatnak számottevő környezeti terhelést okozva. A **205** paramágneses spinjelölt szulfadiazint az osnabrücki egyetem kutatóival együttműködve M. Matthies és H. J. Steinhoff kutatócsoportja tesztelte EPR spektroszkópiás környezetanalitikai módszerrel. A spinjelölt szulfadiazin analóg adszorpcióját vizsgálták huminsavval. Megállapították, hogy a szulfonamidok kovalens kötésen keresztül kapcsolódhatnak a huminsavhoz. A **205** vegyület-huminsav keverékének EPR spektrumából kiderült, hogy a **205** vegyület feltehetően kovalensen kötődik a huminsavhoz, ahogy ezt az ESR spektrumban a magas térerőnél jelentkező csúcs mutatja (333 mT) (71. ábra).

71. ábra: A 205 vegyület-huminsav EPR spektruma

A kovalens kötődést azzal bizonyították, hogy összevetették a kötésben nem lévő és a huminsavhoz kötött nitroxid aszkorbinsavval szemben mutatott redukciójának a kinetikáját (72. ábra). Az immobilis nitroxid lassabban redukálódott aszkorbinsav hatására, mint a huminsavhoz nem kötött nitroxid.

72. ábra: A 205/huminsav aszkorbinsavval szembeni redukciójának kinetikája.

A 205 vegyület huminsavhoz való kötődésénél az aromás aminocsoportoknak fontos szerepe van, ezt azzal bizonyítottuk, hogy az amin acetilezésével nyert 206 származék már kovalensen nem kötődött a huminsavhoz. A 206 vegyületet a 205 spinjelölt szulfonamid acetilezésével kaptuk (73. ábra).

73. ábra: A 205 spinjelölt szulfonamid acetilezése.

Szintén a nitroxidokkal módosított gyógyszermolekulák kötődésének a vizsgálatára szolgált a spinjelölt-diklofenák szintézise. A diklofenák széleskörben alkalmazott COX-1 gátló, amelynek számos mellékhatása ismert (pl.: gyomorfekély).⁹⁷ Ennek a lehetséges kivédése a hatóanyag megfelelő formulálása, ill. olyan hordozórendszerek kialakítása, amelyben a hatóanyagleadás térben és időben kontrollált módon történik. A diklofenák-nátrium sóját a **26** paramágneses allil-bromiddal DMF-ban alkilezve kaptuk a **208** vegyületet (74. ábra), melynek politejsav hordozóról történő kioldódási kinetikáját jelenleg is vizsgálják.

74. ábra: A 26 allil-bromid reakciója diklofenák-nátriummal.

7. Kísérleti rész

Az olvadáspontokat Boetius olvadáspont-mérővel határoztuk meg, az értékek nem korrigáltak. A vegyületek mikroanalízisét Fisons EA 1110 CHNS elemanalizátorral végeztük. A tömegspektrumok TermoQuest Automass-Multi (EI) és Thermo Scientific Q-Exactive HPLC/MS/MS ESI(+) ionizációs készülékekkel készültek. Az NMR spektrumok felvétele Bruker Avance III Ascend 500 készülékkel történt, a jel eltolódását TMS-hez viszonyítottuk. A paramágneses származékokat difenil-hidrazin vagy pentafluorfenilhidrazin jelenlétében (5 ekvivalens/gyök) vizsgáltuk. A mérésekhez CDCl₃, CD₃OD vagy DMSO-d₆ oldatot használtunk 298 K-es szondahőmérsékleten. Az ESR spektrumokat a gyökök 10⁻⁴ M CHCl₃-os oldatából vettük fel Miniscope MS 200 készüléken. Az IR spektrumokat Bruker Alfa FT-IR készülékkel vettük fel, ZnSe ATR feltéttel. Az UV/VIS méréseket Shimadzu UV mini 1240 és Specord 40 spektrofotométerrel kvarc küvettákban (1 × 1 cm) mértük. A vegyületeket Merck Kieselgel 60 szilikagélen (40-63 µm) tisztítottuk, flash-kromatográfiás módszerrel. A vékonyréteg kromatográfiás vizsgálatokat a kereskedelmi forgalomban elérhető, Merck Kieselgel GF254 (20 × 20 × 0,02 cm) szilikagél lapon végeztük. A mikrohullámú reakciókat Milestone MikroSYNTH készülékkel, bomba csőben (15 bar) végeztük el, a hőmérséklet mérésére beépített vagy száloptikás GaAs szenzort használtunk. Reagenseinket a Molar, Sigma-Aldrich, Merck, Alfa Aesar, Acros és TCI cégektől szereztük be.

Általános leirat az aldehidek acetilénekké való átalakítására (37, 150, 152, 153, 155):

A 25, 81, 151, 128 és 154 aldehidek (2,0 mmol) metanolos (15 ml) oldatához K₂CO₃ot (552 mg, 4,0 mmol vagy 1,10 g, 8,0 mmol a 150 vegyületnél), dimetil-(1-diazo-2oxopropil)foszfonátot (422 mg, 2,2 mmol vagy a 150 vegyületnél 844 mg, 4,4 mmol) adtunk. A reakciót szobahőmérsékleten kevertettük 2 órát, majd a reakcióelegyet éterrel (25 ml) hígítottuk, vizes NaHCO₃ (5 %) oldattal mostuk, a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk, a maradékot oszlopkromatográfiásan tisztítottuk (hexán/Et₂O vagy hexán/EtOAc).

3-Etinil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (37):

Kitermelés 170 mg (52%), sárga színű kristályok, op. 122-123 °C. A vegyület spektroszkópiai paraméterei megegyeznek a korábban leírt vegyületével.³¹

3,4-Dietinil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (150):

Kitermelés 180 mg (42%), sárga kristály, op. 149-150 °C, $R_f = 0,62$ (hexán/Et₂O, 2:1). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1,50$ (s, 12H), 3,51 (s, 2H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 24,9$ (4C), 70,9 (2C), 85,6 (2C), 100,0 (2C), 133,4 (2C). IR (nujol): $\overline{\nu} = 3213, 2978, 2089, 1466, 1435$ cm⁻¹. MS (70 eV): m/z = 188 (M⁺, 43), 173 (62), 138 (13), 128 (100), 51 (70). Elemanalízis – számított: C₁₂H₁₄NO: C 59,01; H 5,61; N 9,18 - mért: C 59,10; H 5,55; N, 9,25.

3-Etinil-2,2,5,5-tetrametil-4-fenil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (152):

Kiermelés 250 mg (34%), világos sárga kristály, op. 102-103 °C, $R_f = 0,51$ (hexán/Et₂O, 2:1). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1,39$ (s, 6H), 1,46 (s, 6H), 3,01 (s, 1H), 7,39-7,49 (m, 5H). IR (nujol): $\overline{\nu} = 3272, 2976, 1678, 1595$ cm⁻¹. MS (70 eV): m/z = 240 (M⁺, 31), 225 (19), 210 (10), 115 (65), 77 (100). Elemanalízis – számított: C₁₆H₁₈NO: C 79,96; H 7,55; N 5,83 - mért: C 80,03; H 7,64; N 5,74.

4-Etinil-3-hidroximetil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (153):

Kitermelés 139 mg (58%), sárga krisztály, op. 154-155 °C, $R_f = 0,31$ (hexán/EtOAc, 2:1). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1,34$ (s, 6H), 1,35 (s, 6H), 3,27 (s, 1H), 4,38 (s, 2H). IR (nujol): $\overline{\nu} = 3217, 2921, 2851, 2097, 1672$ cm⁻¹. MS (70 eV): m/z = 194 (M⁺, 86), 179 (100), 164 (24), 163 (27), 131 (45). Elemanalízis – számított: C₁₁H₁₄NO₂: C 68,01; H 8,30; N 7,21 - mért: C 68,15; H 8,20; N 7,22.

6-Etinil-1,1,3,3-tetrametil-1*H*-pirrolo[3,4-c]piridin-2-iloxil gyök (155):

Kitermelés 56 mg (37%), op. 128-130 °C, $R_f = 0,33$ (hexán/EtOAc, 2:1). IR (nujol): $\overline{\nu}$ = 3353, 3260, 3213, 2980, 2100, 1610 cm⁻¹. MS (70 eV): m/z = 215 (M⁺, 43), 185 (34), 170 (100), 155 (50). Elemanalízis – számított: C₁₃H₁₅NO₂: C 72,53; H 7,02; N 13,01; mért: C 72,70; H 6,98; N 13,11.

3,3'-((1-oxil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3,5-diil)bisz(etin-2,1diil))bisz(2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1-iloxil) gyökök (159):

A **158** paramágneses vinil-jodidot (532 mg, 2,0 mmol) Schlenk csőben feloldottuk Et_3N /piperidin (30 ml (5:1)) valamint DMF 5 (ml) elegyében, majd PdCl₂(C₆H₅CN)₂-ot (38 mg, 0,1 mmol), CuI-ot (10 mg, 0,05 mmol) adtunk hozzá. Az oldatot dezoxigenáltuk, ezt követően a **150** bisz-acetilén vegyület (188 mg, 1,0 mmol), PPh₃ (13 mg, 0,05 mmol), Et_3N /piperidin (15 ml (5:1)) és DMF (5 ml) oldatát csepegettük hozzá, majd 16 órát kevertettük szobahőmérsékelten. Ezután az oldószert lepároltuk, a maradékhoz vizet és diklórmetánt adtunk, a szerves fázist elválasztottuk, MgSO₄-on szárítottuk.

Kitermelés 41 mg (9%), narancssárga kristály, op. 85-86 °C, $R_f = 0,54$ (hexán/EtOAc, 2:1). IR (nujol): $\overline{v} = 2975, 2928, 2855, 1625, 1547, 1527$ cm⁻¹. MS (70 eV): m/z = 464 (M⁺, 4), 449 (7), 434 (12), 419 (14), 404 (23), 389 (13), 374 (10), 109 (100). Elemanalízis – számított: C₂₈H₃₈N₃O₃ : C 72,38; H 8,24; N 9,04; mért: C 72,25; H 8,15; N 9,01.

Általános leirat a 160, 162, 163, 178 és 179 vegyületek szintéziséhez:

A 2,2,6,6-tetrametil-piperidin (2,82 g, 20,0 mmol) THF-os (20 ml) oldatához 0 °C-on BuLi-ot (8 ml, 20,0 mmol) adtunk és N₂ alatt 15 percet kevertettük. Majd az elegyet -78 °C-ra hűtöttük és a **22** pirrolin nitroxid észter (3,96 g, 20,0 mmol) THF-os (30 ml) oldatát csepegtettük hozzá, majd 1 órát kevertettük, megtartva az adott hőmérsékletet. Ezután I₂ (5,08 g, 20,0 mmol, **162** vegyülethez) vagy klórhangyasav-metil-észter (1,89 g, 20,0 mmol, **160** vegyülethez), vagy tributil-ón-klorid (6,50 g, 20,0 mmol, **163** vegyülethez) vagy 2-izopropoxi-4,4,5,5-tetrametil-1,3,2-dioxaborolán (3,72 g, 20,0 mmol, **178** vegyülethez) vagy 1,2-difenil-diszulfid (4,36 g, 20,0 mmol, **179** vegyület) THF-os (30 ml) oldatát adtuk hozzá. Majd újabb 1 órás -78 °C-on történő kevertetés után, hagytuk a hőmérsékletet szobahőre emelkedni és vízzel (20 ml) megbontottuk az elegyet. Ezután etil-acetáttal (30 ml) extraháltuk, a szerves fázist MgSO₄-on szárítottuk, szűrtük, bepároltuk, a maradékot flash kromatográfiával tisztítottuk (hexán/Et₂O).

Dimetil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3,4-dikarboxilát-1-iloxil gyök (160):

Kitermelés 1,68 g (33 %), sárga kristályok, op. 56-57 °C, $R_f = 0,33$ (hexán/Et₂O, 2:1). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1,52$ (s, 12H), 3,88 (s, 6H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 24,5$; 52,4; 69,75; 140,2; 164,8. IR (nujol): $\overline{\nu} = 2981, 2956$, 1720, 1649 cm⁻¹. MS (70 eV): m/z = 256 (M⁺, 6), 242 (7), 219 (4), 71 (100). Elemanalízis – számított: C₁₂H₁₈NO₅: C 56,24; H 7,08; N 5,47; mért: C 56,10; H 7,01; N 5,40.

Metil-4-jód-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-karboxilát-1-iloxil gyök (162):

Kitermelés 2,5 g (38%), sárga kristályok, op. 114-115 °C, $R_f = 0,68 = hexán/Et_2O$, 2:1). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1,38$ (s, 6H), 1,47 (s, 6H), 3,87 (s, 3H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 24,7$; 25,46; 51,6; 71,6; 73,61; 100,0; 148,9; 164,0. IR (nujol): $\overline{\nu} = 2975$, 2929, 2886, 1710, 1588 cm⁻¹. MS (70 eV): m/z = 324 (M⁺, 4), 293 (3), 182 (7), 107 (93), 41 (100). Elemanalízis – számított: C₁₀H₁₅NO₃I: C 37,05; H 4,66; N 4,32; mért: C 37,12; H 4,86; N 4,38.

Metil-2,2,5,5-tetrametil-4-(tributil-ón)-2,5-dihidro-1*H*-pirrol-3-karboxilát-1-iloxil gyök (163):

Kitermelés 3,7 g (38%), narancssárga olaj, $R_f = 0,74$ (hexán/Et₂O, 2:1). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1,00$ (t, 9H, J = 6Hz), 1,10 (t, 6H, J = 8Hz), 1,19 (s, 6H), 1,39 (s, 6H), 1,44 (m, 6H), 1,57 (m, 6H), 3,84 (s, 3H). ¹¹⁹Sn NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = -59,5$. IR (nujol) $\overline{\nu} = 2954, 2930, 2871, 1708, 1573$ cm⁻¹. MS (70 eV): m/z = 488 (M⁺, 4) 431 (100), 401 (60), 287 (19), 177 (26), 57 (68), 41 (75). Elemanalízis – számított: C₂₂H₄₂NO₃Sn: C 56,40; H 9,66; N 2,36; mért: C 56,24; H 9,54; N 2,49.

Metil-2,2,5,5-tetrametil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolán-2-il)-2,5-dihidro-1*H*-pirrol-3-karboxilát-1-iloxil gyök (178):

Kitermelés 712 mg (11%), sárga kristály, op. 84-86 °C, $R_f = 0,30$ (hexán/Et₂O, 2:1). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1,42$ (s, 18H), 1,48 (s, 6H), 3,81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 24,6$; 24,9; 25,0; 51,5; 70,0; 71,5; 84,4; 141,6; 164,8. IR (nujol) $\overline{\nu} = 2974, 2932, 2915, 1712, 1625$ cm⁻¹. MS (70 eV): m/z = 324 (M⁺, 42), 294 (20), 262 (32), 179 (81), 108 (100). Elemanalízis – számított: C₁₆H₂₇BNO₅: C 59,28; H 8,39; N 4,32; mért: C 59,16; H 8,59; N 4,33.

Metil-2,2,5,5-tetrametil-4-(feniltio)-2,5-dihidro-1*H*-pirrol-3-karboxilát-1-iloxil gyök (179):

A **179** vegyületet nem sikerült tiszta állapotban izolálnunk flash kromatográfiás módszerrel, így a nyers terméket oxidáltuk.

1-Oxil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3,4-dikarbonsav gyök (161):

A 160 vegyületet (1,28 g, 5,0 mmol) MeOH-ban (20 ml) oldottuk, 10%-os NaOH-ot (10 mL) adtunk hozzá, az elegyet 1 órán keresztül refluxoltattuk, majd egy éjszakát szobahőmérsékleten állni hagytuk. Lepároltuk róla a metanolt, majd 5%-os H₂SO₄-val savanyítottuk pH = 2-ig. A vizes fázist NaCl-dal telítettük, majd CHCl₃/MeOH (9:1) elegyével (2 × 20 ml) extraháltuk. A szerves fázist MgSO₄-on szárítottuk, szűrtűk és bepároltuk.

Kitermelés 980 mg (86%), sárga kristályok, op. 227-229 °C, $R_f = 0,40$ (CHCl₃/MeOH, 2:1). ¹H NMR (500 MHz, CD₃OD + (PhNH)₂) $\delta = 1,66$ (s, 12H). ¹³C NMR (125 MHz, CD₃OD₃ + (PhNH)₂) $\delta = 22,2$; 75,3; 140,7. IR (nujol) $\overline{\nu} = 2976, 2928, 2863, 1692, 1639$ cm⁻¹. MS (EI) m/z = 228 (M⁺, 58), 180 (100), 162 (70). Elemanalízis – számított: C₁₀H₁₄NO₅: C 52,63; H 6,18, N 6,14; mért: C 52,54; H 6,15; N 6,02.

Metil-2,2,5,5-tetrametil-4-((trimetilszilil)etinil)-2,5-dihidro-1*H*-pirrol-3karboxilát-1-iloxil gyök (164):

A **162** vegyülethez (2,5 g, 7,7 mmol) száraz trietil-amint (10 mL), CuI-ot (36 mg, 0,18 mmol) és PdCl₂(PPh₃)₂-ot (84 mg, 0,12 mmol) adtunk és 15 percig kevertettük. Ezután trimetilszilil-acetilént (1,37g, 14,0 mmol) adtunk a reakcióelegyhez és 50 °C-on 20 órát kevertettük N₂ alatt, zárt rendszerben. Lehűlés után a reakcióelegyet CHCl₃-mal (10 ml) hígítottuk, Celiten szűrtük, bepároltuk. A maradékot CHCl₃-ban oldottuk (30 ml) és telített sós vízzel (10 ml) mostuk. A szerves fázist elválasztottuk és MgSO₄-on szárítottuk, szűrtük, bepároltuk és flash kromatográfiásan tisztítottuk (hexán/Et₂O).

Kitermelés 1,2 g (53%), sárga kristály, op. 28-30 °C, $R_f = 0,63$ (hexán/Et₂O, 2:1). IR (nujol) $\overline{\nu} = 2978, 2934, 2149, 1605$ cm⁻¹. MS (70 eV): m/z = 295 (M⁺, 15), 294 (50), 280 (100), 264 (25), 73 (15). Elemanalízis – számított: C₁₆H₂₀NO₅Si: C 61,19; H 8,22; N 4,76; mért: C 61,10; H 8,11; N 4,70.

Metil-4-etinil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-karboxilát-1-iloxil gyök (165):

A **164** vegyület (1,17 g, 4,0 mmol) THF-os (20 ml) oldatához Bu₄NF • H₂O-ot (1,1g, 4,0 mmol) adtunk és a reakcióelegyet szobahőmérsékleten kevertettük 1 órát. Ezt követően a reakcióelegyhez CH₂Cl₂-t adtunk (20 ml), majd telített sós vízzel (20 ml)

mostuk, a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk és flash-kromatográfiásan tisztítottuk (hexán/Et₂O).

Kitermelés 400 mg (45%), sárga kristály, op. 76-77 °C; $R_f = 0.52$ (hexán/Et₂O, 2:1). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1.47$ (s, 6H), 1.53 (s, 6H), 3.65 (s, 1H), 3.89 (s, 3H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 24.5$; 24,7; 51.6; 69,7; 70.9; 88,79; 100,0; 136,9; 140,4; 163,7. IR (nujol) $\overline{\nu} = 3203$, 2095, 1701, 1607 cm⁻¹. MS (70 eV): m/z = 222 (M⁺, 80), 207 (100), 292 (29), 177 (72), 117 (97). Elemanalízis – számított: C₁₂H₁₆NO₃: C 64.85; H 7.26; N 6.30; mért: C 64.59; H 7.19; N 6.13.

Metil-2,2,5,5-tetrametil-4-fenil-2,5-dihidro-1*H*-pirrol-3-karboxilát-1-iloxil gyök (80):

A **163** vegyület (976 mg, 2,0 mmol) száraz DMSO-os (15 ml) oldatát dezoxigenáltuk, majd jódbenzolt (408 mg, 2,0 mmol), CuI-ot (900 mg, 9,12 mmol), LiCl-ot (462 mg, 11,0 mmol) és Pd(PPh₃)₄-ot (207 mg, 0,18 mmol) adtunk hozzá és Ar gáz alatt kevertettük 2 órán át szobahőmérsékleten. Ezután a hőmérsékletet 60 °C-ra emeltük és további 14 órát kevertettük. Az elegyet Celiten szűrtük, a szűrletet telített sós vízzel (50 ml) és 5% NH₄OH oldattal (30 ml) mostuk, EtOAc-tal (2 × 20 ml) extraháltuk, a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk és flash kromatográfiásan tisztítottuk (hexán/EtOAc, 90:5).

Kitermelés 131 mg (24%), sárga kristály, op. 63-65 °C, $R_f = 0.52$ (hexán/Et₂O, 2:1). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1.32$ (S, 6H), 1.56 (s, 6H), 3.53 (s, 3H), 3.65 (s, 1H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 24.2$; 24.8; 51.0; 69.1; 71.3; 127.5; 127.9; 133.0; 135.6; 165.1. IR (nujol) $\overline{\nu} = 2978$, 2933, 17089, 1642, 1594, 1501 cm⁻¹. MS (70 eV): m/z = 274 (M⁺), 259 (62), 244 (20), 169 (34), 77 (89). Elemanalízis – számított: C₁₆H₂₀NO₃: C 70.05; H 7.35; N 5.11; mért: C 70.10; H 7.21; N 5.03.

4-Jód-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-karbonsav-1-iloxil gyök (166):

A **162** vegyület (1,62 g, 5,0 mmol) metanolos (30 ml) oldatához 10 % NaOH-ot (3,6 ml, 10,00 mmol) adtunk, a reakcióelegyet 24 órán át szobahőmérsékleten állni hagytuk. Ezután lepároltuk róla a metanolt, majd 5 %-os H₂SO₄-val savanyítottuk pH = 2 értékig 0 °C-on. A kivált csapadékot szűrtük és levegőn szárítottuk.

Kitermelés 1,13 g (73%), világos sárga kristály, op. 224-226 °C, $R_f = 0,43$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 1,17$ (s, 6H), 1,28 (s, 6H). ¹³C NMR

(125 MHz, DMSO- d_6 + (PhNH)₂) δ = 165,4; 142,8; 113,7; 72,6; 70,7; 25,7 (2 C), 25,0 (2 C). IR (nujol) $\overline{\nu}$ = 3140, 1719, 1596 cm⁻¹. MS (70 eV): m/z = 310 (M⁺, 85), 295 (7), 168 (42), 153 (87), 107 (100). Elemanalízis – számított: C₉H₁₃INO₃: C 34,86; H 4,23; N 4,52; mért: C 34,78; H 4,07; N 4,48.

Általános leirat a 167 és 187 amidok szintéziséhez:

A **166** vagy **186** (2,0 mmol) vegyület THF-os (10 ml) oldatához *N,N'*-karbonildiimidazolt (486 mg, 3,0 mmol) adtunk és a reakcióelegyet 15 percig refluxoltatva kevertettük. Miután lehűlt, az oldószert lepároltuk, a maradékhoz EtOAc-ot (10 ml) és 5% NaHCO₃-ot (10 ml) adtunk, a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük és bepároltuk. A maradékot feloldottuk THF-ban (10 ml) -78 °C-on cseppfolyós NH₃-át (5 ml) adtunk hozzá, a reakcióelegyet zárt csőben kevertettük. Ezután a reakcióterméket hagytuk szobahőre melegedni, majd lepároltuk róla az oldószert, a maradékot CHCl₃-ban (20 ml) feloldottuk, vízzel (10 ml) mostuk, a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk, a maradékot kromatográfiásan tisztítottuk (hexán/EtOAc).

4-Jód-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-karboxamid-1-iloxil gyök (167):

Kitermelés 194 mg (33%), sárga kristály, op. 186-188 °C, $R_f = 0,23$ (hexán/EtOAc, 2:1). ¹H NMR (500 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 1,14$ (s, 6H), 1,22 (s, 6H). ¹³C NMR (125 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 25,2$ (2C); 25,5 (2C); 33,8; 71,8; 101,3; 150,4; 167,8. IR (nujol) $\overline{\nu} = 3400, 3195, 1660, 1606$ cm⁻¹. MS (EI): m/z (%) = 309 (M⁺, 7), 152 (100), 109 (82). Elemanalízis – számított: C₉H₁₄IN₂O₂: C 34,97; H 4,56; N 9,06; mért: C 34,86; H 4,42; N 9,13.

3-(4-Bróm-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-il)propánamid-1-iloxil gyök (187):

Kitermelés 185 mg (32%), sárga kristály, op. 64-65 °C, $R_f = 0,32$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 1,27$ (s, 6H), 1,29 (s, 6H), 1,72 (br s, 2H), 2,45 (br s, 2H). ¹³C NMR (125 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 22,9$; 24,3 (2C); 24,5 (2C); 33,8; 70,2; 71,0; 124,0; 140,6; 173,5. IR (nujol) $\overline{\nu} = 3515$, 3265, 1660, 1630 cm⁻¹. MS (EI): m/z (%) = 289/291 (M⁺, 49/49), 259/261 (18/18), 195 (73), 121 (100). Elemanalízis – számított: C₁₁H₁₈BrN₂O₂: C 45,53; H 6,25; N 9,65; mért: C 45,39; H 6,32; N 9,53.

4-Jód-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-karbonitril-1-iloxil gyök (168):

A 167 vegyületet (309 mg, 1,0 mmol) száraz piridinben (10 ml) oldottuk, majd 0 °C-on *p*-toluolszulfonsav-kloridot (285 mg, 1,5 mmol) adtunk hozzá és szobahőn kevertettük 48 órát. Ezt követően a reakcióelegyhez KOH oldatot (100 mg KOH-ot oldottunk 15 ml H₂O-ben) adtunk és 80 °C-ra melegítettük. Lehűlés után az oldatot Et₂O-rel (3 × 10 ml) extraháltuk, majd a szerves fázist 10 %-os HCl-val (15 ml) mostuk. A szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk és flash kromatográfiásan tisztítottuk (hexán/Et₂O).

Kitermelés 103 mg (36%), sötétsárga kristály, op. 102-103 °C, $R_f = 0,56$ (hexán/Et₂O, 2:1). ¹H NMR (500 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 1,31$ (s, 6H), 1,40 (s, 6H). ¹³C NMR (125 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 24,6$ (2C); 25,1 (2C); 72,0; 74,4; 115,3; 120,9; 127,6. IR (nujol) $\overline{\nu} = 2225$, 1602 cm⁻¹. MS (EI): m/z (%) = 291 (M⁺, 75), 276 (12), 261 (7), 135 (35), 107 (80), 42 (100). Elemanalízis – számított: C₉H₁₂IN₂O: C 37,13; H 4,15; N 9,62; mért: C 37,27; H 4,26; N 9,59.

3-(Hidroximetil)-4-jód-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (169):

A **166** karbonsavat (620 mg, 2,0 mmol) és Et₃N-t (250 mg, 2,5 mmol) oldottunk száraz éterben (30 ml), majd ehhez klórhangyasav-etil-észtert (250 mg, 2,3 mmol) csepegtettünk 0 °C-on és 2 órán keresztül kevertettük, 0 °C-on. A trietil-amin-hidrokloridot kiszűrtük, a szűrletet bepároltuk, a maradékot THF-ban (10 ml) oldottuk fel és -78 °C-on hűtve NaBH₄-et (84 mg, 2,2 mmol) és száraz EtOH-t (127 μ l, 2,2 mmol) adtunk hozzá, majd 5 perc kevertetést követően hagytuk felmelegedni 0 °C-ra. A reakcióelegyet telített NH₄Cl oldattal (10 ml) megbontottuk és CHCl₃-mal (2 × 20 ml) extraháltuk. A szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk. A maradékot flash kromatográfiásan tisztítottuk.

Kitermelés 325 mg (55%), sötétsárga kristály, op. 148-150 °C, $R_f = 0,43$ (hexán/EtOAc, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,33$ (s, 6H), 1,37 (s, 6H), 4,26 (s, 2H). ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 24,7$ (2C); 25,3 (2C); 61,7; 71,2; 71,6; 105,9; 147,4. IR (nujol) $\overline{\nu} = 3407$, 1636 cm⁻¹. MS (EI): *m/z* (%) = 296 (M⁺, 85), 281 (23), 266 (1), 154 (10), 121 (100). Elemanalízis – számított: C₉H₁₅INO₂. C 36,50; H 5,11; N 4,73; mért: C 36,44; H 5,24; N 4,59.

3-(Brómmetil)-4-jód-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (170):

A **169** alkohol (592 mg, 2,0 mmol) és Et₃N (222 mg, 2,2 mmol) elegyét CH₂Cl₂-ban (10 ml) oldottuk és metánszulfonsav-kloridot (252 mg, 2,2 mmol) csepegtettünk hozzá 0 °C-on, majd 1 órán keresztül szobahőmérsékleten kevertettük. A reakcióelegyet vízzel (10 ml) mostuk, a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük majd bepároltuk. A kapott mezilátot feloldottuk száraz acetonban (20 ml), majd LiBr (348 mg, 4,0 mmol) hozzáadása után 30 percen keresztül reflux hőmérsékleten kevertettük. Kihűlés után az acetont lepároltuk, a maradékhoz vizet (10 ml) és EtOAc-ot (20 ml) adtunk. A szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, a maradékot flash kromatográfiásan tisztítottuk (hexán/EtOAc).

Kitermelés 424 mg (59%); sárga kristály, op. 61-63 °C, $R_f = 0,46$ (hexán/EtOAc, 2:1). IR (nujol) $\overline{\nu} = 1622$ cm⁻¹. MS (EI): m/z (%) = 358/360 (M⁺, 17/17), 343/345 (4/4), 328/330 (1/1), 264 (23), 233 (2), 201/203 (20/20), 107 (100). Elemanalízis – számított: C₉H₁₄BrINO: C 30,11; H 3,93; N 3,90; mért: C 30,24; H 4,01; N 3,90.

(4-Jód-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-il)metánszulfonotioát-1-iloxil gyök (171):

A **170** allil-bromidot (359 mg, 1,0 mmol) és NaSSO₂CH₃-ot (268 mg, 2,0 mmol) oldottunk aceton (10 ml) és víz (5 ml) elegyében, majd 45 percig refluxoltattuk az oldatot. Miután kihűlt, bepároltuk az elegyet, a maradékhoz vizet (10 ml) adtunk, és CHCl₃-mal (2 × 15 ml) extraháltuk. A szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk, a maradékot kromatográfiásan tisztítottuk (hexán/EtOAc majd CHCl₃/Et₂O).

Kitermelés: 175 mg (45%); világosbarna kristály, op. 118-120 °C, $R_f = 0,32$ (hexán/EtOAc, 2:1). IR (nujol) $\overline{\nu} = 1629, 1361, 1127 \text{ cm}^{-1}$. MS (EI): m/z (%) = 390 (M⁺, 21), 375 (3), 360 (1), 295 (7), 264 (7), 154 (49), 42 (100). Elemanalízis – számított: $C_{10}H_{17}INO_3S_2$: C 30,77; H 4,39; N 3,59; S 16,43; mért: C 30,86; H 4,42; N 3,60; S 16,29.

4-Jód-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-karbaldehid-1-iloxil gyök (172):

A **169** alkohol (592 mg, 2,0 mmol) CHCl₃-os (20 ml) oldatához aktív MnO₂-ot (700 mg, 8,0 mmol) adtunk, majd 2 órán át refluxoltattuk. Az elegyet szűrtük, bepároltuk, a maradékot flash kromatográfiásan tisztítottuk (hexán/Et₂O).

Kitermelés 472 mg (80%), sárga kristály, op. 150-152 °C, $R_f = 0,26$ (hexán/Et₂O, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,38$ (s,6H), 1,43 (s, 6H), 9,61 (s, 1H). ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) δ = 24,1 (2C), 25,1 (2C), 70,5; 73,3; 127,5; 144,7; 191,8. IR (nujol) $\overline{\nu}$ = 1672, 1602 cm⁻¹. MS (EI): *m/z* (%) = 294 (M⁺, 32), 264 (4), 152 (15), 137 (71), 109 (100). Elemanalízis – számított: C₉H₁₃INO₂: C 36,75; H 4,46; N 4,76; mért: C 36,93; H 4,53; N 4,78.

2,5-Dioxopirrolidin-1-il-4-jód-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3karboxilát-1-iloxil gyök (173):

A **166** karbonsav (310 mg, 1,0 mmol) száraz etil-acetátos oldatához (10 ml) *N*-hidroxiszukcinimidet (116 mg, 1,0 mmol), DCC-t (206 mg, 1,0 mmol) EtOAc-ban (5 ml) oldva adtunk 0 °C-on. Az elegyet 1 órát szobahőn kevertettük, kiszűrtük a keletkezett csapadékot, a szűrletet pedig bepároltuk, a maradékot hexán-Et₂O-rel kristályosítottuk.

Kitermelés 210 mg (51%), sárga kristály, op. 179-180 °C, $R_f = 0,46$ (hexán/EtOAc, 2:1). IR (nujol) $\overline{\nu} = 1768, 1736, 1602 \text{ cm}^{-1}$. MS (EI): m/z (%) = 407 (M⁺, 50), 293 (24), 263 (21), 235 (33), 107 (100). Elemanalízis – számított: $C_{13}H_{16}IN_2O_5$: C 38,35; H 3,96; N 6,88; mért: C 38,32; H 4,02; N 6,89.

Általános leirat a Buchwald-Hartwig amidálásra (174, 176, 177):

Schlenk-csőben a **79**, **162**, **158** vagy **87** vinil-halogenidek (2,0 mmol) száraz toluolos oldatához (3 ml) CuI-ot (19 mg, 0,1 mmol), K₂CO₃-ot (552 mg, 4,0 mmol) és acetamidot (148 mg, 2,5 mmol) adtunk. Az elegyet deoxigenáltuk és Ar-gáz alatt hozzáadtuk az N,N'-dimetil-etilén-diamint (18 mg, 0,2 mmol) és 105 °C-on, 20 órát kevertettük. A keletkezett oldatot EtOAc-tal (10 ml) hígítottuk, Celiten szűrtűk, majd bepároltuk. A maradékot flash kromatográfiásan tisztítottuk (hexán/Et₂O majd hexán/EtOAc).

Metil-4-acetamido-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-karboxilát-1-iloxil gyök (174):

Kitermelés 123 mg (24%), sárga kristály, op. 67-68 °C, $R_f = 0,43$ (hexán/EtOAc, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,41$ (s, 6H), 1,60 (s, 6H), 2,21 (s, 3H), 3,83 (s, 3H). ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 23,1$ (2C); 25,1; 25,2 (2C); 51,3; 66,1; 68,4; 111,5; 156,4; 166,5; 167,7. IR (nujol) $\overline{\nu} = 3239$, 1721, 1667, 1603 cm⁻¹. MS (EI): m/z (%) = 255 (M⁺, 13), 241 (18), 255 (44), 198 (100). Elemanalízis – számított: C₁₂H₁₉N₂O₄: C 56,46; H 7,50; N 10,97; mért: C 56,59; H 7,55; N 10,87.

A kísérletet a **79** (1,0 mmol) bróm észterrel elvégezve, alacsony hozammal (64 mg, 12 %) tudtuk előállítani a **174** vegyületet.

3-Acetamido-2,2,5,5-terametil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (176):

Kitermelés 31 mg (8 %), narancssárga kristály, op. 145-147 °C, $R_f = 0.23$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1.32$ (s, 12H), 2.13 (s, 3H), 6.06 (s, 1H). ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 24.3$; 24,4 (2C); 26,4 (2C); 67,6; 68,4; 115,1; 135,7; 168,7. IR (nujol) $\overline{\nu} = 3300$, 1665, 1545 cm⁻¹. MS (EI): *m*/*z* (%) = 197 (M⁺, 17), 182 (29), 167 (100), 152 (56), 140 (94), 43 (40). Elemanalízis – számított: C₁₀H₁₇N₂O₂: C 60,89; H 8,69; N 14,20; mért: C 60,92; H 8,73; N 14,22.

4-Acetamido-2,2,6,6-tetrametil-1,2,3,6-tetrahidropiridin-1-iloxil gyök (177):

Kitermelés 278 mg (66%), narancssárga olaj, $R_f = 0,26$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,31$ (s, 6H), 1,37 (s, 6H), 2,04 (s, 3H), 2,34 (s, 2H), 6,03 (s, 1H). ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 23,0$; 24,4 (2C); 26,6; 41,8; 58,6; 60,1; 118,7; 127,4; 168,7. IR (nujol) $\overline{\nu} = 3300$, 1668, 1545 cm⁻¹. MS (EI): *m/z* (%) = 211 (M⁺, 24), 181 (50), 166 (73), 124 (100), 43 (17). Elemanalízis – számított: C₁₁H₁₉N₂O₂: C 62,53; H 9,06; N 13,26; mért: C 62,55; H 9,23; N 13,37.

Metil-4-amino-2,2,5,5-tetrametil-2,5-dihidro-1H-pirrol-3-karboxilát-1-iloxil gyök (175):

A 174 vegyületet (255 mg, 1,0 mmol) metanolban (10 ml) oldottuk, NaOH-ot (1,0 M, 1 ml, 1,0 mmol) adtunk hozzá. A reakcióelegyet 50 °C –on kevertettük, amíg a kiindulási észter el nem fogyott. Lepároltuk róla a metanolt, majd 5 %-os H₂SO₄-val savanyítottuk pH = 7-ig és CHCl₃-mal (2 × 10 ml) extraháltuk. A szerves fázist elválasztottuk, MgSO₄- on szárítottuk, szűrtük és bepároltuk.

Kitermelés 105 mg (49 %), sárga kristály, op. 119-122 °C, $R_f = 0,28$ (hexán/EtOAc, 2:1). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1,39$ (s, 6H), 1,48 (s, 6H), 3,80 (s, 3H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 23,8$ (2C); 25,4 (2C); 50,3; 67,5; 67,8; 97,6; 161,7; 167,5. IR (nujol) $\overline{\nu} = 3429, 3325, 1678, 16362, 1557$ cm⁻¹. MS (EI): *m/z* (%) = 213 (M⁺, 17), 198 (77), 183 (91), 166 (82), 108 (100). Elemanalízis – számított: C₁₀H₁₇N₂O₃: C 56,32; H 8,04; N 13,14; mért: C 56,37; H 7,98; N 13,23.

Metil-4-fenilszulfonil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-karboxilát-1iloxil gyök (180):

A **179** nyerstermék (5,1 g) metanolos (30 ml) oldatához, 0°C-on Na₂WO₄·H₂O-ot (329 mg, 1,0 mmol) és 30% H₂O₂-ot (5 ml) adtunk, majd 2 napot szobahőmérsékleten állni

hagytuk. A reakcióelegyet sós vízzel (10 ml) mostuk és CHCl₃-mal (2 \times 20 ml) extraháltuk. A szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk, a maradékot flash kromatográfiásan tisztítottuk (hexán/Et₂O).

Kitermelés 1,96 g (29%), sárga kristály, op. 115-117 °C, $R_f = 0,51$ (hexán/EtOAc, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,30$ (s, 6H), 1,43 (s, 6H), 3,99 (s, 3H). ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 24,0; 24,5; 52,9; 70,0; 70,1; 128,2; 129,2; 133,8;$ 140,0; 141,0; 165,3. IR (nujol) $\overline{\nu} = 2980, 1740, 1633, 1323, 1148$ cm⁻¹. MS (70 eV): *m/z* = 338 (M⁺, 21), 307 (3), 276 (9), 167 (16), 107 (100), 77 (56). Elemanalízis – számított: C₁₆H₂₀NO₅S: C 56,79; H 5,96; N 4,14; mért: C 57,02; H 5,86; N 4,04.

2,2,5,5-Tetrametil-3,4-bisz(1-oktil-1*H*-1,2,3-triazol-4-il)-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (181):

A **150** vegyület (188 mg, 1,0 mmol) és oktil-azid (387 mg, 2,5 mmol) DMSO-os (5 ml) oldatához CuI-t (114 mg, 0,6 mmol) adtunk és N₂ gáz alatt kevertettük, 40 °C-on 1 órán keresztül. A reakcióelegyet CH₂Cl₂-nal (20 ml) hígítottuk, vízzel (20 ml) mostuk, a szerves fázist elválasztottuk és MgSO₄-on szárítottuk, szűrtük, bepároltuk, a maradékot kromatográfiásan tisztítottuk (hexán/EtOAc).

Kitermelés 149 mg (30 %), sárgásbarna kristály, op. 62-63 °C, $R_f = 0,51$ (hexán/etOAc, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 0,91$ (t, 6H, J = 7,0 Hz), 1,28-1,31 (m, 20H), 1,51 (s, 12H), 1,68 (t, 4H, J = 7,0 Hz), 4,30 (t, 4H, J = 7,0 Hz). IR (nujol) $\overline{\nu} = 2923$, 2854, 1462 cm⁻¹. MS (70 eV): m/z = 498 (M⁺, 69), 468 (29), 441 (100), 254 (40). Elemanalízis – számított: C₂₈H₄₈N₇O: C 67,43; H 9,07; N 19,66; mért: C 67,45; H 9,81; N 19,54.

3-Brómmetil-4-etinil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (182):

A **153** vegyület (135 mg, 0,7 mmol) és CBr₄ (265 mg, 0,8 mmol) diklórmetános (10 ml) oldatához PPh₃ (262 mg, 1,0 mmol) diklórmetános (3 ml) elegyét adtuk 0 °C-on. A reakcióelegyet szobahőmérsékleten 1 órát kevertettük. A kapott oldatot vízzel (30 ml) mostuk, a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk és flash kromatográfiásan tisztítottuk (hexán/Et₂O).

Kitermelés 83 mg (45%), sárga kristály, op. 98-100 °C, $R_f = 0.59$ (hexán/Et₂O, 2:1). IR (nujol) $\overline{\nu} = 2974, 2925, 2855, 2094, 1624$ cm⁻¹. MS (70 eV): m/z = 258/256 (M⁺, 25/25),

177 (72), 162 (100), 147 (36). Elemanalízis – számított: C₁₁H₁₅BrNO: C 51,38; H 5,88; N 5,45; mért: C 51,23; H 5,75; N 5,29.

3-Azidometil-4-etinil-2,2,5,5-tetrametil-2,5-dhidro-1*H*-pirrol-1-iloxil gyök (183):

A **182** vegyületet (128 mg, 0,5 mmol) aceton (10 ml) és víz (0,5 ml) elegyében oldottuk, majd NaN₃-ot (65 mg, 1,0 mmol) adtunk hozzá és 40 °C-on kevertettük 3 órán keresztül. Ezután lepároltuk az oldószert, a maradékhoz Et₂O-t (10 ml) és vizet (5 ml) adtunk, majd elválasztottuk a fázisokat. A szerves fázist MgSO₄-on szárítottuk, szűrtük, bepároltuk, a maradékot kromatográfiásan tisztítottuk (hexán/Et₂O).

Kitermelés 32 mg (46 %), világos sárga kristály, op. 52-53 °C, $R_f = 0,58$ (hexán/Et₂O, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,37$ (s, 6H), 1,41 (s, 6H), 3,31 (s, 1H), 4,01 (s, 2H). ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 24,3$; 24,9; 46,6; 69,7; 69,9; 84,6; 145,0; 148,9; 152,7. IR (nujol) $\overline{\nu} = 3293$, 3236, 2977, 2931, 2868, 2099, 1631 cm⁻¹. MS (70 eV): m/z = 219 (M⁺, 97), 204 (100), 162 (74), 146 (46), 131 (80). Elemanalízis – számított: C₁₁H₁₅N₄O C 60,26; H 6,920 N 25,55; mért: C 60,36; H 6,79; N 25,42.

3-Metántioszulfonilmetil-4-etinil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (184):

A **182** brómvegyületet (83 mg, 0,3 mmol) és NaSSO₂CH₃-ot (134 mg, 1,0 mmol) oldottuk aceton (10 ml) és víz (2 ml) elegyében, majd 30 percig 40 °C-on kevertettük. Miután kihűlt, bepároltuk az elegyet, a maradékhoz CHCl₃-ot (10 ml) és vizet (5 ml) adtunk, majd a elválasztottuk a fázisokat. A szerves fázist MgSO₄-on szárítottuk, szűrtük, bepároltuk, a maradékot flash kromatográfiásan tisztítottuk (hexán/EtOAc).

Kitermelés 30 mg (32%), világosbarna kristály, op. 114-116 °C, $R_f = 0,50$ (hexán/EtOAc, 2:1). IR (nujol) $\overline{\nu} = 3196, 2985, 2924, 2091$ cm⁻¹. MS (70 eV): m/z = 288 (M⁺, 54), 273 (18), 258 (2), 163 (22), 41 (100). Elemanalízis – számított: C₁₂H₁₈NO₃S₂: C 49,97; H 6,29; N 4,86; S 22,24; mért: C 49,99; H 6,25; N 4,74; S 22,35.

3-Fenil-5,5,7,7-tetrametil-6,7-dihidro-1*H*-pirrolo[3,4-*b*]piridin-2(5*H*)-on-6-iloxil gyök (185):

Schlenk-csőben a **75** vegyületet (500 mg, 2,0 mmol) száraz toluolban (5 ml) oldottuk, majd Pd₂(dba)₃-t (91 mg, 0,1 mmol), Xantphos-t (57 mg, 0,14 mmol), Cs₂CO₃-ot (910 mg, 2,8 mmol) és fenilacetamidot (337 mg, 2,5 mmol) adtunk hozzá. Az elegyet deoxigenáltuk, majd Ar atmoszférában 110 °C-on kevertettük 24 órát. Ezután a

reakcióelegyet CH₂Cl₂-nal (10 ml) hígítottuk, celiten szűrtük és bepároltuk. A maradékot flash kromatográfiásan tisztítottuk (hexán/EtOAc, majd EtOAc).

Kitermelés 300 mg (53 %), sárga kristály, op. 258-260 °C, $R_f = 0,22$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, DMSO-*d*₆) δ (C₁₇H₂₀N₂O-ból nyert) = 2,17 (d, *J* = 7 Hz, 12H), 7,28 (t, *J* = 7,5 Hz, 1H), 7,37 (t, *J* = 7,5 Hz, 2H); 7,56 (s, 1H). ¹³C NMR (125 MHz, DMSO *d*₆) δ (C₁₇H₂₀N₂O-ból nyert) = 29,9 (2C); 31,9 (2C); 61,5; 61,9; 126,1; 127,3; 128,2; 128,5; 128,7; 129,5; 134,4; 137,9; 162,7. IR (nujol) $\overline{\nu}$ = 3347, 1644, 1570 cm⁻¹. MS (EI): *m*/*z* (%) = 283 (M⁺, 20), 268 (21), 253 (100), 238 (60). Elemanalízis – számított: C₁₇H₁₉N₂O₂: C 72,06; H 6,76; N 9,89; mért: C 72,24; H 6,58; N 9,90.

3-(4-Bróm-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-il)propionsav-1-iloxil gyök (186):

Dietil-malonátot (8,0 g, 50,0 mmol) feloldottunk száraz acetonban (140 ml) majd hozzáadtuk a K₂CO₃-ot (13,8 g, 0,1 mol) és 10 perc kevertetés után a **104** vegyületet (3,10 g, 10,0 mmol), majd a reakcióelegyet 12 órán keresztül reflux hőmérsékleten kevertettük. Ezután kiszűrtük a szervetlen sókat, lepároltuk az acetont és a maradékhoz 5%-os H₂SO₄-at (20 ml) és EtOAc-ot (50 ml) adtunk. A szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük és bepároltuk. A maradékot feloldottuk etanolban (50 ml) majd 10%-os NaOH (50 ml) oldatot adtunk hozzá és 5 percig refluxoltattuk, majd 24 órát szobahőn állni hagytuk. Az etanolt lepároltuk, majd 0 °C-on 30% H₂SO₄-tal savanyítottuk a reakcióelegyet és CHCl₃-mal (3 × 20 ml) extraháltuk. A szerves fázis elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk. A maradékot flash kromatográfiásan tisztítottuk (hexán/EtOAc).

Kitermelés: 1,88 g (56 %), világos sárga kristály, op. 143-145 °C, $R_f = 0,66$ (hexán/EtOAc, 2:1). ¹H NMR (500 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 1,10$ (s, 6H), 1,31 (s, 6H) 2,20 (d, J = 7,5 Hz, 2H), 2,56 (d, J = 7,5 Hz, 2H). IR (nujol) $\overline{\nu} = 2987$, 1711, 1645 cm⁻¹. MS (EI): m/z (%) = 290/292 (M⁺, 30), 275/277 (20), 196 (52), 42 (100). Elemanalízis – számított: C₁₁H₁₇BrNO₃: C 45,38; H 5,89; N 4,81; mért: C 45,52; H 5,82; N 4,99.

5,5,7,7-Tetrametil-3,4,6,7-tetrahidro-1*H*-pirrolo[3,4-*b*]piridin-2(5*H*)-on-6-iloxil gyök (188):

Schlenk-csőben a **187** vegyületet (145 mg, 0,5 mmol) száraz *t*-BuOH-ban (5 ml) oldottuk majd Pd(OAc)₂-ot (4 mg, 0,017 mmol), PhB(OH)₂-ot (5 mg, 0,04 mmol), X-Phos-t (19 mg, 0,035 mmol) és K₂CO₃-ot (172 mg, 1,25 mmol) adtunk hozzá. A kapott oldatot dezoxigenáltuk, majd Ar atmoszférában 85 °C-on kevertettük 3 órát. Kihűlés után, CHCl₃-mal hígítottuk, Celiten szűrtük és bepároltuk. A maradékhoz CHCl₃-ot (2 × 20 ml) adtunk, vízzel (10 ml) mostuk, a szerves fázist elválasztottuk és MgSO₄-on szárítottuk, szűrtük, bepároltuk és flash kromatográfiásan tisztítottuk (CHCl₃/Et₂O).

Kitermelés 60 mg (57%), sárga kristály, op. 195-196 °C, $R_f = 0,27$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,27$ (s, 6H), 1,31 (s, 6H), 2,31 (t, J = 8 Hz, 2H), 2,65. ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 17,9$; 23,7 (2C); 24,3 (2C); 30,9; 65,2; 69,4; 100,0; 134,7; 148,4. IR (nujol) $\overline{\nu} = 3182$, 1674, 1556, 1504 cm⁻¹. MS (EI): m/z(%) = 209 (M⁺, 13), 194 (58), 179 (100), 164 (66). Elemanalízis – számított: C₁₁H₁₇N₂O₂: C 63,13; H 8,19; N 13,39; mért: C 63,29; H 7,99; N 13,27.

Általános leirat a Pd-katalizált N-vinilezési reakcióra (191, 192, 194, 195):

A **75** vegyület (250 mg, 1,0 mmol) és a **189** imidazol (68 mg, 1,0 mmol) vagy **190** benzimidazol (118 mg, 1,0 mmol) vagy **193** 2-aminobenzimidazol (133 mg, 1,0 mmol) száraz toluolos (5 mL) oldatához Cs₂CO₃-ot (391 mg, 1,2 mmol), Pd(OAc)₂-ot (7 mg, 0,03 mmol) és BINAP-ot (25 mg, 0,04 mmol) adtunk. A reakcióelegyet Ar atmoszférában 20 órát refluxoltattuk. Kihűlés után, THF-al (10 ml) hígítottuk, Celiten szűrtük és bepároltuk. A maradékhoz CHCl₃-ot (15 ml) adtunk, sós vízzel (5 ml) mostuk, a szerves fázist MgSO₄-on szárítottuk, majd MnO₂-t (17 mg, 0,2 mmol) adva hozzá, 15 percen keresztül O₂-nel buborékoltattuk. Az elegyet szűrtük, bepároltuk és flash kromatográfiásan tisztítottuk (hexán/EtOAc majd CHCl₃/Et₂O).

3-Formil-4-(1*H*-imidazol-1-il)-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (191):

Kitermelés 105 mg (45%), sárga kristály, op. 92-93 °C, $R_f = 0.54$ (CHCl₃/Et₂O/MeOH, 4:1,5:0,5). ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1.38$ (s, 6H), 1,50 (s, 6H), 7,14 (s, 1H), 7,29 (s, 1H), 7,66 (s, 1H), 8,58 (s, 1H). ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 23.7$ (2C); 24,2 (2C); 67,6; 68,8; 120,2; 130,8; 136,9; 138,0; 153,4; 186,1. IR (nujol) $\overline{\nu}$

= 1653, 1626 cm⁻¹. MS (EI): m/z (%) = 234 (M⁺, 29), 220 (29), 204 (22), 108 (54), 42 (100). Elemanalízis – számított: C₁₂H₁₆N₃O₂: C 61,52; H 6,88; N, 17,94; mért: C 61,44; H 6,80; N 17,90.

3-Formil-4-(1*H*-benzimidazol-1-il)-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1iloxil gyök (192):

Kitermelés 76 mg (27 %), sötét sárga kristály, op. 156-157 °C, $R_f = 0,30$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, DMSO-d₆ + (PhNH)₂) $\delta = 1,20$ (s, 3H), 1,33 (s, 3H), 1,45 (s, 6H), 7,41-7,34 (m, 3H), 7,82 (d, 1H, J = 6 Hz), 8,50 (s, 1H), 9,30 (s, 1H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 24,0$ (3C); 24,8 (1C); 67,0; 69,3; 110,6; 120,4; 123,3; 124,7; 136,2; 139,3; 143,2; 152,7; 187,3. IR (nujol) $\overline{\nu} = 1688, 1634, 1604$ cm⁻¹. MS (EI): m/z (%) = 284 (M⁺, 33), 254 (11), 239 (25), 211 (27), 127 (100). Elemanalízis – számított: C₁₆H₁₈N₃O₂: C 67,59; H 6,38; N 14,78; mért: C 67,64; H 6,20; N, 14,71.

1,1,3,3-tetrametil-1*H*-benzimidazo[1,2-a]pirrolo[3,4-*e*]pirimidin-2-iloxil gyök (194):

Kitermelés 76 mg (27 %), sárga kristály, op. 251-252 °C, $R_f = 0,27$ (CHCl₃/Et₂O, 2:1). ¹H NMR a **194** vegyület NH-formája (500 MHz, DMSO-d₆ + (PhNH)₂) $\delta = 1,46$ (s, 6H), 1,52 (s, 6H), 7,39 (t, 1H, J = 8 Hz), 7,50 (t, 1H, J = 8 Hz), 7,82 (d, 1H, J = 8 Hz), 8,25 (d, 1H, J = 8 Hz), 9,47 (s, 1H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 30,2$ (2C); 32,5 (2C); 58,7; 62,3; 112,4; 119,5; 121,3; 125,9; 127,8; 128,0; 129,2; 144,4; 151,6; 178,5. IR (nujol) $\overline{\nu} = 1645$, 1539, 1510 cm⁻¹. MS (EI): m/z (%) = 281 (M⁺, 27), 251 (71), 236 (42), 219 (55), 133 (100). Elemanalízis – számított: C₁₆H₁₇N₄O: C 68,31; H 6,09; N 19,91; mért: C 68,25; H 6,10; N 19,80.

3-((1*H*-benzimidazol-2-il)iminometil)-4-bromo-2,2,5,5-tetrametil-2,5-dihidro-1*H*pirrol-1-iloxil gyök (195):

Kitermelés 134 mg (37 %), sárga kristály, op. 122-123 °C, $R_f = 0,72$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, DMSO-d₆ + (PhNH)₂) $\delta = 1,28$ (s, 6H), 1,50 (s, 6H), 7,23 (d, 1H, *J* = 9Hz), 7,67 (m, 3H), 9,22 (s, 1H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 24,8$ (2C); 24,9 (2C); 69,6; 71,1; 139,8; 143,6; 155,8; 159,0. MS (EI): *m*/*z* (%) = 363/361 (M⁺, 7/7), 333/331 (2/2), 252 (67), 41 (100). Elemanalízis – számított: C₁₆H₁₈BrN₄O: C 53,05; H 5,01; N 15,47; mért: C 53,10; H 4,98; N 15,41.

Álatalános leirat a mikrohullámú besugárzás által végzett *N*-vinilezési reakcióra (191, 194, 195):

A **75** vegyület (247 mg, 1,0 mmol) és a **189** imidazol (102 mg, 1,5 mmol) vagy a **193** 2-aminobenzimidazol (199 mg, 1,5 mmol) DMF-os (8 ml) oldatához Et₃N-t (202 mg, 2,0 mmol) és MgSO₄-ot (240 mg, 2,0 mmol) adtunk. A reakcióelegyet mikrohullámú reaktorban 30 percig 150 °C-on melegítettük. Lehülés után az oldószert lepároltuk, a maradékhoz CHCl₃-ot (10 ml) és vizet (5 ml) adtunk, majd a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk és kromatográfiásan tisztítottuk (hexán/EtOAc, CHCl₃/Et₂O).

3-Formil-4-(1*H*-imidazol-1-il)-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-1-iloxil gyök (191):

Kitermelés 12 mg (5 %), sárga kristály, op. 91-93 °C, $R_f = 0.54$ (CHCl₃/Et₃O/MeOH, 4:1,5:0,5). A spektometriai paraméterei megegyeznek a Pd-katalizálta keresztkapcsolási reakcióban kapott vegyületével.

1,1,3,3-Tetrametil-1*H*-benzimidazo[1,2-*a*]pyrrolo[3,4-*e*]pirimidin-2-iloxil gyök (194):

Kitermelés 20 mg (7%), sárga krisály, op. 250-251 °C, $R_f = 0,27$ (CHCl₃/Et₂O, 2:1). A spektrometriai paraméterek megegyeznek a Pd-katalizálta keresztkapcsolási reakcióban kapott vegyületével.

3-((1*H*-benzimidazol-2-il)iminaometil)4-bromo-2,2,5,5-tetrametil-2,5-dihidro-1*H*pirrol-1-iloxil gyök (195):

Kitermelés 152 mg (42 %), sárga kristály, op. 121-123 °C, $R_f = 0.72$ (CHCl₃/Et₂O, 2:1). A spektrometriai paraméterek megegyeznek a Pd-katalizálta keresztkapcsolási reakcióban kapott vegyületével.

4-(Piridin-2-il)-etinil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-karbaldehid-1iloxil gyök (196):

A **172** vegyület (588 mg, 2,0 mmol) száraz Et₃N-os (10 ml) oldatát Schlenk-csőben deoxigenáltuk, majd CuI-ot (10 mg, 0,05 mmol), PdCl₂(PPh₃)₂-ot (24 mg, 0,034 mmol) adunk hozzá és 15 percig szobahőn kevertettük. Ezt követően az oldatunkhoz 2-etinilpiridint (412 mg, 4,0 mmol) adunk és N₂ gáz alatt, 50 °C-on kevertettük 20 órát. A reakcióelegyet EtOAc-tal (10 ml) hígítottuk, Celiten szűrtük és bepároltuk. A maradékhoz CHCl₃-ot (20 ml) és NaCl oldatot (10 ml) adtunk, a fázisokat elválasztottuk. A szerves fázist MgSO₄-on szárítottuk, szűrtük, bepároltuk és flash kromatográfiásan tisztítottuk (hexán/EtOAc majd EtOAc).

Kitermelés 220 mg (41 %), sárga kristály, op. 98-100 °C, $R_f = 0,45$ (CHCl₃/Et₂O, 2:1). IR (nujol) $\overline{\nu} = 2208$, 1675, 1597, 1579 cm⁻¹. MS (EI): m/z (%) = 269 (M⁺, 26), 239 (10), 224 (61), 78 (100). Elemanalízis – számított: C₁₆H₁₇N₂O₂: C 71,35; H 6,36; N 10,40; mért: C 71,41; H 6,30; N 10,44.

6-(Piridin-2-il)-1,1,3,3-tetrametil-1*H*-pirrolo[3,4-*c*]piridin-2-iloxil gyök (197):

A **196** vegyület (135 mg, 0,5 mmol) 2 M metanolos ammóniás (8 ml) oldatához AgOTfot (13 mg, 0,05 mmol) adtunk és 10 percig, 15-bar-os reaktorban, kvarccsőben 100 °Con mikrohullámú besugárzásnak vetettük alá. Lehűlés után az oldószert lepároltuk, a maradékhoz CHCl₃-ot (10 ml) és vizet (5 ml) adtunk, majd a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk és kromatográfiásan tisztítottuk (CHCl₃/Et₂O).

Kitermelés 48 mg, (35%), világossárga kristály, op. 128-130 °C, $R_f = 0,23$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,56$ (s, 12H), 7,35 (t, J = 7,5 Hz, 1H), 7,86 (t, J = 7,5 Hz, 1H) 8,31 (s, 1H), 8,50 (t, J = 8 Hz, 1H), 8,53 (s, 1H), 8,76 (t, J = 4,5 Hz, 1H). ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 26,0$ (2C); 26,4 (2C); 66,1; 67,3; 114,4; 121,2; 123,6; 137,0; 141,4; 143,1; 149,1; 155,4 (2C); 156,3. IR (nujol) $\overline{\nu} = 1608, 1585, 1556$ cm⁻¹. MS (EI): m/z (%) = 268 (M⁺, 71), 253 (32), 238 (51), 223 (100), 207 (31), 78 (20). Elemanalízis – számított: C₁₆H₁₈N₃O: C 71,62; H 6,76; N 15,66; mért: C 71,55; H 6,68; N 15,71.

2-((2-Oxil-1,1,3,3-tetrametil-2,3-dihidro-1*H*-pirrolo[3,4-*c*]piridin-6-il)etinil)benzaldehid gyök (198):

2-Jód-benzaldehid (107,5 mg, 0,45 mmol) száraz trietil-aminos oldatához (25 ml) Culot (4 mg, 0,02 mmol) és PdCl₂(PPh₃)₂-ot (6 mg, 0,008 mmol) adtunk és 15 percig szobahőn kevertettük. Ezt követően az oldathoz hozzáadtuk a **155** 2-etinil-piridin vegyületet (107,5 mg, 0,5 mmol) és N₂ gáz alatt, 50 °C-on, 20 órát kevertettük. Miután kihűlt, az elegyet kloroformmal (10 ml) hígítottuk, Celiten szűrtük, majd bepároltuk. A maradékot EtOAc-ban (10 ml) oldottuk és NH₄Cl (50 ml) oldattal mostuk, a szerves fázist
elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk és flash kromatográfiásan tisztítottuk (hexán/EtOAc).

Kitermelés 58 mg (36%), sárga kristály, op. 140-142 °C, $R_f = 0,57$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,49$ (s, 6H), 1,52 (s, 6H), 7,41 (s, 1H), 7,64-7,84 (m, 4H), 8,47 (s, 1H), 10,72 (s, 1H). IR (nujol) $\overline{\nu} = 2382, 2336, 1695, 1648, 1590,$ 155 cm⁻¹. MS (70 eV): m/z = 319 (M⁺, 95), 289 (50), 274 (100), 261 (63), 91 (73). Elemanalízis – számított: C₂₀H₁₉N₂O₂: C 75,21; H 6,0; N 8,77; mért: C 75,15; H 5,97; N 8,59.

6-(Izokinolin-3-il)-1,1,3,3-tetrametil-1*H*-pirrolo[3,4-*c*]piridin-2-iloxil gyök (199):

A **198** vegyület (100 mg, 0,31 mmol) és AgOTf (8 mg, 0,031 mmol) 2M metanolos ammóniás oldatát (5 ml) mikrohullámú reaktorban 10 percig 100 °C-on melegítettük. Lehűlés után lepároltuk az oldószert, a maradékhoz CHCl₃-ot (10 ml) és vizet (5 ml) adtunk, a fázisokat elválasztottuk. A szerves fázist MgSO₄-on szárítottuk, szűrtük, bepároltuk és flash-kromatográfiásan tisztítottuk (CHCl₃/Et₂O, 2:1),

Kitermelés 34 mg (34%), világos barna kristály, op. 58-60 °C, $R_f = 0,34$ (CHCl₃/Et₂O/Et₃N, 10:5:1). IR (nujol) $\overline{\nu} = 2974$, 2926, 2853, 1713, 1607 cm⁻¹. MS (70 eV): m/z = 318 (M⁺, 43), 288 (100), 273 (81), 188 (73), 77 (95). Elemanalízis – számított: C₂₀H₂₀N₃O: C 75,45; H 6,33; N 13,20; mért: C 75,33; H 6,18; N 13,02.

4-(Metoxikarbonil)-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-karbonsav-1-iloxil gyök (200):

A **160** diésztert (1,28 g, 5,0 mmol) száraz metanolban (10 ml) oldottuk, majd NaOH-ot (200 mg, 5,0 mmol) adtunk hozzá és 12 órán keresztül szobahőmérsékleten kevertettük. Lepároltuk a metanolt, a maradékhoz EtOAc-ot (30 ml) és vizet (30 ml) adtunk, majd a fázisokat elválasztottuk. A szerves fázist eválasztottuk és félretettük (ez tartalmazta a maradék diésztert). A vizes fázist 5%-os H₂SO₄-val savanyítottuk pH = 2-ig, majd CH₂Cl₂-nal (2 × 20 ml) extraháltuk, a szerves fázist MgSO₄-on szárítottuk, szűrtük, bepároltuk. (A szerves fázis 1-2 %-ban tartalmazza a **161** dikarbonsavat is). A következő lépéshez a nyers terméket vittük tovább. A fizikai-kémai vizsgálatokhoz azonban kromatográfiával tisztítottuk (CHCl₃/Et₂O) és így kaptuk a **200** vegyületet tiszta állapotban.

Kitermelés 670 mg (55%), sárga kristály, op. 165-168 °C, $R_f = 0,37$ (CHCl₃/MeOH, 2:1). ¹H NMR (500 MHz, CD₃OD + (PhNH)₂) $\delta = 1,70$ (s, 12 H), 3,83 (s, 3H). IR (nujol) $\overline{\nu} = 2978, 2965, 1722, 1643$ cm⁻¹. MS (EI): m/z = 242 (M⁺, 39), 227 (6), 212 (4), 180 (22), 162 (42), 59 (100). Elemanalízis – számított: C₁₁H₁₆NO₅. C 54,54; H 6,66; N 5,78; mért: C 54,39; H 6,57; N 5,69.

3-(2-Nitrobenzil)-5,5,7,7-tetrametil-6,7-dihidro-1*H*-pirrolo[3,4-*d*]pirimidin-2,4(*3H*, *5H*)-dion-6-iloxil gyök (201):

CaCl₂ csővel ellátott, hűtővel felszerelt, oldalszáras lombikban difenilfoszforil-azidot (DPPA, 1,21 g, 4,2 mmol) toluolban (20 ml) oldottunk, majd ehhez a **200** vegyület (968 mg, 4,0 mmol) és Et₃N (505 mg, 5,0 mmol) toluolos (30 ml) oldatát adtuk. A reakcióelegyet először szobahőn kevertettük 1 órát, majd 75 °C-ra emelve a hőmérsékletet további 3 órán keresztül folytattuk a kevertetést. Miután lehűlt, 2-nitrobenzil-amint (1,21 g, 8,0 mmol) adtunk a reakcióelegyhez és folytattuk a kevertetést egy éjszakán keresztül. Lepároltuk az oldószert, a maradékot EtOAc-ban (30 ml) oldottuk és 5 %-os H₂SO₄-val (20 ml) savanyítottuk. A szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk. A nyers terméket (620 mg) száraz THF-ban (15 ml) oldottuk fel majd KO*t*-Bu (172 mg, 1,4 mmol) adtunk hozzá és 0 °C-on 40 percet kevertettük. Az elegyhez EtOAc-ot (20 ml) és vizet (20 ml) adtunk, a fázisokat elválasztottuk, a vizes fázist 5%-os H₂SO₄-val savanyítottuk majd EtOAc-tal (10 ml) extraháltuk. Az egyesített szerves fázisokat MgSO₄-on szárítottuk, szűrtük, bepároltuk (hexán/EtOAc).

Kitermelés 500 mg (34%), sárga kristály, op. 231 °C, $R_f = 0,79$ (CHCl₃/MeOH, 9:1). ¹H NMR (500 MHz, CD₃OD + (PhNH)₂) $\delta = 1,27$ (s, 6H), 1,37 (s, 6H), 5,47 (s, 2H), 7,26 (d, 1H, J = 7 Hz), 7,57 (t, 1H, J = 6 Hz), 8,02 (d, 1H, J = 7 Hz). ¹³C NMR (125 MHz, CD₃OD + (PhNH)₂) $\delta = 23,4$; 24,3; 40,4; 66,9; 67,5; 11,4; 124,8; 126,1; 126,2; 126,3; 127,9; 128,0; 132,3; 133,4; 148,9; 153,9; 154,1; 159,5. IR (nujol) $\overline{\nu} = 2874, 2856, 1717,$ 1657, 1524 cm⁻¹. MS (EI): m/z = 359 (M⁺, 4), 344 (22), 329 (25), 312 (30), 193 (26), 78 (100). Elemanalízis – számított: C₁₇H₁₉N₄O₅: C 56,82; H 5,33; N 15,59; mért: C 56,72; H 5,28; N 15,46.

5,5,7,7-Tetrametil-6,7-dihidro-1*H*-pirrolo[3,4-*d*]pirimidin-2,4(3*H*,5*H*)-dion-6-iloxil gyök (202):

A módszer: A **201** vegyületet (100 mg, 0,27 mmol) kvarclombikban, száraz metanolban (5 ml) oldottuk és higanylámpával (OSRAM HQL 250 W) 4 órán keresztül megvilágítottuk. Lepároltuk a metanolt, a maradékot pedig flash kromatográfiásan tisztítottuk (CHCl₃/Et₂O, majd CHCl₃/MeOH).

Kitermelés 19 mg (31%), sárga kristály, op. 230-232 °C, $R_f = 0,61$ (CHCl₃/MeOH, 9:1). ¹H NMR (500 MHz, CD₃OD + (C₆F₅N₂H₃) $\delta = 1,37$ (s, 6H), 1,38 (s, 6H). ¹³C NMR (125 MHz, CD₃OD₃ + (C₆F₅N₂H₃) $\delta = 22,6$; 23,7; 65,9; 66,2; 111,1; 149,7; 153,0; 157,4; 161,9. IR (nujol) $\overline{\nu} = 3161, 3050, 2979, 2934, 2837, 1688, 1569, 1529, 1437$ cm⁻¹. MS (EI): *m/z* = 224 (M⁺, 22), 209 (84), 194 (98), 179 (100). Elemanalízis – számított: C₁₀H₁₄N₃O₃: C 53,56; H 6,29; N 18,74; mért: C 53,39; H 6,20; N 18,68.

B módszer: A 201 vegyület (430 mg, 1,2 mmol) száraz THF-os (10 ml) oldatához KO*t*-Bu (282 mg, 2,1 mmol) adtunk és 0 °C-on 30 percig kevertettük. Lepátoltuk róla a metanolt, a maradékhoz 5%-os H₂SO₄-at (10 ml) és EtOAc-ot (20 ml) adtunk. A szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk és kromatográfiásan tisztítottuk (CHCl₃/Et₂O majd CHCl₃/MeOH).

Kitermelés 140 mg (52 %), sárga kristály, op. 231-232 °C, $R_f = 0,61$ (CHCl₃/MeOH, 9:1). A fizikai-kémiai és spektrometriai paraméterei megegyeznek az **A módszerben** kapott vegyületével.

Általános leirat 203, 204 pirimidinszármazékok szintéziséhez:

Schlenk-csőben toluolban (5 ml) oldottuk a **75** vegyületet (250 mg, 1,0 mmol) majd acetamidin hidrokloridot (123 mg, 1,3 mmol) vagy guanidin hidrokloridot (912 mg, 1,3 mmol) és Cs₂CO₃-ot (975 mg, 3,0 mmol), Pd₂(dba)₃-ot (10 mg, 0,02 mmol), Xantphos-t (18 mg, 0,02 mmol) adtunk az oldathoz. A reakcióelegyet deoxigenáltuk, Ar-gázt alatt 16 órát kevertettük 110 °C-on. Miután lehűlt, az elegyet CHCl₃-mal (10ml) hígítottuk, Celiten szűrtük és a szűrletet bepároltuk. A maradékhoz vizet (10 ml) és CHCl₃-MeOH elegyét (9:1, 20 ml) adtuk. A szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk és flash kromatográfiásan tisztítottuk (hexán/EtOAc, 2:1 vagy CHCl₃/Et₂O).

2,5,5,7,7-Pentametil-5*H*-pirrolo[3,4-*d*]pirimidin-6-iloxil gyök (203):

Kitermelés 85 mg (41 %), sötét sárga kristály, op. 59-61 °C, $R_f = 0,25$ (hexán/EtOAc, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,50$ (s, 6H), 1,52 (s, 6H), 2,83 (s, 3H), 8,42 (s, 1H). ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 24,5$ (2C); 26,2 (2C); 29,7;

64,9; 67,3; 133,6; 150,2; 167,7; 173,0. IR (nujol) $\overline{\nu} = 1593$, 1564 cm⁻¹. MS (EI): m/z = 206 (M⁺, 46), 192 (62), 176 (67), 161 (100). Elemanalízis – számított: C₁₁H₁₆N₃O: C 64,05; H 7,82; N 20,37; mért: C 64,15; H 8,00; 20,48.

2-Amino-5,5,7,7-tetrametil-5*H*-pirrolo[3,4-*d*]pirimidin-6-iloxil gyök (204):

Kitermelés 48 mg (23%), sárga kristály, op. 140-142 °C, $R_f = 0,16$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 1,25$ (s, 6H), 1,28 (s, 6H), 8,09 (s, 1H). ¹³C NMR (125 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 24,9$ (2C); 26,8 (2C); 64,0; 66,3; 125,7; 151,9; 164,2; 174,0. IR (nujol) $\overline{\nu} = 3333$, 3195, 1647, 1607,1570 cm⁻¹. MS (EI): m/z =207 (M⁺, 14), 192 (17), 177 (54), 162 (100). Elemanalízis – számított: C₁₀H₁₅N₄O: C 57,95; H 7,30; N 27,03; mért: C 58,10; H 7,48; N 27,11.

4-Amino-*N*-[(6-oxil-5,5,7,7-tetrametil-6,7-dihidro-5*H*-pirrolo[3,4-*d*]pirimidin)-2il]benzoszulfonamid gyök (205):

A **75** vegyületet (250 mg, 1,0 mmol) Schlenk-csőben száraz DMF-ban (5 ml) oldottuk, majd szulfaguanidint (278 mg, 1,3 mmol), Cs₂CO₃-ot (650 mg, 2,0 mmol), Pd₂(dba)₃-ot (10 mg, 0,02 mmol), Xantphos-t (18 mg, 0,02 mmol) adtunk hozzá. A reakcióelegyet deoxigenáltuk, Ar-gázt alatt és 16 órát kevertettük 100 °C-on. Miután lehűlt, az elegyet CHCl₃-mal (10ml) hígítottuk, Celiten szűrtük és bepároltuk. A maradékhoz vizet (15 ml) és CH₂Cl₂-t (10 ml) adunk, a szerves fázist elválasztottuk és eldobtuk, a vizes fázist ecetsavval savanyítottuk pH 5-ig, majd telített sós vizet adunk hozzá és CHCl₃-MeOH (9:1, 2 × 20 ml) elegyével extraháltuk. A szerves fázist MgSO₄-on szárítottuk, szűrtük, bepároltuk a maradékot flash kromatográfiásan tisztítottuk (CHCl₃/Et₂O).

Kitermelés 120 mg (35 %), világos sárga kristály, op. 253-255 °C, $R_f = 0,25$ (CHCl₃/Et₂O, 2:1). ¹H NMR (500 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 1,24$ (s, 6H), 1,28 (s, 6H), 6,59 (d, J = 8,5 Hz, 2H), 7,67 (d, J = 8,5 Hz, 2H), 8,36 (s, 1H). ¹³C NMR (125 MHz, DMSO- d_6 + (PhNH)₂) $\delta = 24,8$ (2C); 26,4 (2C); 64,2; 66,5; 112,1 (2C); 125,6; 129,2 (2C); 131,0; 152,1; 153,4; 157,5; 174,2. IR (nujol) $\overline{\nu} = 3475$, 3354, 1670, 1626, 1585, 1319, 1156 cm⁻¹. HRMS (ESI): m/z (M + H)⁺ számított: C₁₆H₂₁N₅O₃S: 363,1365; mért: 363,1352. Elemanalízis – számított: C₁₆H₂₁N₅O₃S: C 53,02; H 5,56; N 19,32; S 8,85; mért: C 53,08; H 5,65; N 19,50; S 8,71.

4-acetamido-*N*-[(6-oxil-5,5,7,7-tetrametil-6,7-dihidro-5*H*-pirrolo[3,4*d*]pirimidin)-2-il]benzoszulfonamid gyök (206):

A **205** vegyületet (181 mg, 0,5 mmol) száraz piridinben oldottuk (2 ml) majd cseppenként ecetsavanhidridet (400 μL, 4,2 mmol) adtunk hozzá, fecskendő segítségével. A reakcióelegyet 45 °C-on kevertettük 45 percet, majd folytattuk a kevertetést 100 °C-on újabb 45 percig. Ezután lepároltuk az oldószert, a maradékhoz CH₂Cl₂-t (15 ml) és 0,5 M vizes HCl-ot (10 ml) adtunk, a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük, bepároltuk a maradékot flash kromatográfiásan tisztítottuk (CHCl₃/Et₂O).

Kitermelés 73 mg (36 %), sárga kristály, op. 233-235 °C, $R_f = 0,66$ (CHCl₃/Et₂O/MeOH, 4:1,5:0,5). HRMS (ESI): m/z [M + H]⁺ számított: C₁₈H₂₃N₅O₄S: 405,1471, mért: 405,1439. IR (nujol) $\overline{\nu} = 3345$, 1709, 1589, 1528, 1161 cm⁻¹. Elemanalízis – számított: C₁₈H₂₃N₅O₄S: C 53,25; H 5,52; N 18,26; S 8,36; mért: C 53,17; H 5,50; N 18,11; S 8,18.

(1-Oxil-2,2,5,5-tetrametil-2,5-dihidro-1*H*-pirrol-3-ilmetil)-2-(2-((2,6-diklórfenil)amino)fenil)acetát gyök (208):

A 26 vegyület (2,3 g, 10,0 mmol) száraz DMF-os (20 ml) oldatához a 207 diklofenáknátrium sóját (3,18 g, 10,0 mmol) adtuk 0 °C-on, majd a reakcióelegyet szobahőn kevertettük 2 órát. Ezután lepároltuk az oldószet, a maradékhoz EtOAc-ot (30 ml) és 10 %-os Na₂CO₃-ot (15 ml) adtunk, a szerves fázist elválasztottuk, MgSO₄-on szárítottuk, szűrtük és bepároltuk.

Kitermelés 3,40 g (76 %), sárga kristály, op. 75-76 °C, $R_f = 0,42$ (hexán/EtOAc, 2:1). ¹H NMR (500 MHz, CHCl₃ + (PhNH)₂) $\delta = 1,31$ (s, 6H), 1,33 (s, 6H), 3,95 (s, 2H), 4,76 (s, 2H), 5,58 (s, 1H), 6,67 (d, 1H, J = 6,5 Hz), 6,98 (d, 1H, J = 6,5 Hz), 7,06 (t, 2H, J = 6,5 Hz), 7,23 (t, 1H, J = 7,0 Hz), 7,44 (d, 2H, J = 7,0 Hz) ¹³C NMR (125 MHz, CHCl₃ + (PhNH)₂) $\delta = 24,5$ (2C); 25,4 (2C); 38,7; 61,2; 68,1; 70,3; 119,9; 122,1; 124,1; 124,2; 128,1; 128,9; 129,4; 129,5; 130,9; 132,3; 137,8; 138,9; 142,7; 148,9; 171,9. IR (nujol) $\overline{\nu} = 3371, 1719, 1667, 1604, 1575$ cm⁻¹. MS (EI): m/z = 447/448/449/451 (M⁺, 15/4/10/2), 295/297/299 (63/41/9), 214/216 (100/32), 138 (51). Elemanalízis – számított: C₂₃H₃₅Cl₂N₂O₃: C 61,61; H 5,62; N 6,25; mért: C 61,60; H 5,60; N 6,35.

8. Összefoglalás

A PTE ÁOK Szerves és Gyógyszerkémiai Intézetében végzett munkám során célom volt olyan új, szelektív szintézismódszereknek a kidolgozása, melyek a biológiai vizsgálatokhoz alkalmazható stabilis nitroxidok előállítását eredményezték. Eredményeimet 4 angol nyelvű közleményben ismertettük, az azokban leírtakat az értekezésben a következő témák szerint csoportosítottam:

- 1. Új módszerek szén-szén kötések kialakítására stabilis nitroxidok jelenlétében;
- 2. Új, 3,4-diszubsztituált pirrolin nitroxidok szintézise;
- 3. Nitroxiddal kondenzált heterociklusok előállítása, beleértve paramágneses ligandumok és biomolekulák szintézisét.
- 1. Új módszerek szén-szén kötések kialakítására stabilis nitroxidok jelenlétében.

Paramágneses aldehidekből kiindulva egylépéses reakcióban, dimetil-(1-diazo-2oxopropil)foszfonát (Bestmann-Ohira-reagens, BOR) alkalmazásával sikerült megvalósítanunk olyan 3-szubsztituált és 3,4-diszubsztituált pirrolin nitroxidoknak az előállítását, melyek egy vagy két etinil funkcióscsoportot tartalmaznak (75. ábra).

75. ábra: Paramágneses etinilcsoportot tartalmazó pirrolin nitroxidok előállítása.

Az etinil funkcióscsoportot tartalmazó vegyületek fontos kiindulási elemeit képezték a további Sonogashira-keresztkapcsolási és az 1,3-dipoláros cikloaddíciós reakcióknak. A **159** triradikális vegyületet a **150** bisz-acetilén és a **158** paramágneses jódvegyület CuI katalizálta reakciójával, a **181** 3,4-bisz(triazolil)pirrolin nitroxidot pedig 1,3-dipoláros cikloaddíciós reakcióval kaptuk (76. ábra).

76. ábra: Triradikális és bisz-triazolil pirrolin nitroxidok előállítása.

2. Új, 3,4-diszubsztituált pirrolin nitroxidok szintézise.

A 22 α , β -telítetlen pirrolin nitroxid észtert a β -szénen lítium-2,2,6,6-tetrametilpiperidinnel (LTMP) deprotonálva, majd további elektrofillel reagáltatva sikerült egy új, egyszerűbb módszert kidolgoznunk a 3,4-diszubsztituált pirrolin nitroxidoknak a szintézisére. Ez lehetőséget nyújtott új jód- (162), ón- (163) bór- (178) és kénorganikus (179) nitroxidok előállítására. A 160 3,4-dikarboxi-pirrolin nitroxid észter 1 lépésben előállítható volt a korábban kidolgozott 9 lépéses módszer helyett (77. ábra).

77. ábra: Új, 3,4-diszubsztituált pirrolin nitroxidok előállítása.

Az újonnan előállított vegyületek továbbalakítási lehetőségeit is megvizsgáltuk. A 162 jódszármazékból Sonogasira-kapcsolási reakcióval kaptuk a 165 etinilcsoportot tartalmazó pirrolin nitroxidot, a 160 diészter teljes és parciális hidrolízisével a 161 dikarbonsavat és a 200 karbonsav észert. A 163 tributil-ón vegyületből Stille-kapcsolási reakcóban a 80 fenil-észert valamint a 179 fenil szulfid oxidálásával a 180 fenil szulfont állítottuk elő (78. ábra).

78. ábra: A 3,4-diszubsztituált pirrolin nitroxidok további származékai.

A 3,4-diszubsztituált vegyületek szintézise során új, a fehérjék cisztein oldalláncának módosítására is alkalmas **171**, **184** metántioszulfonátot illetve aminocsoportok specifikus jelölésére használható **173** aktív észtert is előállítottunk (79. ábra).

79. ábra: 3,4-diszubsztituált tiol- és aminospecifikus spinjelzők.

3. Nitroxiddal kondenzált heterociklusok előállítása, beleértve a paramágneses ligandumok és biomolekulák szintézisét.

A **75** β -bróm- α , β -telítetlen aldehid, és a **104** dibrómvegyület fontos kulcsintermediereknek bizonyultak pirrolin-nitroxiddal anellált gyűrűrendszerek kialakításában. A gyűrűzárási reakciókban Buchwald-Hartwig-kapcsolással kaptuk a **185** pirrolo[3,4-b]piridin-2(*5H*)-on és a **188** piperidin-2-on típusú vegyülteket valamint imidazollal, benzimidazollal és 2-amino-benzimidazollat való *N*-vinilezési reakciókban a **191, 192** és **194** vegyületeket (80. ábra).

80. ábra: Új, pirrolin nitroxiddal anellált heterociklusok.

A 172 jód-aldehid és a 155 paramágneses 2-etinil-piridin Sonogashira-kapcsolása, majd AgOTf katalizátorral, a metanolos ammóniában végzett gyűrűzárás alkalmas volt a 197 és a 199 α, α' -dipiridil típusú komlexképző vegyületek előállítására (81. ábra).

81. ábra: Paramágneses komplexképző vegyületek.

A 200 karbonsav észter, a 75 β -bróm- α , β -telítetlen aldehid és a 26 allil-bromid jó kiindulási vegyületeknek bizonyultak paramágnesesen módosított biológiailag aktív molekulák előállításához. Így a 200 karbonsav észterből többlépéses reakcióban előállítottuk a 202 spinjelölt uracilszármazékot, a 75 β -bróm- α , β -telítettlen aldehidből Pd-katalizálta reakcióban szulfaguanidinnel a 205 paramágnesesen módosított szulfadiazint valamint a 26 allil-bromidot diklofenák-nátrium sójával reagáltatva a 208, nitroxiddal észteresített diklofenákot (82. ábra).

82. ábra: Új, nitroxidokkal módosított biológiailag aktív vegyületek.

9. Summary

The aim of my PhD-work at the University of Pécs, Institute of Organic and Medicinal Chemistry was to develop new selective syntheses and methods to access new nitroxide derivatives, suitable for biological applications. The results published in 4 peer-reviewed articles on the synthesis and characterization of new nitroxide compounds are summarised and arranged in the following topics:

- New approaches carbon-carbon bond formations in the presence of a nitroxide free radical;
- 2. Synthesis of new 3,4-disubstituted pyrroline nitroxides;
- 3. Synthesis of nitroxide condensed heterocycles including spin-labeled (SL) bioactive molecules and paramagnetic ligands.

1. New approaches carbon-carbon bond formation reactions in the presence of a nitroxide free radical.

3-Substituted and 3,4-disubstituted pyrroline nitroxides containing one or two ethynyl functional groups were achieved by the reaction of paramagnetic aldehydes with dimethyl (1-diazo-2-oxopropyl)phosphonate (Bestmann-Ohira reagent, BOR) (Scheme 75.).

Scheme 75: Synthesis of paramagnetic pyrroline nitroxides containing ethynyl functional groups.

The new ethynyl compounds were found to be useful building blocks in Sonogashira couplings and 1,3-dipolar cycloaddition reactions. The **159** triradical compound was obtained in the reaction of **150** 3,4-diethynyl pirroline nitroxide with **158** paramagnetic vinyl iodide. The **181** 3,4-bis(triazolyl)pirroline nitroxide in a 1,3-dipolar cycloaddition reaction with octylazide was also prepared (Scheme 76.).

Scheme 76: Synthesis of a triradical and bis-triazolyl pyrroline nitroxides.

2. Synthesis of new 3,4-disubstituted pyrroline nitroxides.

Lithiation of 22 α , β -unsaturated pyrroline nitroxide ester at the β -carbon with Li salt of 2,2,6,6-tetramethylpiperidine (LTMP) followed by the treatment with electrophiles led to a new series of 3,4-disubstituted pyrroline nitroxides, which could be used as valuable paramagnetic key compounds exploitable for synthesis new ester (160), iodine (162), tin (163), boron (178) and sulfur (179) containing nitroxides (Scheme 77.).

Scheme 77: Synthesis of new, 3,4-disubstituted pyrroline nitroxides.

These new compounds were used in the following reactions: **162** 4-iodoester in Sonogashira cross coupling reaction offered the **165** acetylene ester, the hydrolysis and partial hydrolysis of **160** diester afforded the **161** dicarboxylic acid and the **200** half ester. The **163** compound in Stille-coupling reaction gave the **80** phenyl ester and oxidation of **179** phenylsulfide yielded the **180** phenylsulfone, which oxidation was conducted because of separation problem of compounds **22** and **179** (Scheme 78.).

Scheme 78: New, 3,4-disubstituted pyrroline nitroxides.

The further results of synthesis of new 3,4-disubstituted pyrroline nitroxides were obtaining the **171**, **184** SH-specific and **173** NH₂-specific spin labels (Scheme 79.).

Scheme 79: 3,4-disubstituted SH- and NH₂-specific pyrroline nitroxides.

3. Synthesis of nitroxide condensed heterocycles including spin-labelled (SL) bioactive molecules and paramagnetic ligands.

The **75** β -bromo- α , β -unsaturated aldehyde and the **104** dibromo compound were important intermediates in formation of pyrrolin nitroxide anullated ring systems. In Buchwald-Hartwig type intermolecular and intramolecular amidation reactions we got the **185** 6,7-dihydro-*1H*-pyrrolo[3,4-b]pyridine-2(*5H*)-one and the **188** 3,4,6,7-tetrahydro-1*H*-pyrrolo[3,4-b]pyridine scaffolds and the *N*-vinylation of imidazole, benzimidazole and 2-aminobenzimidazole we obtained the **191**, **192** and **194** compounds (Scheme 80.).

Scheme 80: New, pyrroline nitroxide anullated dihydro- and tetrahydro-pyrrolo piridine.

The **172** iodo aldehyde and the **155** paramagnetic 2-ethynyl pyridine with Sonogashira cross-coupling reaction followed by ring-closing in methanolic ammonia with AgOTf catalyst, under microwave irradiation afforded the **197** and the **199** paramagnetic α, α' -dipyridyl type ligands (Scheme 81.).

Scheme 81: Synthesis of paramagnetic α, α '-dipyridil type ligands.

The **200** half ester, the **75** β -bromo- α , β -unsaturated aldehyde and the **26** allylic bromide were used in the synthesis of spin labelled (SL) biologically active molecules. Thus, from the **200** compound we were able to synthesise the **202** SL-uracil derivative, the **75** aldehyde was converted in a Pd-catalysed reaction to **205** SL-sulfadiazine and treatment with sodium salt of diclophenac with **26** allylic bromide furnished the **208** SL-diclofenac (Scheme 82.).

Scheme 82: New, SL-biomolecules.

10. Irodalomjegyzék

- 1. March, J. Advanced organic chemistry Wiley, 1992, pp 186.
- 2. Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757.
- Chechik, V.; Carter, E.; Murphy, D. *Electron Paramagnetic Resonance* Oxford University Press, 2016.
- Likhtenshtein, G. I. The Methods of Spin Labelling, Double-labelling Techniques in: *Biophysical Labelling Methods in Molecular Biology*, Cambridge University Press, Cambridge, 1993.
- Rieger, P. H. *Electron Spin Resonance*, Royal Society of Chemistry, Cambridge, 2007.
- 6. Fremy, E. Ann. Chim. Phys. 1845, 15, 408.
- 7. Zimmer, H.; Lankin, D. C.; Horgan, S. W. Chem. Rew. 1971, 71, 229.
- 8. Teuber, H. J. Org. Synth. 1972, 52, 88.
- 9. Piloty, O.; Graf Shwerin, B. Ber. Dtsch. Chem. Ges. 1901, 34,1870.
- 10. Rozantsev, E. G.; Neiman, M. B. Tetrahedron 1965, 21, 491.
- 11. Rozantsev, E. G. "Free Nitroxyl Radicals", Plenum press, New York, N. Y. 1970.
- Zhdanov, R. I. Nitroxyl Radicals and Non-radical Reactions of Free Radicals in Bioactive Spin Labels, Zhdanov, R. I. (Ed.) Springer-Verlag, 1992, p. 25.
- 13. Griffith, H. O.; McConnell, H. M. Proc. Natl. Acad. Sci. USA, 1966, 55, 8.
- 14. Hick, R. Stable Radicals, Wiley: Chichester, 2010.
- 15. Voest, E. E.; Faassen, E.; Marx, J. J. M., *Free Radical Biology and Medicine*, **1993**, *15*, 589.
- Krishna, M. C.; DeGraff, W.; Hankovszky, H. O.; Sár, P. C.; Kálai, T.; Jekő, J.; Russo, A.; Mitchell, J. B.; Hideg, K. J. Med. Chem. 1998, 41, 3477.
- 17. Hoffman, A.; Goldstein, S.; Samuni, A.; Borman, J. B.; Schwalb H. Biochem. Pharmacol. 2003, 66, 1279.
- Krishna, M. C.; Russo, A.; Mitchell, J. B.; Goldstein, S.; Dafni, A.; Samuni, A. J. Biol. Chem. 1996, 271, 26026.
- Krishna, M. C.; Samuni, A.; Taira, J.; Goldstein, S.; Mitchell, J. B.; Russo, A. J. Biol. Chem. 1996, 271, 26018.
- 20. (a) Matsumoto, K. J. Pharm. Soc. Jpn. 2016, 136, 1075.

(b) Hilt, S.; Tang, T.; Walton, J. H.; Budamagunta, M.; Maetawa, I.; Kálai, T.; Hideg, K.; Singh, V.; Wulf, H.; Gong, Q.; Jin, L-W.; Loie, A.; Voss, J. C. *J. Alzheimer Dis.* **2017**, *55*, 1667.

- 21. (a) Wang, X.; Emoto, M.; Miyake, S.; Itto, K.; Xu, S.; Fujii, H.; Hirata, H.; Arimoto, H. *Bioorg. Med. Chem. Lett.* 2016, *26*, 4947.
 (b) Yan, G. P.; Peng, L.; Jian, S. Q.; Li, L.; Bottle, S. E. *Chin. Sci. Bull.* 2008, *53*, 3777.
- (a) Kálai, T.; Kuppusamy, M. L.; Balog, M.; Selvendiran, K.; Rivera, K. B.; Kuppusamy, P.; Hideg, K. *J. Med. Chem.* 2011, *54*, 5414.
 (b) Bognár, B.; Kuppusamy. M. L.; Madan, E.; Kálai, T.; Balog, M.; Jekő, J.; Kuppusamy, P.; Hideg, K. *Medicinal Chemistry*, 2017, *13*, 761.
 (c) Martson, L. W.; Rouault, T. A.; Mitchell, J.; Murali, K. C. Nitroxide therapy for the treatment of von hippel-lindau disease (vhl) and renal clear cell carcinoma (rcc). U.S. Patent 8853277, October 7, 2014.
- 23. (a) Alexander, S-A.; Schiesser, C. H. *ARKIVOC*, **2017**, part ii, 180.
 (b) Verderosa, A. D.; Fuente-Nunez, C.; Mansour, S. C.; Cao, J.; Lu, K. T.; Hancock, R. E. W.; Fairfull-Smith, K. E. *Eur. J. Med. Chem.* **2017**, *138*, 590.
- 24. (a) Gigmes, D. Ed. Nitroxide Mediated Polymerization: From Fundamentals to Applications in Maretials Science.; RSC Publishing: Cambridge, 2015.
 (b) Nicola, J.; Guillaneuf, Y.; Lefay, C.; Bertib, D.; Gigmes, D.; Charleux, B. *Prog. Polym. Sci.* 2013, *38*, 63.
- 25. Winsberg, J.; Hagemann, T., Janoschka, T.; Hager, M. D.; Schubert, U. S. Angew. *Chem. Int. Ed.* **2017**, *56*, 686.
- 26. Hideg, K.; Hankovszky, H. O.; Lex, L.; Kulcsár, Gy. Synthesis 1980, 12, 911.
- 27. Hankovszky, H. O.; Hideg, K.; Lex, L.; Synthesis 1980, 12, 914.
- 28. Wong, L.T. L.; Schwenk, R.; Hsia, J. C. Can. J. Chem. 1974, 52, 3381.
- 29. Csekő, J.; Hankovaszky, H. O.; Hideg, K. Can. J. Chem. 1985, 63, 940.
- 30. Hideg, K.; Csekő, J.; Hankovszky, H. O.; Sohár, P. Can. J. Chem. 1986, 64, 1482.
- 31. Kálai, T.; Balog, M.; Jekő, J.; Hideg, K. Synthesis, 1999, 31, 973.
- Hankovszky, H. O.; Hideg, K.; Lex, L.; Kulcsár, Gy.; Halász, H. A. Can. J. Chem. 1982, 60, 1432.
- 33. Lex, L.; Hideg, K.; Hankovszky, H. O. Can. J. Chem. 1982, 60, 1448.
- 34. Hideg, K.; Hankovszky, H. O.; Halász, H.A.; Sohár, P. J. Chem. Soc. Perkin Trans. 1 1988, 2905.

- Taylor, R. Lecture Notes on Fullerene Chemistry Imperial College Press: London, 1999.
- 36. Kálai, T.; Jekő, J.; Hideg, K. Synthesis 2000, 32, 831.
- Hideg, K.; Sár, P. C.; Hankovszky, H. O.; Tamás, T.; Jerkovich, Gy. Synthesis, 1993, 25, 390.
- 38. Keana, J. F. W.; Hideg, K.; Birrell, B. G.; Hankovszky, H. O.; Ferguson, G.; Pravez, M. Can. J. Chem. 1982, 60, 1439.
- 39. DiCesare, N.; Lakowicz, J. R. Tetrahedron Lett. 2001, 42, 9105.
- 40. Valuer, B. Molecular Fluorescence Wiley-VCH: Veinheim, 2002.
- 41. Zhdanov, R. I. Bioactive Spin Labels; Springer: Berlin, 1992.
- 42. Kawasaki, I.; Yamashita, M.; Ohta, S. Chem. Pharm. Bull. 1996, 44, 1831.
- 43. Kálai, T.; Jekő, J.; Hideg, K. Tetrahedron Lett. 2004, 45, 8365.
- 44. Chaumeil, H.; Le Drian, C.; Defoin, A. Synthesis 2002, 6, 757.
- 45. Takahashi, K., Takagi, J.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 126.
- 46. Green, S. A.; Simpson, D. J.; Zhou, G.; Ho, P. S.; Blough, N. V. J. Am. Chem. Soc. 1990, 112, 7337.
- 47. Brown, D. M.; Burdon, M. G.; Slatcher, R. P. J. Chem. Soc. (C) 1968, 1051.
- 48. Kálai, T.; Balog, M.; Jekő, J.; Hubbell, W. L.; Hideg, K. Synthesis, 2002, 16, 2365.
- 49. Grieco, P. A. Aldrichim. Acta 1991, 24, 59.
- 50. Kálai, T.; Bognár, B.; Zsolnai, D.; Berente, Z.; Hideg, K. Synthesis, 2012, 44, 3655.
- Krohn, K.; Loock, U.; Paavilainen, K.; Hausen, B. M.; Schmalle, M. W.; Kiesele, H. Arkivoc 2001, 1, 88.
- 52. Kálai, T.; Bognár, B.; Jekő, J.; Hideg, K. Synthesis 2006, 15, 2573.
- 53. Kálai, T.; Borza, E.; Antus, Cs.; Radnai, B.; Gulyás-Fekete, G.; Fehér, A.; Sümegi, B.; Hideg, K. *Bioorg. Med. Chem.* **2011**, *19*, 7311.
- 54. Kálai, T.; Rozsnyai, B.; Jerkovich, Gy.; Hideg, K. Synthesis 1994, 10, 1079.
- 55. Zemplén, G. Chem. Ber. 1926, 59, 1254.
- 56. Zemplén, G. Chem. Ber. 1926, 59, 2402.
- 57. Lösel, R. M.; Philipp, R.; Kálai, T.; Hideg, K.; Trommer, W. E. *Bioconjugate Chem.* **1999**, *10*, 578.
- Fleissner, M. R.; Bridges, M. D.; Brooks, E. K.; Cascio, D.; Kálai, T.; Hideg, K.; Hubbell, W. L. *PNAS* 2011, *108*, 16241.

- 59. Chudinov, A. V.; Rozantsev, E. G.; Rosinov, B. V. *Izv. Akad. Nauk. Ser. Khim.* **1983**, 409.
- 60. Kálai, T.; Balog, M.; Jekő, J.; Hideg, K. Synthesis 1998, 30, 1476.
- Columbus, L.; Kálai, T.; Jekő, J.; Hideg, K.; Hubbell, W. L. *Biochemistry* 2001, 40, 3828.
- 62. Kálai, T.; Sár, P. C.; Jekő, J.; Hideg, K. Tetrahedron Lett. 2002, 43, 8125.
- Mullins, R. J.; Williams, D. R. Name Reactions in Heterocyclic Chemistry Wiley: Hoboken, 2005, pp 186-192.
- 64. Bagi, N.; Jekő, J.; Berente, Z.; Hideg, K. Synthesis 2010, 42, 1702.
- Bognár, B.; Kálai, T.; Gulyés-Fekete, G.; Lazsányi, N.; Hideg, K. Synthesis 2015, 47, 985.
- 66. Miskina, L. A.; Podvigina, L. F. Izv. Akad. Nauk, Ser. Khim. 1982, 1338.
- 67. Kálai, T.; Jekő, J.; Berente, Z.; Hideg, K. Synthesis 2006, 38, 439.
- 68. Kulcsár, Gy.; Kálai, T.; Jekő, J.; Hideg, K. Synthesis 2003, 35, 1361.
- Bognár, B.; Varga, B.; Kálai, T.; Csokona, V.; Gulyás-Fekete, G.; Sár, C.; Hideg, K. J. Heterocyclic Chem. 2017, 54, 2556.
- Kumar, K. S.; Kumar, P. M.; Reddy, M. A.; Ferozuddin, M.; Sreenivasulu, M.; Jafar, A. A.; Krishna, G. R., Reddy, C. M.; Rambubu, D.; Kumar, K. S.; Pal, S.; Pal, M. *Chem. Commun.* 2011, 47, 10263.
- 71. Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521.
- Kálai, T.; Balog, M.; Szabó, A.; Gulyás, G.; Jekő. J.; Sümegi, B.; Hideg, K. J. Med. Chem. 2009, 52, 1619.
- 73. Bruckner, R. Organic Mechanisms, Springer-Verlag: Berlin, 2010.
- 74. Kálai, T.; Jekő, J.; Hideg, K. Synthesis 2009, 41, 2591.
- 75. Pietruszka, J.; Witt, A. Synthesis 2006, 38, 4266.
- 76. Böde, E. B.; Margraf, D.; Plackmeyer, J.; Dürner, G.; Prisner, T. F.; Schiemann,
 O.; J. Am. Chem. Soc. 2007, 129, 6736.
- (a) Heravi, M. M.; Hashemi, E.; Azimain, F. *Tetrahedron* 2014, 70, 7.
 (b) Farina, V.; Krishnamurthy, V.; Scott, W. J. In Organic Reactions; Paquette, L., Ed.; Wiley: Chichester, 1997; Vol. 50.
- 78. Yat Sun, O.; Ce, W.; Xiaoven, P.; Lu, Y.; Yao-Ling, Q. US 0074863A1, 2010.
- 79. Klapars, A. In *Cross Coupling and Heck-Type Reactions*; Wolfe, J. P., Ed.; Thieme: Stuttgart, **2013**, 215.
- 80. Kiss, L; Fülöp, F. Chem. Rev. 2014, 114, 1116.

- Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.
- 82. Li, J. J.; Limberakis, C.; Pflum, D. A. *Modern Organic Synthesis in the Laboratory*; Oxford University Press: Oxford, 2007; p. 28.
- 83. Berliner, L. J.; Grünwald, J.; Hankovszky, H. O.; Hideg, K. Anal. Biochem. **1982**, *119*, 450.
- Bebets, M. F.; Hest, J. C. M.; Rutjes, F. P. J. T. Org. Biomol. Chem. 2013, 11, 6439.
- Díaz Velázquez, H.; Pirovano, V., Ruiz Garcia, Y.; Vandichel, M.; Madder, A.; Verpoort, F. Org. Biomol. Chem. 2014, 12, 9350.
- 86. Manley, P. J.; Bilodeau, M. T. Org. Lett. 2004, 6, 2433.
- 87. Mao, J.; Hua, Q.; Guo, J.; Shi, D.; Ji, S. Synlett 2008, 19, 2011.
- 88. Ho, S.; Dao, P. D. Q. Synlett 2017, 28, 1811.
- 89. Hesse, S.; Kirsch, G. Synthesis 2007, 39, 1571.
- Jászberényi, Z.; Brücher, E.; Jekő, J.; Hideg, K.; Kálai, T.; Király, R. Eur. J. Inorg. Chem. 2003, 3601.
- Dell'Acqua, M.; Pirovano, V.; Confalonieri, G.; Arcadi, A.; Rossi, E.; Abbiati, G. Org. Biomol. Chem. 2014, 12, 8019.
- 92. Hawker, D. D.; Silverman, R. B. Bioorg. Med. Chem. 2012, 20, 5763.
- 93. DeCoen, L. M.; Jatzak, M.; Muylaert, K.; Mangelinckx, S.; Stevens, C. V. Synthesis 2015, 47, 1227.
- 94. Kocienski, P. J.; Protecting Groups, 3rd ed.; Thieme: Stuttgart, 2005.
- 95. Jeremy Robertson, Protecting Group Chemistry 2000, 95, 88.
- 96. Šolomek, T.; Wirz, J.; Klán, P. Acc. Chem. Res. 2015, 48, 3064.
- 97. Brown, D. J.; Evans, R. F.; Cowden, W. B.; Fenn, M. D. *The Pyrimidines;* Wiley: New York, **1994**.
- Popov, K.; Volovenko, T.; Turov, A.; Volovenko, Y. J. Heterocycl.Chem. 2010, 47, 58.
- 99. Yantao, C. Synthesis 2016, 48, 2483.
- 100. Altman, R; Bosch, B; Burne, K.; Patrinani, P; Young, C. Drugs 2015, 75, 859.

10.1. A disszertáció alapjául szolgáló cikkek jegyzéke:

- I. Synthesis of New Pyrroline Nitroxides with Ethynyl Functional Group.
 Úr, Gy.; Kálai, T.; Balog, M.; Bognár, B.; Gulyás-Fekete, G.; Hideg, K.
 Synth. Commun. 2015, 45, 2122-2129. IF: 1,065
- II. Facile Syntheses of 3,4-Disubstituted Pyrroline Nitroxides and their Further Synthetic Applications.
 Úr, Gy.; Kálai, T.; Hideg, K. *Tetrahedron Lett.* 2016, 57, 778-780. IF: 2,193
- III. Palladium- and/or Copper-Catalyzed Cross-Coupling Reactions of Paramagnetic Vinyl Bromides and Iodides.
 Úr, Gy.; Gulyás-Fekete, G.; Jekő, J.; Hideg, K.; Kálai, T. Synthesis 2017, 49, 3740-3748. IF: 2,65 (2016-os IF)
- IV. N-Vinylation if Imidazole and Benzimidazole with Paramagnetic Vinyl Halides.
 Úr, Gy.; Gulyás-Fekete, G.; Hideg, K.; Kálai, T. Molbank 2018, M980; doi: 10.3390/M980

Összes impakt faktor: 5,908

10.2. Az értekezés tárgykörébe tartozó poszterek és előadások:

- Úr, Gy.; Kálai, T.; Balog, M.; Gulyás Fekete, G.; Hideg, K. Synthesis of 3,4-disubstituted pyrroline nitroxides with ethynyl functional group (p) 16th Blue Danube Symposium on Heterocyclic Chemistry, Balatonalmádi, Hungary, June 14-17, 2015.
- II. Kálai, T.; Úr, Gy.; Balog, M.; Gulyás Fekete, G.; Hideg, K. Synthesis of 3,4-disubstituted pyrroline nitroxides with ethynyl functional group (p) *National Organic Symposium, College Park MD, USA, June 28 – July 2,* 2015.

- III. Úr, Gy.; Bognár, B.; Gulyás-Fekete, G.; Balog, M.; Kálai, T.; Hideg,
 K. 3,4-Diszubsztituált pirrolin nitroxidok szintézise, spinjelölt uracil
 előállítása MTA Heterociklusos Elemorganikus Munkabizottság
 Balatonszemes, 2016. május 18-20.
- IV. Úr, Gy.; Kálai, T.; Hideg, K. Facile syntheses of 3,4-disubstituted pyrroline nitroxides and their further synthetic applications (p) Xth International Workshop on EPR in Biology and Medicine, Krakow, Poland, 2-6 October 2016.
- V. Úr, Gy.; Gulyás Fekete, G.; Jekő, J.; Hideg, K.; Kálai, T. Palladiumand/or Copper-Catalyzed Cross-Coupling Reactions of Paramagnetic Vinyl Bromides and Iodides 18th Tetrahedron Symposium, Budapest, Hungary, 27-30 June 2017.

11. Köszönetnyilvánítás

Köszönetet mondok témavezetőmnek Dr. Kálai Tamás egyetemi tanárnak, a kémiai tudományok doktorának a munkám szakmai irányításáért, értékes tanácsaiért, aki lehetővé tette, hogy az általa vezetett kutatócsoport munkájába bekapcsolódhattam. Megköszönöm Dr. Hideg Kálmán egyetemi tanárnak munkám támogatását és a lehetőséget, hogy munkámat a Szerves és Gyógyszerkémiai Intézetben végezhettem. Köszönöm Pápayné Dr. Sár Cecília egyetemi docens mindig segítőkész támogatását. Köszönöm Dr. Bognár Balázs adjunktus mindennapi munkámban nyújtott segítségét. Köszönetet mondok Dr. Jekő Józsefnek a tömegspektrometrometriai és Dr. Gulyás Fekete Gergelynek az NMR vizsgálatokban nyújtott segítségükért.

Köszönöm a külföldi együttműködő partnereknek Prof. Heinz-Jüergen Steinhoff (University of Osnabrück, Osnabrück, Germany), Prof. Michael Matthies (University of Osnabrück, Osnabrück, Germany), Prof. Alexander Kokorin (Semenov International Center of Chemical Physics, Russian Academy of Science, Moscow), Elena Golubeva (Lomonosov Moscow State University, Moscow, Russia) az általam szintetizált vegyületek vizsgálatában nyújtott segítségét.

Köszönöm Balog Mária, Csokona Viola, Lamperth Éva, Lazsányi Noémi, Kish Krisztina vegyésztechnikusok munkáját és azt, hogy mindig összetartó és baráti légkört biztosítottak a laboratóriumban. Köszönöm Lengyel Ildikó, Dr. Deák Ivánné titkárnők és Jozipovics Róbertné kisegítő munkáját.

Ezúton is szeretném megköszönni a GINOP 2.2.1-15-2016-00020 és EFOP – 3.6.1-16-2016-00004 pályázatoknak a munkám elvégzéséhez nyújtott anyagi támogatását.

Végezetül köszönöm családom és barátaim megértő türelmét és támogatását, hogy szeretetükkel biztosították számomra a nyugodt hátteret.

12. Függelék (közlemények másolatai)

Synthetic Communications

An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

Synthesis of New Pyrroline Nitroxides with Ethynyl **Functional Group**

Györgyi Úr, Tamás Kálai, Mária Balog, Balázs Bognár, Gergely Gulyás-Fekete & Kálmán Hideg

To cite this article: Györgyi Úr, Tamás Kálai, Mária Balog, Balázs Bognár, Gergely Gulyás-Fekete & Kálmán Hideg (2015) Synthesis of New Pyrroline Nitroxides with Ethynyl Functional Group, Synthetic Communications, 45:18, 2122-2129

To link to this article: <u>http://dx.doi.org/10.1080/00397911.2015.1066391</u>

÷

View supplementary material

d	1	1	h
E	E	E	Η
	_		

Accepted author version posted online: 15 Jul 2015. Published online: 15 Jul 2015.

Submit your article to this journal 🖸

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

Synthetic Communications[®], 45: 2122–2129, 2015 Copyright © Taylor & Francis Group, LLC ISSN: 0039-7911 print/1532-2432 online DOI: 10.1080/00397911.2015.1066391

SYNTHESIS OF NEW PYRROLINE NITROXIDES WITH ETHYNYL FUNCTIONAL GROUP

Györgyi Úr,¹ Tamás Kálai,^{1,2} Mária Balog,¹ Balázs Bognár,¹ Gergely Gulyás-Fekete,³ and Kálmán Hideg¹

¹Institute of Organic and Medicinal Chemistry, University of Pécs, Pécs, Hungary

²Szentágothai Research Centre, Pécs, Hungary ³Department of Pharmacognosy, University of Pécs, Pécs, Hungary

GRAPHICAL ABSTRACT

Abstract 3-Substituted and 3,4-disubstituted pyrroline nitroxides containing an ethynyl group or two ethynyl groups were achieved by the reaction of a paramagnetic aldehydes with dimethyl (1-diazo-2-oxopropyl)phosphonate (Bestmann–Ohira reagent). The new compounds containing an ethynyl group were found to be useful building blocks in Sonogashira coupling, cyclization, and cycloaddition reactions producing potentially "azido-specific" cross-linking spin labels, paramagnetic ligands, and polyradical scaffolds.

Keywords Alkynes; cyclization; ligand; nitroxides; Sonogashira coupling

INTRODUCTION

Nitroxides are stable free radical species with wide applications across a range of scientific disciplines including material science, biophysics, molecular biology, and medicine.^[1] Nitroxides are often applied as initiators for the preparation of functional and complex polymers,^[2a] oxidants in organic chemistry in their oxoammonium form,^[2b] spin labels in surveying structure of biomolecules,^[3] building blocks for organic magnets,^[4] and dynamic nuclear polarization agents in NMR spectroscopy,^[5] just to mention but a few. The alkyne and terminal alkyne are functionally widely used in

Received May 30, 2015.

Address correspondence to Kálmán Hideg, Institute of Organic and Medicinal Chemistry, University of Pécs, Szigeti st. 12, 7624 Pécs, Hungary. E-mail: kalman.hideg@aok.pte.hu

Scheme 1. Reagents and conditions: (a) see Ref. 24; (b) see Ref. 13; (c) see Ref. 13; (d) BOR (1.1 equiv.), $K_2CO_3(2.0 \text{ equiv.})$, MeOH, 3 h, 52%, this paper.

organic synthesis, pharmaceutical science, material science, and bioorthogonal chemistry.^[6a] This functionality is also found in acetylenic natural products.^[6b] The importance of ethynyl substituent containing nitroxides has also emerged in recent decades; they have been used for spin labeling of nucleic acids by Sonogashira coupling,^[7] synthesis of nanometer-sized paramagnetic oligomers,^[8] modification of biomolecules by azido-alkyne dipolar cycloaddition (click reaction),^[9] and construction of biradical species in Sonogashira and Glaser coupling reactions.^[10] In our laboratory we used Grignard reaction,^[11] Sonogashira cross coupling,^[12] and elimination of the corresponding 1,2-dibromoethanes^[13] to produce paramagnetic acetylenes. An ethynyl group formation by dimethyl (1-diazo-2-oxopropyl)phosphonate (Bestmann-Ohira reagent, abbreviated as BOR)^[14] in the presence of the ambiphilic nitroxide moiety would be a useful, quick, and simple procedure, as it requires ambient temperature, K_2CO_3 base, dry methanol, and 1–2 h reaction time. To achieve ethynyl substituted pyrroline nitroxide 2a from aldehyde 1a with BOR can be considered more advantageous compared to our earlier, time- and reagent-consuming procedure via paramagnetic diene $3^{[24]}$ and dibromide $4^{[13]}$ (Scheme 1). We hypothesized that this reagent would be the only solution for synthesis of certain paramagnetic compounds, such as 3.4-diethynyl pyrroline nitroxide and 3-hydroxymethyl-4-ethynyl pyrroline nitroxide. Our aim was to increase the repertoire of accessible paramagnetic acetylenes capable for paramagnetic modification of biomolecules with Sonogashira cross-coupling or azido-alkyne click reaction.

RESULTS AND DISCUSSION

To introduce the ethynyl group into pyrroline nitroxides, we tested the reaction of dimethyl (1-diazo-2-oxopropyl)phosphonate^[14] with various paramagnetic aldehydes **1a–e** ^[13,15–17] to furnish the corresponding acetylenes **2a–e** under mild conditions, for example, stirring the 1.1 equiv. BOR and the paramagnetic aldehydes

GY. ÚR ET AL.

in the presence of 2 equiv. K_2CO_3 in anhydrous methanol at room temperature. Fortunately, during the carbon-carbon formation reaction the nitroxide function remained intact. The yield changed from good to moderate, and from $1a^{[15]}$ aldehyde we got **2a** 3-ethynylsubstituted pyrroline nitroxide,^[13] from aldehyde $1b^{[13]}$ we could synthesize the 3,4-diethynyl-pyrroline nitroxide 2b, a bis-azidospecific cross-linking nitroxide, and from 4-phenyl-3-formyl-pyrroline nitroxide $1c^{[12]}$ we got the 3-ethynyl-4-phenyl-pyrroline nitroxide 2c. The 3-hydroxymethyl-4-formyl-pyrroline nitroxide 1d^[16] furnished the 4-ethynyl-3-hydroxymethyl-pyrroline nitroxide 2d and from paramagnetic picolyl aldehyde $1e^{[17]}$ we got the paramagnetic 2-ethynylpyridine 2e (Table 1). We tested the new acetylene compounds with 1,3-dipolar cycloaddition

Table 1. Synthesis of paramagnetic ethynyl compounds from paramagnetic aldehydes 0

ö

	R—CHO $\frac{N_2}{K_2CO_3, MeOH}$	² R—C≡CH 2	
Entry	R	Product	Yield (%)
1a	N .	2a	52
1b	N N N N N N N N N N N N N N N N N N N	2b	42
1c	Ph N N	2c	34
1d		2d	58
1e	O.N. N. N. Solars	2e	37

reactions,^[18] Sonogashira coupling reaction, and functional group transforming reactions. The reaction of 3,4-diethynyl pyrroline nitroxide **2b** with octylazide in the presence of CuI (0.6 equiv.) in dimethylsulfoxide (DMSO) yielded 3,4-bis (triazolyl)pyrroline nitroxide **5.** Sonogashira coupling of compound **2b** with paramagnetic vinyl iodide **6** in triethylamine–piperidine–dimethylformamide (DMF) mixture^[8] in the presence of CuI, PPh₃, and Pd(PhCN)₂Cl₂ furnished triradical **7**, giving seven bands in EPR (see supplementary material) but with poor yield (9%) (Scheme 2). This compound was prepared for further electron paramagnetic resonance (EPR) studies, but its utilization as molecular magnet also can be considered.

The treatment of alcohol **2d** under Appel reaction conditions^[19] with PPh₃ and CBr₄ in CH₂Cl₂ produced allylic bromide **8**, which was converted to 3-acetylene-4-azidomethyl-pyrroline nitroxide radical **9** in aqueous acetone with 2 equivalents NaN₃. The ¹H NMR spectra data with four bands at 4.01, 3.31, 1.41, and 1.37 ppm; the 9 signals in ¹³C NMR spectra; and the azido band (2100 cm⁻¹) suggest that neither intramolecular nor intermolecular 1,3-dipolar cycloaddition reactions have occurred during the thermal conditions of nucleophilic substitution. As functional groups remained intact during synthesis, compound **9** can be regarded as a stable azide–acetylene cross-linking spin label reagent. Further nucleophilic substitution of compound **8** with excess NaSSO₂CH₃ in aqueous acetone gave compound **10** as a thiolspecific^[20] and azido-specific cross-linking spin label (Scheme 3). Compounds **9** and **10** contain nonactivated acetylenes, but water-soluble Cu(I) complexes^[21] holding N-heterocyclic carbene might lead to a breakthrough in the bioconjugation of nonactivated acetylenes as well.

Scheme 2. Reagents and conditions: (a) octyl azide (2.5 equiv.), CuI (0.6 equiv.), DMSO, 40 °C, 1 h, 30%; (b) 6 (2.0 equiv.), Et₃N/piperidine (5:1), DMF, CuI (0.05 equiv.), PdCl₂(PhCN)₂(0.1 equiv.), PPh₃ (0.05 equiv.), 2b (1.0 equiv.), rt, 16 h, 9%.

Scheme 3. Reagents and conditions: (a) 2d (1.0 equiv.), CBr_4 (1.14 equiv.), PPh_3 (1.42 equiv.), DCM, 0 °C rt, 1 h, 45%; (b) 8 (1.0 equiv), NaN₃ (2.0 equiv.), water/acetone, 40 °C, 3 h, 46%; (c) 8 (1.0 equiv), NaSSO₂CH₃ (3.3 equiv), water/acetone, 40 °C, 30 min, 32%.

The Sonogashira reaction of paramagnetic 2-ethynyl pyridine **2e** with 2-iodobenzaldehyde furnished compound **11**, and cyclization in ammonia solution in MeOH in the presence of AgOTf catalyst^[22] with microwave heating gave the paramagnetic 2,2'-dipyridyl analog **12**, as a paramagnetic ligand (Scheme 4). Although several paramagnetic ligands with phenanthroline and 2,2-dipyridyl moieties were published earlier,^[23] to the best of our knowledge it is unprecedented that the nitroxide moiety is annulated with one of the complex-forming rings, decreasing the mobility of the spin label unit. The complex formation of compound **12** with Cu²⁺ in acetonitrile was studied spectrophotometrically. Referring to the band at 351 nm (increasing with Cu²⁺ concentration) we have found K = 13 dm⁻³/mol association constant, and saturation occurred at 2:1 ligand/metal ratio (see the supplementary material).

Scheme 4. Reagents and conditions: (a) 2-iodobenzaldehyde (0.9 equiv.), CuI (0.04 equiv.), Pd(PPh₃)₂Cl₂ (0.016 equiv.), Et₃N, N₂, rt, 15 min, then 2e (1.0 equiv.), 50 °C, 20 h, sealed tube, 36%; (b) AgOTf (0.1 equiv.), NH₃/MeOH (excess), μ W, 100 °C, 10 min, 34%.

CONCLUSION

The application of Bestmann–Ohira reagent was extended to the synthesis of various acetylene-containing paramagnetic building blocks with new C-C bond formation, but without alteration of the nitroxide moiety. The resulting new building blocks offered access to various scaffolds: cross-linking spin label reagents, a ligand, a triradical, and a bis(triazole) substituted nitroxide.

EXPERIMENTAL

Melting points were determined with a Boetius micro-melting-point apparatus and are uncorrected. Elemental analyses (C, H, N, S) were performed on Fisons EA 1110 CHNS elemental analyzer. Mass spectra were recorded on a Thermoquest Automass Multi. NMR spectra were recorded with Bruker Avance 3 Ascend 500 spectrometer. Chemical shifts are referenced to Me₄Si. Several representatives of paramagnetic compounds were reduced with 5 equivalents of hydrazobenzene/ radical, as NMR cannot be measured directly on paramagnetic compounds. Measurements were run at 298 K probe temperature in CDCl₃ solution. ESR spectra were taken on Miniscope MS 200 in 10⁻⁴ M CHCl₃ solution and all monoradicals gave triplet line $a_N = 14.4 \text{ G}$; 7 triadical gave 7 band-containing spectra with $a_{N1} = 14.5 \text{ G}$, $a_{N2} = 9.4 \text{ G}$, $a_{N3} = 5.4 \text{ G}$. The microwave-assisted reactions were carried out in Milestone MicroSYNTH labstation in a sealed tube (15 bar) with temperature control (fiber-optic probe). The total irradiation time is as indicated. The IR spectra were taken with Bruker Alpha FT-IR instrument with ATR support (ZnSe plate). The UV-vis spectra were taken with Specord 40 spectrophotometer with quartz cuvette. Flash column chromatography was performed on Merck Kieselgel 60 (0.040–0.063 mm). Qualitative thin-layer chromatography (TLC) was carried out on commercially available plates $(20 \times 20 \times 0.02 \text{ cm})$ coated with Merck Kieselgel GF₂₅₄. Compounds 1a,^[15] 1b,^[13] 1c,^[13] 1d,^[13] 1e,^[16] 2a,^[17] 3,^[24] 4,^[13] and $6^{[25]}$ were prepared according to published procedures; other reagents were purchased from Aldrich or Alfa Aesar. The BOR was purchased from Tokyo Chemical Industry or prepared according to Ref. 14b.

General Procedure for Conversion of Aldehydes to Acetylenes (2a, 2b, 2c, 2d, and 2e)

 K_2CO_3 (552 mg, 4.0 mmol or 1.10 g, 8.0 mmol for compound **2b**), dimethyl-(1-diazo-2-oxopropyl)phosphonate (422 mg, 2.2 mmol or 844 mg, 4.4 mmol for compound **2b**) were added to a stirred solution of the aldehyde **1a** (336 mg, 2.0 mmol), **1b** (392 mg, 2.0 mmol), **1c** (488 mg, 2.0 mmol), **1d** (396 mg, 2.0 mmol), or **1e** (438 mg, 2.0 mmol) in 15 mL of dry methanol. The reaction was stirred at room temperature until the consumption of aldehyde (~2 h) at room temperature. The reaction mixture was diluted with Et₂O (25 mL), washed with an aqueous solution of NaHCO₃ (5%), dried over MgSO₄, filtered, and evaporated and the residue was purified by flash column chromatography (hexane/Et₂O 3:1 or hexane/EtOAc 2:1) to furnish compounds as yellow solids.

3-Ethynyl-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yloxyl Radical (2a)

Yield: 170 mg, (52%), mp 122–123 °C (mp 122–123 °C^[13]), R_f 0.4 (hexane/Et₂O, 2:1); ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) δ = 1.42 (s, 6H), 1.51 (s, 6H), 3.15 (s, 1H), 6.06 (s, 1H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) δ = 25.2 (2 CH₃), 25.8 (2 CH₃), 69.1 (2 C_{quat}), 71.7 (2 C_{quat}) 78.4 (C_{quat}), 80.6 (CH), 127.2 (C_{quat}), 141.2 (CH). IR (neat): $\bar{\nu}$ = 3194, 3049, 2977, 2092, 1613 cm⁻¹. MS (70 eV): *m/z* = 164 (M⁺, 28), 149 (42), 134 (100), 119 (73). Anal. calcd. for C₁₀H₁₄NO: C, 73.14; H, 8.59, N 8.53. Found: C, 73.25; H, 8.60; N, 8.69.

3,4-Diethynyl-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yloxyl Radical (2b)

Yield: 180 mg (42%); mp 149–150 °C; $R_f = 0.62$ (hexane/Et₂O 2:1); ¹H NMR (500 MHz, CDCl₃ + (PhNH)₂) $\delta = 1.50$ (s, 12H), 3.51 (s, 2H). ¹³C NMR (125 MHz, CDCl₃ + (PhNH)₂) $\delta = 24.9$ (4 CH₃), 70.9 (2 C_{quat}), 85.6 (2 C_{quat}) 100.0 (2 CH), 133.4 (2 C_{quat}). IR (neat): $\overline{\nu} = 3213$, 2978, 2089, 1466, 1435 cm⁻¹; MS (70 eV) m/z = 188 (M⁺, 43), 173 (62), 138 (13), 128 (100), 51 (70). Anal. calcd. for C₁₂H₁₄NO: C, 59.01; H, 5.61; N, 9.18. Found: C, 59.10; H, 5.55; N, 9.25.

FUNDING

We are grateful to Hungarian National Research Fund (OTKA K81123, K104956) for financial support.

SUPPLEMENTAL MATERIAL

Full experimental details and ¹H NMR (of compounds 2c, 2d, 5, 9, 11), ¹³C NMR (of compound 9), EPR (of compound 7), UV-vis (of compound 12), MS (of compounds 2c, 2d, 2e, 5, 7, 8, 9, 10, 11, 12), and IR (of compounds 2c, 2d, 2e, 5, 7, 8, 9, 10, 11, 12) data can be accessed on the publisher's website.

REFERENCES

- Likhtenstein, G.; Yamauchi, J.; Nakatsuji, S.; Smirnov, A. I.; Tamura, R. Nitroxides: Applications in Chemistry, Biomedicine, and Materials Science; Wiley-VCH: Weinheim, 2008.
- (a) Tebben, L.; Studer, A. Angew. Chem. Int. Ed. 2011, 50, 5034–5068; (b) Kelly, C. B.; Ovian, J. M.; Cywar, R. M.; Gosselin, T. R.; Wiles, R. J.; Leadbeater, N. E. Org. Biomol. Chem. 2015, 13, 4255–4259.
- Shelke, S. A.; Sigurdsson, S. T. In Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences; C. Timmel and J. R. Harmer (Eds.); Springer: Berlin, 2013.
- 4. Ratera, I.; Veciana, J. Chem. Soc. Rev. 2012, 41, 303-349.
- Fawzi, N. L.; Fleissner, M. R.; Anthis, N. J.; Kálai, T.; Hideg, K.; Hubbell, W. L.; Clore, G. M. J. Biomol. NMR 2011, 51, 105–114.

- (a) Gröst, C.; Berg, T. Org. Biomol. Chem. 2015, 13, 3866–3870; (b) Zhu, X.; Liu, J.; Zhang, W. Nat. Chem. Biol. 2015, 11, 115–120.
- Frolow, O.; Endeward, B.; Schiemann, O.; Prisner, T. F.; Engels, J. W. Nucleic Acids Symp. Ser. 2008, 52, 153–154.
- Böde, E. B.; Margraf, D.; Plackmeyer, J.; Dürner, G.; Prisner, T. F.; Schiemann, O. J. Am. Chem. Soc. 2007, 129, 6736–6745.
- 9. Kálai, T.; Hubbell, W. L.; Hideg, K. Synthesis 2009, 8, 1336-1341.
- Kokorin, A. I.; Golubeva, E. N.; Mladenova, B. Y.; Tran, V. A.; Kálai, T.; Hideg, K.; Grammp, G. Appl. Magn. Reson. 2013, 44, 1041–1051.
- 11. Sár, P. C.; Jekő, J.; Fajer, P.; Hideg, K. Synthesis 1999, 6, 1039-1045.
- 12. Kálai, T.; Balog, M.; Jekő, J.; Hubbell, W. L.; Hideg, K. Synthesis 2002, 12, 2365-2372.
- 13. Kálai, T.; Balog, M.; Jekő, J.; Hideg, K. Synthesis 1999, 6, 973-980.
- (a) Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521–522; (b) Pietruszka, J.; Witt, A. Synthesis 2006, 24, 4266–4268.
- 15. Hideg, K.; Hankovszky, H. O.; Lex, L.; Kulcsár, G. Synthesis 1980, 12, 911-914.
- 16. Kálai, T.; Jekő, J.; Hideg, K. Synthesis 2000, 6, 831-837.
- Kálai, T.; Balog, M.; Szabó, A.; Gulyás, G.; Jekő, J.; Sümegi, B.; Hideg, K. J. Med. Chem. 2009, 52, 1619–1629.
- Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596–2599.
- 19. Li, J. J.; Limberakis, C.; Pflum, D. A. Modern Organic Synthesis in the Laboratory; Oxford University Press: Oxford, 2007; p. 28.
- Berliner, L. J.; Grünwald, J.; Hankovszky, H. O.; Hideg, K. Anal. Biochem. 1982, 119, 450–455.
- Díaz Velázquez, H.; Ruiz Garcia, Y.; Vandichel, M.; Madder, A.; Verpoort, F. Org. Biomol. Chem. 2014, 12, 9350–9356.
- Dell'Acqua, M.; Pirovano, V.; Confalonieri, G.; Arcadi, A.; Rossi, E.; Abbiati, G. Org. Biomol. Chem. 2014, 12, 8019–8030.
- (a) Ulrich, G.; Ziessel, R. Tetrahedron Lett. 1994, 35, 1215–1218; (b) Bognár, B.; Jekő, J.; Kálai, T.; Hideg, K. Dyes Pigm. 2010, 87, 218–224.
- 24. Hideg, K.; Csekő, J.; Hankovszky, H. O.; Sohár, P. Can J. Chem. 1986, 64, 1482–1490.
- 25. Kálai, T.; Bognár, B.; Jekő, J.; Hideg, K. Synthesis 2006, 15, 2573-2579.

Tetrahedron Letters 57 (2016) 778-780

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Facile syntheses of 3,4-disubstituted pyrroline nitroxides and their further synthetic applications

Györgyi Úr^a, Tamás Kálai^{a,b}, Kálmán Hideg^{a,*}

^a Institute of Organic and Medicinal Chemistry, University of Pécs, Szigeti st. 12, H-7624 Pécs, Hungary ^b Szentágothai Research Centre, Ifjuság st. 20, H-7624 Pécs, Hungary

ARTICLE INFO

Article history: Received 14 December 2015 Revised 29 December 2015 Accepted 6 January 2016 Available online 7 January 2016

Keywords: Lithiation Pd-catalyzed cross coupling 2-Nitrobenzyl protecting group Nitroxides Uracil

ABSTRACT

Lithiation of an α , β -unsaturated pyrroline nitroxide ester at the β -carbon with LTMP followed by treatment with electrophiles led to a new series of 3,4-disubstituted pyrroline nitroxides, which could be used as valuable paramagnetic building blocks. The new compounds were tested in Sonogashira and Stille cross coupling reactions, which offered methyl 1-oxyl-4-substituted-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-3-carboxylate radicals for new C–C bond formation in poor to moderate yields. The reaction of an α , β -unsaturated pyrroline nitroxide ester with methyl chloroformate generated diester **2b**; the partial hydrolysis product of this reaction was shown to be a key compound for the synthesis of paramagnetic uracil derivative **10**.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

Scientists have been intrigued by the chemistry of stable free radicals since their discovery in 1900.¹ Stable radicals have been utilized in a variety of fields² including spin labeling,³ the construction of organic magnetic materials,⁴ MRI contrast agents,⁵ redoxactive components of organic radical batteries,⁶ co-oxidants,⁷ and tools for controlled radical polymerization.⁸ The best studied stable radicals are nitroxide free radicals, however, their chemistry faces challenges, including carbon-carbon bond formation in the presence of ambiphilic nitroxide moieties or the synthesis of hybrid molecules, for example, incorporating nitroxide moieties into biomolecules. Our laboratory has a long-standing interest in synthesizing pyrroline- and piperidine-based paramagnetic building ⁻¹¹ as well as discerning pertinent reactions in the presence blocks,⁹ of stable free radicals. Over the last two decades, the syntheses of 3,4-disubstituted pyrroline nitroxides including Pd-catalyzed cross-coupling reactions were reported by our laboratory.^{12,13} However, many of these approaches demonstrate reactivity for a limited number of substrates, have low yields, and require multistep reactions. In this paper we report a simple methodology for the synthesis of 3,4-disubstituted pyrroline nitroxides, by constructing new C-B, C-C, C-S, C-Sn, and C-I bonds starting from readily available methyl 1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro1*H*-pyrrol-3-carboxylate radical (**1**).¹⁴ Although directed lithiations of α , β -unsaturated esters have been extensively studied,¹⁵ to the best of our knowledge this reaction has not been extended to the functionalization of nitroxides.

In this report we present our preliminary findings on this topic.

Results and discussion

To synthesize the 3,4-disubstituted pyrroline nitroxides, compound **1** was added dropwise to a lithium 2,2,6,6-tetramethylpiperidine (LTMP) solution at -78 °C in dry THF, followed by the addition of an equivalent amount of electrophile in THF (Table 1). Addition of an iodine solution to the Li-salt of 1 afforded 4-iodoester 2a, while treatment of 1 with methyl chloroformate furnished diester 2b. Palladium-catalyzed cross-coupling reactions have become invaluable tools for the formation of carbon-carbon bonds,¹⁶ and the modification of carbocycles and heterocycles.¹ These reactions can also be conducted in the presence of nitroxide free radicals.^{10,12,13} Thus, we hypothesized that halogenated vinylnitroxides, as well as paramagnetic boronic acids or trialkyl-stannanes could be partners in these cross-coupling reactions. Therefore we attempted C-Sn and C-B forming reactions (Table 1). Treatment of the Li-salt of 1 with tributyltin chloride or 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane furnished vinylstannane derivative 2c in 38% yield and boronic acid pinacolate 2d in 11% yield, respectively. The low yield of the latter reaction is presumably because of the bulkiness of the pinacolate ester

etrahedr

^{*} Corresponding author. Tel.: +36 72 536 220; fax: +36 72 536 219. *E-mail address:* kalman.hideg@aok.pte.hu (K. Hideg).

Table 1 Synthesis of 3,4-disubstituted pyrroline nitroxides

^a Estimated from compound **3** yield.

group that was introduced. The reaction of diphenyl disulfide with the Li-salt of 1 afforded the corresponding phenylsulfide derivative 2e. However, we found that the product could not be separated from the remaining compound 1. Fortunately, upon oxidation of the reaction mixture with H_2O_2 in the presence of Na_2WO_4 in MeOH, we were able to obtain phenylsulfone 3 (Scheme 1), which was more polar than compound **1** and could be easily separated by flash column chromatography. It is crucial to be able to carry out C–C bond forming reactions in the presence of ambiphilic nitroxide free radicals without compound degradation. The application of the Pd-catalyzed cross-coupling reactions such as the Suzuki,^{10,12} Heck,¹³ and Sonogashira¹² reactions has simplified this problem. However, we observed that paramagnetic vinylbromides exhibited limited reactivity in Sonogashira and Heck couplings. Gratifyingly the treatment of compound **2a** with trimethylsilvl acetylene in Et₃N and in the presence Pd(Ph₃P)₂Cl₂ and CuI generated compound 4 in 53% yield. Deprotection of compound 4 with tetrabutylammonium fluoride gave acetylene ester 5 in 45% yield. The reaction of compound 2c with iodobenzene in DMSO with CuCl, LiCl, and Pd(PPh₃)₄ as a catalyst afforded phenyl ester **6** in 24% yield. To the best of our knowledge this is the first report of a Stille coupling reaction¹⁸ using a paramagnetic stannous compound as a reactant.

The low yield of the reaction was likely due to the introduction of a relatively bulky group to the densely substituted pyrroline compound (Scheme 2). Of the newly prepared 3,4-disubstituted pyrroline nitroxides, the most versatile compound was the symmetrical diester **2b**. Its hydrolysis with aqueous NaOH in methanol afforded the dicarboxylic acid **7**, which was previously reported from our laboratory¹⁹ via an 11-step procedure starting from compound **1** (see ESI). It is interesting to note that partial hydrolysis could also be carried out in anhydrous MeOH with 1 equiv of NaOH²⁰ to generate compound **8**. This compound could be easily separated by adjusting the pH and using a CH₂Cl₂ extraction to separate the remaining compounds **1** and **7** (Scheme 3).

A paper published by DeCoen et al.²¹ inspired us to attempt the synthesis of spin-labeled uracil from compound **8**, recognizing the increasing importance of spin-labeled nucleic acids.^{3,22} This monomethyl ester could be converted to the acyl azide through treat-

Scheme 1. Conversion of 2e sulfide to sulfone 3.

Scheme 2. Pd-catalyzed cross-coupling reactions of 3,4-disubstituted pyrroline nitroxides.

Scheme 3. Hydrolysis and partial hydrolysis of 2b diester.

ment with diphenylphosphoryl azide (DPPA) and trimethylamine. Heating the reaction mixture in toluene initiated a Curtius rearrangement and afforded an intermediate isocyanate. Reacting this intermediate with photocleavable 2-nitrobenzylamine yielded the corresponding ureide in a one-pot reaction. We attempted to purify the ureide compound using silica gel chromatography prior to ring closure, but the pure product could not be obtained. The partially purified product was therefore used for the ring closure reaction. Treatment of the ureide with 1.1 equiv of KOt-Bu in anhydrous THF afforded 3-(2-nitrobenzyl)-protected SL-uracil **9** in 45% yield after flash column chromatography. Illumination of compound **9** in a quartz tube with an OSRAM HQL 250 W mercury lamp in degassed methanol for 4 h generated SL-uracil derivative **10** in 31% yield (Scheme 4).²³

During the cyclization of ureide with KOt-Bu in THF, as monitored by TLC, we observed the appearance of a spot at R_f 0.61 (CHCl₃/MeOH 9/1) after acidic work-up. After isolation of this product, it proved to be identical with compound **10**. Therefore we attempted the treatment of isolated, pure compound **9** with

Scheme 4. Synthesis of 10 SL-uracil.

Figure 1. A proposed mechanism for the base promoted cleavage of the 2-nitrobenzyl group.

2.1 equiv KOt-Bu in THF and observed the unexpected formation of compound **10** in 52% yield. The possible mechanism of this base-promoted process can be initiated by deprotonation of the benzylic carbon followed by intramolecular cyclization to intermediate **III** which upon protonation and hydrolysis offers compound **10** (Fig. 1).

In summary, we have developed a new method to synthesize 3,4-disubstituted pyrroline nitroxides from a readily available pyrroline ester to access various paramagnetic building blocks. We demonstrated that these compounds could be used for Stille and Sonogashira cross-coupling reactions. The partial hydrolysis of the diester yielded a monomethylester, which was a key compound for the synthesis of SL-uracil. Further investigations to improve the yields of the cross-coupling reactions, to study the base promoted cleavage of the 2-nitrobenzyl protecting group and to extend the applications of Li-salt of compound **1** are still in progress.

Acknowledgements

This work was supported by the National, Research, Development and Innovation Office (OTKA104956) and TÁMOP-4.2.2.B-15/KONV-2015-0011 (GyU). The authors thank for NMR measurements to Gergely Gulyás-Fekete and Balázs Bognár (Univ. of Pécs, Medical Faculty). The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

Supplementary data

Supplementary data (experimental procedures, physical and spectroscopic data, a scheme illustrating an earlier procedure and copies of ¹H and ¹³C NMR spectra of selected compounds) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2016.01.012.

References and notes

- 1. Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757-771.
- Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds; Hicks, R. G., Ed.; Wiley: West Sussex, 2010.
- Nguyen, H. P.; Popova, A. M.; Hideg, K.; Qin, P. Z. BMC Biophysics 2015, 8, 6; (b) Altenbach, C.; López, C. J.; Hideg, K.; Hubbell, W. L. Methods Enzymol. 2015, 564, 59–100.
- 4. Winter, S. M.; Hill, S.; Oakley, R. T. J. Am. Chem. Soc. 2015, 137, 3720-3730.
- Rajca, A.; Wang, Y.; Boska, M.; Paletta, J. T.; Olankitwanit, A.; Swanson, M. A.; Mitchell, D. G.; Eaton, S. S.; Eaton, G. R.; Rajca, S. J. Am. Chem. Soc. 2012, 134, 15724–15727.
- Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M. D.; Schubert, U. S. Nature 2015, 527, 78–81.
- 7. Rafiee, M.; Miles, K. C.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 14751-14757.
- 8. Zaremski, M. Y. Polymer Sci. Ser. C 2015, 57, 65–85.
- 9. Kálai, T.; Balog, M.; Jekő, J.; Hideg, K. Synthesis 1999, 973–980.
- 10. Kálai, T.; Jekő, J.; Hideg, K. Tetrahedron Lett. **2004**, 45, 8395–8398.
- 11. Bognár, B.; Kálai, T.; Gulyás-Fekete, G.; Lazsányi, N.; Hideg, K. Synthesis 2015, 985–991.
- 12. Kálai, T.; Balog, M.; Jekő, J.; Hubbell, W. L.; Hideg, K. Synthesis 2002, 2365–2372.
- 13. Kálai, T.; Borza, E.; Antus, C. S.; Radnai, B.; Gulyás-Fekete, G.; Fehér, A.; Sümegi,
- B.; Hideg, K. Bioorg. Med. Chem. **2011**, 19, 7311–7317. **14**. Rosantsey, F. G. Free Nitroxyl Radicals: Plenum: New York, 1970.
- (a) Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon: Oxford, 2002;
- (b) Klumpp, G. W. *Rec. Trav. Chim. Pays-Bas* 1986, 105, 1–21.
 16. Johansson Seechurn, C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. *Angew.*
- Johansson Seechurn, C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062–5085.
- 17. Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Pergamon: Oxford, 2000.
- (a) Heravi, M. M.; Hashemi, E.; Azimian, F. *Tetrahedron* 2014, 70, 7–21; (b) Farina, V.; Krishnamurthy, V.; Scott, W. J. In *Organic Reactions*; Paquette, L., Ed.; Wiley: Chichester, 1997; Vol. 50,.
- Kálai, T.; Bognár, B.; Zsolnai, D.; Berente, Z.; Hideg, K. Synthesis 2012, 3655– 3660.
- 20. Hawker, D. D.; Silverman, R. B. Bioorg. Med. Chem. 2012, 20, 5763-5773.
- DeCoen, L. M.; Jatczak, M.; Muylaert, K.; Mangelinckx, S.; Stevens, C. V. Synthesis 2015, 1227–1237.
- 22. Shelke, S. A.; Shandholt, B. G.; Sigurdsson, S. Th. Org. Biomol. Chem. 2014, 12, 7366–7374.
- 23. Kocienski, P. J. Protecting Groups, 3rd ed.; Thieme: Stuttgart, 2005.
Complimentary and personal copy

www.thieme.com

SYNTHESIS Reviews and Full Papers in Chemical Synthesis

This electronic reprint is provided for noncommercial and personal use only: this reprint may be forwarded to individual colleagues or may be used on the author's homepage. This reprint is not provided for distribution in repositories, including social and scientific networks and platforms.

Publishing House and Copyright: © 2017 by Georg Thieme Verlag KG Rüdigerstraße 14 70469 Stuttgart ISSN 0039-7881

Any further use only by permission of the Publishing House

Paper

Palladium- and/or Copper-Catalyzed Cross-Coupling Reactions of Paramagnetic Vinyl Bromides and Iodides

Györgyi Úr^a Gergely Gulyás Fekete^b lózsef lekő^c Kálmán Hideg^a Tamás Kálai*^{a,d}

^a Institute of Organic and Medicinal Chemistry, University of Pécs

- Szigeti st. 12, 7624 Pécs, Hungary ^b Institute of Pharmacognosy, University of Pécs, Rókus st. 2, 7624 Pécs, Hungary
- ^c Department of Chemistry, University of Nyíregyháza, Sóstói st.
- 31/B, 4440 Nyíregyháza, Hungary ^d Szentágothai Research Center, Ifjúság st. 20, 7624 Pécs, Hungary tamas kalai@aok pte hu

Dedicated to the memory of Prof. Tamás Patonay

Received: 29.01.2017 Accepted after revision: 20.04.2017 Published online: 15.05.2017 DOI: 10.1055/s-0036-1589034; Art ID: ss-2017-n0058-op

Abstract A series of new 3-substituted-4-iodo-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yl)oxidanyl compounds is synthesized to achieve NH₂- and SH-specific spin labels. The new vinyl iodides are tested in Sonogashira and Buchwald-Hartwig cross-coupling reactions to produce a paramagnetic β-amino acid ester, pyrroline nitroxidecondensed heterocycles, including a paramagnetic α , α' -dipyridyl ligand and a spin-labeled sulfonamide.

Key words cross-coupling reactions, free radicals, pyridines, pyrimidines, sulfonamides

Stable nitroxide free radicals have found broad application as spin labels,¹ low-molecular-weight antioxidants,² MRI contrast agents,³ co-oxidants,⁴ redox-⁵ and pH-sensitive⁶ probes, and mediators of polymerization.⁷ The chemistry of nitroxides involves many challenging aspects, including reactions for carbon-carbon bond formation in the presence of amphiphilic nitroxide moieties or the synthesis of nitroxide-containing hybrid molecules, for example, nitroxide-incorporated biologically active molecules. A facile method for the paramagnetic pre-modification of biologically active molecules is via either carbon-carbon or carbon-heteroatom bond formation using Diels-Alder or Pdcatalyzed cross-coupling reactions, leaving the essential functional groups intact. Consequently, our laboratory has synthesized several entirely carbon-based biomolecule-nitroxide-containing adducts, such as spin-labeled amino acids,8 spin-labeled uracil,9 spin-labeled resveratrol derivatives¹⁰ and spin-labeled drugs.^{11,12}

It was essential to develop a series of paramagnetic vinyl bromides (1,¹³ 2,¹⁴ and 3¹³) and iodides (4,¹⁵ 5,¹⁵ and 6¹⁶) as useful substrates for Pd-catalyzed cross-coupling reac-

tions (Figure 1). As compound **6** is not available via Favorskii rearrangement,¹³ its synthesis was recently reported via the deprotonation of an α , β -unsaturated ester with the Li salt of 2,2,6,6-tetramethylpiperidine (LTMP) followed by treatment with the electrophile I₂.¹⁶ In this paper, we report further transformations of compound 6, avoiding dehalogenation, and its Sonogashira and Buchwald-Hartwig coupling reactions. The findings involving compound **6** inspired us to evaluate further reactions of more readily available compounds 1, 2, and 3. In continuation of our interest on densely substituted pyrroline nitroxides, we describe herein a novel series of 3-substituted-4-iodo-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yl)oxidanyl compounds including SH- and NH₂-specific spin labels, metal-complex-forming ligands, pyrroline nitroxide-condensed pyridine, piperidone, and pyrimidine scaffolds as useful paramagnetic building blocks and a paramagnetically modified sulfadiazine.

Figure 1 Various paramagnetic vinyl halides as a toolbox for crosscoupling reactions

To generate a series of 3,4-disubstituted pyrroline nitroxides with a vinyl iodide motif, transformations were carried out under mild reaction conditions to avoid an undesired dehalogenation process. The latter would not only result in a decrease in the yield, but also would cause chromatographic separation problems. Therefore, hydrolysis of

compound 6 was conducted at room temperature for 48 hours with a 10% aqueous NaOH/methanol solution (2.0 equiv NaOH) to yield carboxylic acid 7 after acidification with aqueous H₂SO₄ (Scheme 1). This carboxylic acid was activated by treatment with carbonyldiimidazole (CDI) in THF followed by reaction with liquid ammonia at -78 °C in a closed-pressure reaction tube. After spontaneous evaporation of the ammonia and THF in a well-ventilated hood, the remaining solid was purified to vield amide 8. This amide was converted into the nitrile 9 by treatment with 1.5 equivalents of *p*-toluenesulfonyl chloride in dry pyridine. Access to (3-hydroxymethyl-4-iodo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl (10) was a challenge as the reduction of compound **6** with LAH or Red-Al[®], even at -78 °C. vielded a dehalogenated hydroxymethyl compound. Adopting the methodology of Yat Sun et al.,¹⁷ the activated mixed anhydride-ester was reduced under mild conditions, as follows: carboxylic acid 7 was treated with ethyl chloroformate in dry ether in the presence of Et₃N to achieve the activated ester. Treatment of the mixture of the crude mixed anhydride-ester and 1.1 equivalents of NaBH₄ in anhydrous THF with 1.1 equivalents of dry EtOH at -78 °C vielded the alcohol 10 in an acceptable 55% yield. This alcohol was converted into the allylic bromide 11 via the intermediate mesylate¹⁸ and in a nucleophilic substitution reaction with NaSSO₂CH₃ in aqueous acetone,¹⁹ we generated the SH-specific thiosulfonate 12. This SH-specific spin label possesses a bulky and polarizable iodine atom at the 4-position of the pyrroline nitroxide ring, allowing for secondary interactions in the vicinity of the labeled site.²⁰ The alcohol 10 was oxidized with activated manganese dioxide in CHCl₃²¹ to produce aldehyde **13**, a useful compound for further transformations, being similar to its bromine analogue that was reported previously from our laboratory.²² To syn-

thesize the NH_2 -specific spin label, carboxylic acid **7** was converted into the succinate ester **14** by treatment with *N*-hydroxysuccinimide in the presence of *N*,*N*'-dicyclohexyl-carbodiimide (DCC) in EtOAc.

The aldehyde 13 then underwent Sonogashira crosscoupling with 2-ethynylpyridine in Et₃N solvent in the presence of CuI and PdCl₂(PPh₃)₂ catalysts at 50 °C to yield compound 15 (Scheme 2). Notably, no reaction was observed with compound **2** under similar conditions. The ring closure of compound 15 was carried out by treatment with methanolic ammonia in the presence of AgOTf as the catalyst²³ under microwave irradiation in a closed vessel, affording spin-labeled, paramagnetic α, α' -dipyridyl compound 16. The complex-forming ability of compound 16 was tested spectrophotometrically with Cu²⁺ ions. Based on the Jobplot curve, we concluded that the compound **16**/Cu²⁺ ratio was 2:1, which is similar to an α . α' -dipyridyl/Cu²⁺ complex (see the Supporting Information). The complex-forming ability of compound 16 may have applications for the paramagnetic modification of transition-metal-ion-containing proteins.

The scope and limitations of the Buchwald-Hartwig cross-coupling reactions were also examined. To the best of

Scheme 2 Synthesis of paramagnetic α, α' -bipyridyl 16

3741

۸

Scheme 3 Pd- and Cu-catalyzed C–N bond-forming reactions of paramagnetic vinyl halides

our knowledge, this is the first report of the amidation of paramagnetic vinyl jodides with a copper- or palladiumcatalyzed reaction. Our previous attempts at amidation of the 4-bromo-3-carboxy-pyrroline methyl ester 1 gave a poor 12% yield. We were pleased to observe that the reaction of ester **6** with excess acetamide in the presence of 0.1 equivalents of CuI, N,N'-dimethylethylenediamine (DME-DA), and 1.25 equivalents of K₂CO₃ in toluene²⁴ afforded 4acetamido-3-carboxy-pyrroline nitroxide methyl ester 17, however, in only a moderate 24% yield (Scheme 3). Attempts to selectively hydrolyze the methyl ester with aqueous NaOH resulted in hydrolysis of the amide to offer βamino ester **18**. The β -amino esters are useful building blocks in organic synthesis,²⁵ but unfortunately, ester 18 was found to be unreactive, even to ester hydrolysis upon prolonged treatment with Ba(OH)₂ in refluxing MeOH. To elucidate the scope of this Buchwald-Hartwig coupling, the same copper-catalyzed reaction was tested with compounds 4 and 5. Compound 4 gave [4-acetamido-2,2,6,6tetramethyl-3,6-dihydropyridin-1(2H)-yl]oxidanyl (19)with 66% yield, however, compound 5 under the same reaction conditions produced the expected product **20** in only 8% yield. Additionally, we tested the reactivity of compound **2** as well, but no product formation was observed. Inspired by the work of Manley et al.,²⁶ the reaction of compound **2** and phenylacetamide with a $Pd_2(dba)_3/Xantphos catalyst in the presence of <math>Cs_2CO_3$ in toluene furnished the pyrrolo[3,4-*c*]pyridin-6(5*H*)-one scaffold **21**.

To further investigate the scope of the C–N coupling reactions, we extended the reactions to include intramolecular cyclization. To synthesize the appropriate substrate for the cyclization, excess diethyl malonate was alkylated with compound **3** in the presence of K_2CO_3 in acetone to give the crude diester. Hydrolysis of the unpurified diester with NaOH followed by acidification gave carboxylic acid **22**. The carboxylic acid was converted into amide **23** via imidazolide formation and treatment with liquid ammonia. Cyclization of compound **23** was conducted in dry *t*-BuOH in the presence of K_2CO_3 as the base, Pd(OAc)₂ (0.035 equiv), X-Phos (0.07 equiv) and PhB(OH)₂ (0.08 equiv) catalysts to yield compound **24** in 57% yield (Scheme 4).

In addition to the Cu- and Pd-catalyzed amidation of the paramagnetic vinyl halides, we wanted to extend these reactions to amidines and guanidines, as well. We attempted to optimize the reaction of acetamidine hydrochloride with compound **2** or **13** in the presence of two or three equivalents of Cs₂CO₃ under various conditions (Table 1), as the resulting pyrimidine scaffold is an important moiety present in various drugs and agrochemicals.²⁷ The reactions of compound 13 with acetamidine hydrochloride in the presence of excess base gave compound 25 in a poor 11% yield after 16 hours heating under Ar in a sealed tube at 110 °C (entry 1). Similar reactions of β -halo- α , β -unsaturated aldehydes with amidines were described by Popov et al.,²⁸ but these studies reported better 64-82% yields. Therefore, we tested the aforementioned Cu- and Pd-catalyzed reactions with DMEDA, X-Phos and Xantphos ligands. In the Cul/DMEDAcatalyzed reaction (entry 2), no product formation was observed, and in the Pd(OAc)₂/X-Phos-catalyzed reaction, we obtained the same yield as the reaction without catalyst and ligand (entry 3). We were pleased to observe that the Pd₂(dba)₃/Xantphos combination doubled the yield (entry 4) and were surprised that the β -bromo- α , β -unsaturated aldehyde gave a satisfactory 41% yield (entry 5). The lower yield observed for the vinyl iodide is attributed to a dehalogenation side reaction (based on a TLC study).

۸

3742

Syn thesis

G. Úr et al.

3743

Further reactions were carried out with compound **2**, which with guanidine afforded paramagnetic 2-aminopyrimidine **26** under the same reaction conditions, albeit in a low 23% yield (Table 1, entry 6). As 4-aminobenzosulfonamides have attained increasing interest as essential motifs of antimicrobial agents,²⁹ we wanted to synthesize the paramagnetic sulfonamide by the reaction of compound **2** with sulfaguanidine.

Under the same reaction conditions, but applying two equivalents of base, treatment of compound **2** with sulfaguanidine in toluene with the Pd₂(dba)₃/Xantphos catalytic system resulted in no product formation (Table 1, entry 7). The amount of base was decreased in the reaction because sulfaguanidine was added as a zwitterion, not as the HCl salt, as acetamidine and guanidine were added in the previous reactions. Increasing the amount of base, however, did not result in the formation of the expected product. Due to possible solubility issues, toluene was exchanged for dry DMF, and under these reaction conditions we were pleased to observe the formation of the spin-labeled sulfonamide **27** in a moderate 35% yield (Table 1, entry 8).

In conclusion, a series of (3-substituted-4-iodo-2,2,5,5tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl compounds have been synthesized, including NH₂- and SH-specific spin labels. These compounds are also useful intermediates in Pd- and Cu-catalyzed cross-coupling reactions affording paramagnetic α, α' -dipyridyl **16** and β -amino acid ester **18**. Both the paramagnetic 3,4-disubstituted vinyl iodides and bromides are useful intermediates for the synthesis of pyrroline-nitroxide-condensed nitrogen heterocycles such as piperidin-2-one **24**, pyridine **21**, pyrimidines **25** and **26**, and sulfadiazine **27**. Based on the experiments described above, we conclude that, in certain cases (i.e., in Sonogashira coupling, or amidation reactions) the utilization of vinyl iodides is more advantageous than the corresponding vinyl bromides. However, the increased reactivity of iodides is not always beneficial due to potential dehalogenation side reactions. Further biological utilization of the SH-, NH₂- and metal-ion-specific spin labels, as well as further studies on the reactions of β -amino acid ester **18** are in progress in our laboratory.

Compounds 1.¹³ 2.¹⁴ 3.¹³ 4.¹⁵ 5¹⁵ and 6¹⁶ were prepared as described previously; compound 21 was reduced to the diamagnetic NH form using Fe/AcOH;³⁰ compound 22 was converted into the methyl ester for NMR measurements.³¹ Other reagents were purchased from Sigma-Aldrich, Alfa Aesar, Acros or TCI, Flash column chromatography was performed on Merck Kieselgel 60 (0.040-0.063 mm). Melting points were determined with a Boetius micro-melting point apparatus and are uncorrected. IR spectra were recorded with a Bruker Alpha FT-IR instrument with ATR support (ZnSe plate). NMR spectra were recorded on a Bruker Avance III Ascend 500 spectrometer; chemical shifts are referenced to TMS. The paramagnetic compound was reduced to the N-hydroxylamine with five equivalents of hydrazobenzene (DPPH)/radical in situ in the NMR tube. Compounds 11, 12. 14 and 15 could not be analyzed by NMR, as their diamagnetic derivatives were not accessible because of their reactivity. Measurements were performed at a probe temperature of 298 K in CDCl₃ or DMSO- d_6 solution. Mass spectra were recorded on a ThermoQuest Automass Multi spectrometer and a Thermo Scientific O-Exactive HPLC/MS/MS with ESI(+) ionization. Elemental analyses (C, H, N, and S) were performed with a Fisons EA 1110 CHNS elemental analyzer. The UV/Vis measurements were performed with a Shimadzu UVmini 1240 spectrophotometer in a quartz cuvette (1 × 1 cm). ESR spectra were recorded on Miniscope MS 200 in CHCl₃ solution. All monoradicals gave a triplet line at 14.4-15.6 G. Microwave-assisted reactions were carried out in a Milestone MicroSYNTH Labstation in sealed tubes (15 bar) with temperature control (fiber optic probe). The total irradiation time was as indicated.

(3-Carboxy-4-iodo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl (7)

To a solution of compound **6** (1.62 g, 5.0 mmol) in MeOH (30 mL) was added aq 10% NaOH (3.6 mL, 10.0 mmol) and the mixture was set aside for 24 h at ambient temperature. The mixture was diluted with H₂O (10 mL), the MeOH was evaporated off and the pH was adjusted to pH = 2 at 0 °C by adding aq 5% H₂SO₄ solution. The precipitated acid was filtered off and air-dried to give a pale yellow solid (1.27 g, 81%). For most purposes the crude product purity was satisfactory; for analysis the crude product was purified by flash column chromatography (CHCl₃-Et₂O).

Yield: 1.13 g (73%); pale yellow solid; mp 224–226 °C; $R_f = 0.43$ (CHCl₃–Et₂O, 2:1).

IR (neat): 3140, 1719, 1596 cm⁻¹.

¹H NMR [500 MHz, DMSO- d_6 + (PhNH)₂]: δ = 1.28 (s, 6 H), 1.17 s (6 H). ¹³C NMR [125 MHz, DMSO- d_6 + (PhNH)₂]: δ = 165.4, 142.8, 113.7, 72.6, 70.7, 25.7 (2 C), 25.0 (2 C).

MS (EI): m/z (%) = 310 (85) [M]⁺, 295 (7), 168 (42), 153 (87), 107 (100). Anal. Calcd for C₉H₁₃INO₃: C, 34.86; H, 4.23; N, 4.52. Found: C, 34.78; H, 4.07; N, 4.48.

Amides 8 and 23; General Procedure

To a solution of compound **7** or **22** (2.0 mmol) in THF (10 mL) was added *N*,*N'*-carbonyldiimidazole (486 mg, 3.0 mmol) and the mixture was heated at reflux temperature for 15 min. After cooling, THF was evaporated off, the residue dissolved in EtOAc (15 mL) and washed with 5% aq NaHCO₃ (10 mL), the organic phase separated, dried (Mg-SO₄), filtered and evaporated. The residue was dissolved in THF (10 mL) and added dropwise to condensed NH₃ (5 mL) in a pressure vial with stirring at -78 °C. The vial was capped and the mixture was allowed to warm to r.t. with stirring overnight in a well-ventilated hood. The cap was removed and the solvents were allowed to evaporate spontaneously. The residue was dissolved in CHCl₃ (20 mL), the organic phase was washed with H₂O (10 mL), and the organic phase was separated, dried (MgSO₄), filtered and evaporated. The residue was purified by flash column chromatography (hexane–EtOAc, 2:1) to give amide **8** or **23**.

(3-Carboxamido-4-iodo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl (8)

Yield: 194 mg (33%); yellow solid; mp 186–188 °C; $R_f = 0.23$ (hexane–EtOAc, 2:1).

IR (neat): 3400, 3195, 1660, 1633, 1606 cm⁻¹.

¹H NMR [500 MHz, DMSO- d_6 + (PhNH)₂]: δ = 1.22 (s, 6 H), 1.14 (s, 6 H).

¹³C NMR [125 MHz, DMSO- d_6 + (PhNH)₂]: δ = 167.8, 150.4, 101.3, 71.8, 71.2, 33.8, 25.5 (2 C), 25.2 (2 C).

MS (EI): m/z (%) = 309 (7) [M]⁺, 152 (100), 109 (82).

Anal. Calcd for $C_9H_{14}IN_2O_2:$ C, 34.97; H, 4.56; N, 9.06. Found: C, 34.86; H, 4.42; N, 9.13.

3-[(4-Bromo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-3-yl)-1-yl]oxidanyl Propanamide (23)

Yield: 185 mg (32%); yellow solid; mp 64–65 °C; $R_f = 0.32$ (CHCl₃–Et₂O, 2:1).

IR (neat): 3513, 3265, 1660, 1630 cm⁻¹.

¹H NMR [500 MHz, DMSO- d_6 + (PhNH)₂]: δ = 2.45 (br s, 2 H), 1.72 (br s, 2 H), 1.29 (s, 6 H), 1.27 (s, 6 H).

¹³C NMR [125 MHz, DMSO-*d*₆ + (PhNH)₂]: δ = 173.5, 140.6, 124.0, 71.0, 70.2, 33.8, 24.5 (2 C), 24.3 (2 C), 22.9.

MS (EI): m/z (%) = 289/291 (49/49) [M]⁺, 259/261 (18/18), 195 (73), 121 (100).

Anal. Calcd for $C_{11}H_{18}BrN_2O_2{:}$ C, 45.53; H, 6.25; N, 9.65. Found: C, 45.39; H, 6.32; N, 9.53.

(3-Cyano-4-iodo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl (9)

To a solution of compound **8** (309 mg, 1.0 mmol) in dry pyridine (10 mL) was added *p*-toluenesulfonyl chloride (285 mg, 1.5 mmol) at 0 °C and the mixture was stirred at r.t. for 48 h. The mixture was treated with aq KOH solution [KOH (100 mg) in H₂O (15 mL)] and heated to 80 °C. After cooling, the reaction mixture was extracted with Et₂O (3 × 10 mL) and the combined organic phases were washed with 10% aq HCl solution (15 mL). The organic phase was separated, dried (MgSO₄), filtered, evaporated and the residue was purified by flash column chromatography (hexane–Et₂O, 2:1), to give the title compound **9**.

Yield: 103 mg (36%); dark yellow solid; mp 102–103 °C; $R_f = 0.56$ (hexane–Et₂O, 2:1).

¹H NMR [500 MHz, CDCl₃ + (PhNH)₂]: δ = 1.40 (s, 6 H), 1.31 (s, 6 H). ¹³C NMR [125 MHz, CDCl₃ + (PhNH)₂]: δ = 127.6, 120.9, 115.3, 74.4, 72.0, 25.1 (2 C), 24.6 (2 C).

MS (EI): m/z (%) = 291 (75) [M]⁺, 276 (12), 261 (7), 135 (35), 107 (80), 42 (100).

Anal. Calcd for $C_9H_{12}IN_2O$: C, 37.13; H, 4.15; N, 9.62. Found: C, 37.27; H, 4.26; N, 9.59.

(3-Hydroxymethyl-4-iodo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl (10)

To a solution of compound **7** (620 mg, 2.0 mmol) and Et₃N (250 mg, 2.5 mmol) in dry Et₂O (30 mL) was added ethyl chloroformate (250 mg, 2.3 mmol) dropwise at 0 °C. The mixture was stirred at 0 °C for 2 h, the triethylamine hydrochloride filtered off, and the filtrate was evaporated and the residue dissolved in anhyd THF (10 mL). The reaction mixture was cooled to -78 °C and NaBH₄ (84 mg, 2.2 mmol) was added followed by the dropwise addition of anhyd EtOH (127 µL, 2.2 mmol) and the mixture was stirred for 5 min at this temperature and then allowed to warm to 0 °C. The mixture was quenched with aq sat. NH₄Cl solution (10 mL) and extracted with CHCl₃ (2 × 20 mL). The combined organic phase was dried (MgSO₄), filtered and evaporated. The residue was subjected to flash column chromatography to offer the title compound.

Yield: 325 mg (55%); pale yellow solid; mp 148–150 °C; $R_f = 0.43$ (hexane–EtOAc, 2:1).

IR (neat): 3407, 1636 cm⁻¹.

¹H NMR [500 MHz, CDCl₃ + (PhNH)₂]: δ = 4.26 (s, 2 H), 1.37 (s, 6 H), 1.33 (s, 6 H).

 ^{13}C NMR [125 MHz, CDCl₃ + (PhNH)₂]: δ = 147.4, 105.9, 71.6, 71.2, 61.7, 25.3 (2 C), 24.7 (2 C).

MS (EI): m/z (%) = 296 (85) [M]⁺, 281 (23), 266 (1), 154 (10), 121 (100). Anal. Calcd for C₉H₁₅INO₂: C, 36.50; H, 5.11; N, 4.73. Found: C, 36.44; H, 5.24; N, 4.59.

(3-Bromomethyl-4-iodo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl (11)

To a solution of alcohol **10** (592 mg, 2.0 mmol) and Et_3N (222 mg, 2.2 mmol) in CH_2CI_2 (10 mL) was added dropwise methanesulfonyl chloride (252 mg, 2.2 mmol) dissolved in CH_2CI_2 (5 mL) at 0 °C. The mixture was stirred at r.t. for 1 h and then washed with H_2O (10 mL). The organic phase was separated, dried (MgSO₄), filtered off and evaporated. The residue was dissolved in anhyd acetone (20 mL), then LiBr (348 mg, 4.0 mmol) was added and the mixture was stirred and boiled at gentle reflux for 30 min. After cooling, the acetone was evaporated and the residue was partitioned between H_2O (10 mL) and EtOAc (20 mL). The organic phase was separated and the aq phase was extracted with EtOAc (10 mL). The combined organic phase was dried (MgSO₄), filtered and evaporated. The residue was purified by flash column chromatography (hexane–EtOAc, 2:1) to give compound **11**.

Yield: 424 mg (59%); yellow solid; mp 61–63 °C; R_f = 0.46 (hexane–EtOAc, 2:1).

IR (neat): 1622 cm⁻¹.

MS (EI): m/z (%) = 358/360 (17/17) [M]⁺, 343/345 (4/4), 328/330 (1/1), 264 (23), 233 (2), 201/203 (20/20), 107 (100).

Anal. Calcd for $C_9H_{14}BrINO:$ C, 30.11; H, 3.93; N, 3.90. Found: C, 30.24; H, 4.01; N, 3.90.

(3-Methanethiosulfonylmethyl-4-iodo-2,2,5,5-tetramethyl-2,5dihydro-1*H*-pyrrol-1-yl)oxidanyl (12)

A solution of bromide **11** (359 mg, 1.0 mmol) and NaSSO₂CH₃ (268 mg, 2.0 mmol) in a mixture of acetone (10 mL) and H₂O (5 mL) was heated at 45 °C. After consumption of the stating material (~30 min) as monitored by TLC, the acetone was evaporated off under vacuum, H₂O (10 mL) was added and the aq phase was extracted with CHCl₃ (2 × 15 mL). The combined organic phase was dried (MgSO₄), filtered and evaporated. The residue was purified by flash column chromatography (hexane–EtOAc, 1:1, then CHCl₃–Et₂O, 2:1) to give compound **12**.

Yield: 175 mg (45%); beige solid; mp 118–120 °C; $R_f = 0.32$ (hexane–EtOAc, 2:1).

IR (neat): 1629, 1361, 1127 cm⁻¹.

MS (EI): *m*/*z* (%) = 390 (21) [M]⁺, 375 (3), 360 (1), 295 (7), 264 (7), 154 (49), 42 (100).

Anal. Calcd for $C_{10}H_{17}INO_3S_2$: C, 30.77; H, 4.39; N, 3.59; S, 16.43. Found: C, 30.86; H, 4.42; N, 3.60; S, 16.29.

(3-Formyl-4-iodo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl (13)

A solution of compound **10** (592 mg, 2.0 mmol) and activated MnO_2 (700 mg, 8.0 mmol) in CHCl₃ (20 mL) was stirred and heated at reflux temperature for 2 h. After cooling, the reaction mixture was filtered through Celite, the filtrate washed with CHCl₃ (10 mL) and the solvent evaporated to offer the title aldehyde after chromatographic purification (hexane–Et₂O).

Yield: 472 mg (80%); yellow solid; mp 150–152 °C; $R_f = 0.26$ (hexane–Et₂O, 2:1).

IR (neat): 1672, 1602 cm⁻¹.

¹H NMR [500 MHz, $CDCl_3 + (PhNH)_2$]: $\delta = 9.61$ (s, 1 H), 1.43 (s, 6 H), 1.38 (s, 6 H).

¹³C NMR [125 MHz, CDCl₃ + (PhNH)₂]: δ = 191.8, 144.7, 127.5, 73.3, 70.5, 25.1 (2 C), 24.1 (2 C).

MS (EI): m/z (%) = 294 (32) [M]⁺, 264 (4), 152 (15), 137 (71), 109 (100). Anal. Calcd for C₉H₁₃INO₂: C, 36.75; H, 4.46; N, 4.76. Found: C, 36.93; H, 4.53; N, 4.78.

(3-Carboxy-4-iodo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl Succinate Ester (14)

To a mixture of compound **7** (310 mg, 1.0 mmol) and *N*-hydroxysuccinimide (116 mg, 1.0 mmol) in anhyd EtOAc (10 mL) was added dropwise DCC (206 mg, 1.0 mmol) dissolved in anhyd EtOAc (5 mL) at 0 °C. After stirring at r.t. for 1 h, the precipitated dicyclohexylurea was filtered off, the filtrate was evaporated, and the residue was crystallized from hexane–Et₂O to give the title compound **14**.

Yield: 210 mg (51%); yellow solid; mp 179–180 °C; $R_f = 0.46$ (hexane–EtOAc, 2:1).

IR (neat): 1768, 1736, 1602 cm⁻¹.

MS (EI): m/z (%) = 407 (50) [M]⁺, 293 (24), 263 (21), 235 (33), 107 (100).

Anal. Calcd for $C_{13}H_{16}IN_2O_5$: C, 38.35; H, 3.96; N, 6.88. Found: C, 38.32; H, 4.02; N, 6.89.

[3-Formyl-2,2,5,5-tetramethyl-4-(pyridin-2-ylethynyl)-2,5-dihydro-1*H*-pyrrol-1-yl]oxidanyl (15)

To a deoxygenated, stirred solution of compound **13** (588 mg, 2.0 mmol) in dry Et₃N (10 mL) in a Schlenk tube were added CuI (10 mg, 0.05 mmol) and PdCl₂(PPh₃)₂ (24 mg, 0.034 mmol), and the resulting mixture was stirred for 15 min at r.t. 2-Ethynylpyridine (412 mg, 4.0 mmol) was added and the mixture was stirred for 20 h at 50 °C under N₂. The reaction mixture was diluted with EtOAc (10 mL), filtered through Celite, the filtrate washed with CHCl₃ (10 mL) and the solvent evaporated. The residue was partitioned between CHCl₃ (20 mL) and aq sat. NaCl solution (10 mL), and the organic phase was separated, dried (MgSO₄), filtered, evaporated and purified by flash column chromatography (hexane–EtOAc 2:1 \rightarrow 1:1 then EtOAc) to give the title compound.

Yield: 220 mg (41%); yellow solid; mp 98–100 °C; $R_f = 0.45$ (CHCl₃– Et₂O, 2:1).

IR (neat): 2208, 1675, 1597, 1579 cm⁻¹.

MS (EI): m/z (%) = 269 (26) [M]⁺, 239 (10), 224 (61), 78 (100).

Anal. Calcd for $C_{16}H_{17}N_2O_2;$ C, 71.35; H, 6.36; N, 10.40. Found: C, 71.41; H, 6.30; N, 10.44.

[1,1,3,3-Tetramethyl-6-(pyridin-2-yl)-1*H*-pyrrolo[3,4-*c*]pyridin-2-yl)]oxidanyl (16)

A 2 M methanolic NH₃ solution (8 mL) of compound **15** (135 mg, 0.5 mmol) and AgOTf (13 mg, 0.05 mmol) in a 15-bar pressure vial was subjected to microwave irradiation for 10 min (hold time) at 100 °C. After cooling, the solvent was evaporated and the residue was dissolved in CHCl₃ (10 mL) and washed with H₂O (5 mL). The organic phase was separated, dried (MgSO₄), filtered and evaporated. The residue was purified by flash column chromatography (CHCl₃–Et₂O, 2:1) to furnish the title compound.

Yield: 48 mg (35%); pale yellow solid; mp 128–130 °C; $R_f = 0.23$ (CHCl₃–Et₂O, 2:1).

IR (neat): 1608, 1585, 1556 cm⁻¹.

¹H NMR [500 MHz, $CDCl_3 + (PhNH)_2$]: $\delta = 8.76 (d, J = 4.5 Hz, 1 H), 8.53 (s, 1 H), 8.50 (d, J = 8.0 Hz, 1 H), 8.31 (s, 1 H), 7.86 (t, J = 7.5 Hz, 1 H), 7.35 (t, J = 7.5 Hz, 1 H), 1.56 (s, 12 H).$

 ^{13}C NMR [125 MHz, CDCl₃ + (PhNH)₂]: δ = 156.3, 155.4 (2 C), 149.1, 143.1, 141.4, 137.0, 123.6, 121.2, 114.4, 67.3, 66.1, 26.4 (2 C), 26.0 (2 C).

MS (EI): m/z (%) = 268 (71) [M]⁺, 253 (32), 238 (51), 223 (100), 207 (31), 78 (20).

Anal. Calcd for $C_{16}H_{18}N_3$ O: C, 71.62; H, 6.76; N, 15.66. Found: C, 71.55; H, 6.68; N, 15.71.

Vinyl Iodides 17, 19 and 20; General Procedure

A flame-dried, resealable Schlenk tube was charged with a solution of compound **1**, **4**, **5** or **6** (2.0 mmol) in dry toluene (3 mL), Cul (19 mg, 0.1 mmol), K₂CO₃ (552 mg, 4.0 mmol), and acetamide (148 mg, 2.5 mmol). The mixture was immediately degassed by vacuum followed by purging with argon (× 3) and then *N*,*N*'-dimethylethylenediamine (18 mg, 0.2 mmol) was added and the mixture was stirred at 105 °C for 20 h under Ar. The reaction mixture was diluted with EtOAc (10 mL), filtered through Celite, the filtrate washed with EtOAc (5 mL) and the solvent evaporated. The residue was purified by flash column chromatography (hexane–Et₂O, 2:1 then hexane–EtOAc, 2:1 → 1:1), to give the title compounds.

3746

G. Úr et al.

(4-Acetamido-3-carbomethoxy-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl (17)

Yield: 123 mg (24%); yellow solid; mp 67–68 °C; R_{f} = 0.43 (hexane–EtOAc, 2:1).

IR (neat): 3239, 1721, 1667, 1603 cm⁻¹.

¹H NMR [500 MHz, CDCl₃ + (PhNH)₂]: δ = 3.83 (s, 3 H), 2.21 (s, 3 H), 1.60 (s, 6 H), 1.41 (s, 6 H).

¹³C NMR [125 MHz, CDCl₃ + (PhNH)₂]: δ = 167.7, 166.5, 156.4, 111.5, 68.4, 66.1, 51.3, 25.2 (2 C), 25.1, 23.1 (2 C).

MS (EI): *m*/*z* (%) = 255 (13) [M]⁺, 241 (18), 225 (44), 198 (100).

Anal. Calcd for $C_{12}H_{19}N_2O_4;$ C, 56.46; H, 7.50; N, 10.97. Found: C, 56.59; H, 7.55; N, 10.87.

The same compound was prepared starting from compound **1** giving compound **17** (64 mg) with a lower 12% yield.

[4-Acetamido-2,2,6,6-tetramethyl-3,6-dihydropyridin-1(2H)yl]oxidanyl (19)

Yield: 278 mg (66%); orange oil; *R*_f = 0.26 (CHCl₃-Et₂O, 2:1).

IR (neat): 3300, 1668, 1545 cm⁻¹.

¹H NMR [500 MHz, CDCl₃ + (PhNH)₂]: δ = 6.03 (s, 1 H), 2.34 (s, 2 H), 2.04 (s, 3 H), 1.37 (s, 6 H), 1.31 (s, 6 H).

¹³C NMR [125 MHz, CDCl₃ + (PhNH)₂]: δ = 168.7, 127.4, 118.7, 60.1, 58.6, 41.8, 26.6, 24.8, 24.4 (2 C), 23.0.

MS (EI): m/z (%) = 211 (24) [M]⁺, 181 (50), 166 (73), 124 (100), 43 (17). Anal. Calcd for C₁₁H₁₉N₂O₂: C, 62.53; H, 9.06; N, 13.26. Found: C, 62.55; H, 9.23; N, 13.37.

(3-Acetamido-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)ox-idanyl (20)

Yield: 31 mg (8%); orange solid; mp 145–147 °C; $R_f = 0.23$ (CHCl₃– Et₂O, 2:1).

IR (neat): 3300, 1665, 1545 cm⁻¹.

¹H NMR [500 MHz, CDCl₃ + (PhNH)₂]: δ = 6.06 (s, 1 H), 2.13 (s, 3 H), 1.32 (s, 12 H).

¹³C NMR [125 MHz, CDCl₃ + (PhNH)₂]: δ = 168.7, 135.7, 115.1, 68.4, 67.6, 26.4 (2 C), 24.4 (2 C), 24.3.

MS (EI): m/z (%) = 197 (17) [M]⁺, 182 (29), 167 (100), 152 (56), 140 (94), 43 (40).

Anal. Calcd for $C_{10}H_{17}N_2O_2$: C, 60.89; H, 8.69; N, 14.20. Found: C, 60.92; H, 8.73; N, 14.22.

(4-Amino-3-carbomethoxy-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yl)oxidanyl (18)

To a solution of compound **17** (255 mg, 1.0 mmol) in THF–MeOH (1:1, 10 mL) was added aq NaOH solution (1.0 M, 1.0 mL, 1.0 mmol). The reaction mixture was stirred at 50 °C until the starting ester had disappeared. The reaction mixture was concentrated, and the residue was dissolved in H₂O, acidified to pH 7 with 5% aq H₂SO₄, extracted with CHCl₃ (2 × 10 mL), dried (MgSO₄), filtered and evaporated to give the title compound **18**.

Yield: 105 mg (49%); yellow solid; mp 119–122 °C; $R_f = 0.28$ (hexane–EtOAc, 2:1).

IR (neat): 3429, 3325, 1678, 1632, 1557 cm⁻¹.

¹H NMR [500 MHz, CDCl₃ + (PhNH)₂]: δ = 3.80 (s, 3 H), 1.48 (s, 6 H), 1.39 (s, 6 H).

 ^{13}C NMR [125 MHz, CDCl₃ + (PhNH)₂]: δ = 167.5, 161.7, 97.6, 67.8, 67.5, 50.3, 25.4 (2 C), 23.8 (2 C).

MS (EI): m/z (%) = 213 (17) [M]⁺, 198 (77), 183 (91), 166 (82), 108 (100).

Anal. Calcd for $C_{10}H_{17}N_2O_3$: C, 56.32; H, 8.04; N, 13.14. Found: C, 56.37; H, 7.98; N, 13.23.

[5,5,7,7-Tetramethyl-3-phenyl-6,7-dihydro-1*H*-pyrrolo[3,4-*b*]pyridin-2(5*H*)-on-6-yl]oxidanyl (21)

A flame-dried, resealable Schlenk tube was charged with compound **2** (500 mg, 2.0 mmol) dissolved in anhyd toluene (5 mL), $Pd_2(dba)_3$ (91 mg, 0.1 mmol), Xantphos (57 mg, 0.14 mmol), Cs_2CO_3 (910 mg, 2.8 mmol) and phenylacetamide (337 mg, 2.5 mmol). The Schlenk tube was capped with a rubber septum, evacuated and backfilled with Ar (× 3). The Schlenk tube was sealed and the mixture was stirred for 24 h at 110 °C. The reaction mixture was diluted with CH_2Cl_2 (10 mL), filtered through Celite, the filtrate washed with CH_2Cl_2 (5 mL) and the solvent evaporated. The residue was purified by flash column chromatography (hexane–EtOAc, 2:1 \rightarrow 1:1 then EtOAc) to give the title compound **21**.

Yield: 300 mg (53%); yellow solid; mp 258–260 °C; $R_f = 0.22$ (CHCl₃–Et₂O, 2:1).

IR (neat): 3347, 1644, 1570 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): δ (reduced form C₁₇H₂₀N₂O) = 2.17 (d, J = 7 Hz, 2 H), 7.56 (s, 1 H), 7.37 (t, J = 7.5 Hz, 2 H), 7.28 (t, J = 7.5 Hz, 1 H), 1.38 (s, 6 H), 1.33 (s, 6 H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ (reduced form $C_{17}H_{20}N_2O$) = 162.7, 137.9, 134.4, 129.5, 128.7, 128.5, 128.2, 127.3, 126.1, 61.6, 61.5, 31.9 (2 C), 29.9 (2 C).

MS (EI): m/z (%) = 283 (20) [M]⁺, 268 (21), 253 (100), 238 (60).

Anal. Calcd for $C_{17}H_{19}N_2O_2$: C, 72.06; H, 6.76; N, 9.89. Found: C, 72.24; H, 6.58; N, 9.90.

3-[(4-Bromo-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-3-yl)-1-yl]oxidanyl Propanoic Acid (22)

To a solution of diethyl malonate (8.0 g, 50.0 mmol) in anhyd acetone (140 mL), K_2CO_3 (13.8 g, 0.1 mol) was added and after stirring for 10 min, the flask was charged with compound **3** (3.10 g, 10.0 mmol) and the mixture stirred at reflux temperature for 12 h. After cooling, the acetone was evaporated in vacuo and the residue was acidified with 5% aq H₂SO₄ to pH 2 and then extracted with EtOAc. The organic phase was dried (MgSO₄), filtered and evaporated. The residue was dissolved in EtOH (50 mL), aq 10% NaOH solution (50 mL) added and the mixture heated to reflux temperature for 5 min and then set aside for 24 h at ambient temperature. The mixture was diluted with H₂O (10 mL), the MeOH was evaporated off, and the residue was acidified with 30% H₂SO₄ to pH 2 at 0 °C and extracted with CHCl₃ (3 × 20 mL). The organic phase was dried (MgSO₄), filtered, evaporated and the residue purified by flash column chromatography (hexane–EtOAc, 2:1) to give the title compound **22**.

Yield: 1.88 g (56%); pale yellow solid; mp 143–145 °C; $R_f = 0.66$ (hexane–EtOAc, 2:1).

IR (neat): 2987, 1711, 1645 cm⁻¹.

¹H NMR [500 MHz, DMSO- d_6 + (PhNH)₂]: δ = 2.59 (d, *J* = 7.5 Hz, 2 H), 2.20 (d, *J* = 7.5 Hz, 2 H), 1.31 (s, 6 H), 1.10 (s, 6 H).

As carboxylic acids precipitate with hydrazobenzene, the ¹H NMR and ¹³C NMR spectra of **22** (after conversion into its methyl ester) were recorded after reducing in situ in the NMR tube the paramagnetic nitroxide with hydrazobenzene.

¹H NMR [500 MHz, CDCl₃ + (PhNH)₂]: δ (of **22**-methyl ester $C_{12}H_{19}BrNO_3$) = 3.79 (s, 5 H), 2.83 (d, *J* = 7.5 Hz, 2 H), 1.30 (s, 6 H), 1.28 (s, 6 H).

$$\label{eq:constraint} \begin{split} ^{13}\text{C}\,\text{NMR}\,[125\,\text{MHz},\text{CDCl}_3+(\text{PhNH})_2];\,\delta\,(\text{of}\,\textbf{22}\text{-}\text{methyl}\,\text{ester}\,\text{C}_{12}\text{H}_{19}\text{BrNO}_3) = \\ 169.1,\,137.7,\,126.3,\,70.9,\,70.3,\,52.6,\,49.6,\,26.5,\,24.5\,(2\,\text{C}),\,24.4\,(2\,\text{C}). \end{split}$$

MS (EI): m/z (%) = 290/292 (30) [M]⁺, 275/277 (20), 196 (52), 42 (100).

Anal. Calcd for $C_{11}H_{17}BrNO_3$: C, 45.38; H, 5.89; N, 4.81. Found: C, 45.52; H, 5.82; N, 4.99.

(5,5,7,7-Tetramethyl-3,4,6,7-tetrahydro-1*H*-pyrrolo[3,4-*b*]pyridin-2(5*H*)-on-6-yl)oxidanyl (24)

A flame-dried, resealable Schlenk tube was charged with a solution of compound **23** (145 mg, 0.5 mmol in anhyd *t*-BuOH (5 mL), then Pd(OAc)₂ (4 mg, 0.017 mmol), PhB(OH)₂ (5 mg, 0.04 mmol), X-Phos (19 mg, 0.035 mmol) and K₂CO₃ (172 mg, 1.25 mmol) were added. The Schlenk tube was capped with a rubber septum, evacuated and backfilled with Ar (× 3). The Schlenk tube was sealed and the reaction mixture was stirred at 85 °C for 3 h. After cooling, the mixture was diluted with CHCl₃, filtered through Celite and the solvent was evaporated. The residue was extracted with CHCl₃ (2 × 20 mL), the organic phase washed with H₂O (10 mL), separated, dried (MgSO₄), filtered, evaporated and the residue purified by flash column chromatography (CHCl₃–Et₂O, 2:1) to give the title compound **24**.

Yield: 60 mg (57%); yellow solid; mp 195–196 °C; $R_f = 0.27$ (CHCl₃– Et₂O, 2:1).

IR (neat): 3182, 1674, 1556, 1504 cm⁻¹.

¹H NMR [500 MHz, $CDCl_3 + (PhNH)_2$]: $\delta = 2.65$ (t, J = 8 Hz, 2 H), 2.31 (t, J = 8 Hz, 2 H), 1.31 (s, 6 H), 1.27 (s, 6 H).

¹³C NMR [125 MHz, CDCl₃ + (PhNH)₂]: δ = 148.4, 134.7, 100.0, 69.4, 65.2, 30.9, 24.3 (2 C), 23.7 (2 C), 17.9.

MS (EI): *m*/*z* (%) = 209 (13) [M]⁺, 194 (58), 179 (100), 164 (66).

Anal. Calcd for $C_{11}H_{17}N_2O_2$: C, 63.13; H, 8.19; N, 13.39. Found: C, 63.29; H, 7.99; N, 13.27.

2-Substituted-5,5,7,7-tetramethyl-5*H*-pyrrolo[3,4-*d*]pyrimidin-6yl)oxidanyls 25 and 26; General Procedure

A flame-dried, resealable Schlenk tube was charged with compound **2** (250 mg, 1.0 mmol) dissolved in anhyd toluene (5 mL), acetamidine hydrochloride (123 mg, 1.3 mmol) or guanidine hydrochloride (124 mg, 1.3 mmol), Cs_2CO_3 (975 mg, 3.0 mmol), $Pd_2(dba)_3$ (10 mg, 0.02 mmol), Xantphos (18 mg, 0.02 mmol). The Schlenk tube was capped with a rubber septum, evacuated and backfilled with Ar (× 3). The Schlenk tube was sealed and the reaction mixture was stirred at 110 °C for 16 h under Ar. After cooling, the mixture was diluted with CHCl₃ (10 mL), filtered through Celite, the filtrate washed with CHCl₃-MeOH (9:1, 10 mL) and the solvent evaporated. The residue was partitioned between H₂O (10 mL) and CHCl₃-MeOH (9:1, 20 mL). The organic phase was separated, washed with H₂O (10 mL), dried (MgSO₄), filtered, evaporated and the residue purified by flash column chromatography (hexane-EtOAc, 2:1) or (CHCl₃-Et₂O, 2:1) to give the title compound.

(2-Methyl-5,5,7,7-tetramethyl-5*H*-pyrrolo[3,4-*d*]pyrimidin-6-yl)oxidanyl (25)

Yield: 85 mg (41%); dark yellow solid; mp 59–61 °C; $R_f = 0.25$ (hexane–EtOAc, 2:1).

IR (neat): 1593, 1564 cm⁻¹.

¹H NMR [500 MHz, $CDCl_3 + (PhNH)_2$]: δ = 8.42 (s, 1 H), 2.83 (s, 3 H), 1.52 (s, 6 H), 1.50 (s, 6 H).

¹³C NMR [125 MHz, CDCl₃ + (PhNH)₂]: δ = 173.0, 167.7, 150.2, 133.6, 67.3, 64.9, 29.7, 26.2 (2 C), 24.5 (2 C).

MS (EI): m/z (%) = 206 (46) [M]⁺, 192 (62), 176 (67), 161 (100).

Anal. Calcd for $C_{11}H_{16}N_{3}O$: C, 64.05; H, 7.82; N, 20.37. Found: C, 64.15; H, 8.00; N, 20.48.

(2-Amino-5,5,7,7-tetramethyl-5*H*-pyrrolo[3,4-*d*]pyrimidin-6-yl)oxidanyl (26)

Yield: 48 mg (23%); yellow solid; mp 140–142 °C; $R_f = 0.16$ (CHCl₃–Et₂O, 2:1).

IR (neat): 3333, 3195, 1647, 1607, 1570 cm⁻¹.

¹H NMR [500 MHz, DMSO- d_6 + (PhNH)₂]: δ = 8.09 (s, 1 H), 1.28 (s, 6 H), 1.25 (s, 6 H).

¹³C NMR [125 MHz, DMSO- d_6 + (PhNH)₂]: δ = 174.0, 164.2, 151.9, 125.7, 66.3, 64.0, 26.8 (2 C), 24.9 (2 C).

MS (EI): *m*/*z* (%) = 207 (14) [M]⁺, 192 (17), 177 (54), 162 (100).

Anal. Calcd for $C_{10}H_{15}N_40$: C, 57.95; H, 7.30; N, 27.03. Found: C, 58.10; H, 7.48; N, 27.11.

4-Amino-*N*-[(5,5,7,7-tetramethyl-6,7-dihydro-5*H*-pyrrolo[3,4*d*]pyrimidin-6-yl)oxidanyl-2-yl]benzenesulfonamide (27)

A flame-dried, resealable Schlenk tube was charged with compound 2 (250 mg, 1.0 mmol) dissolved in anhyd DMF (5 mL), sulfaguanidine (278 mg, 1.3 mmol), Cs₂CO₃ (650 mg, 2.0 mmol), Pd₂(dba)₃ (10 mg, 0.02 mmol), Xantphos (18 mg, 0.02 mmol). The Schlenk tube was capped with a rubber septum, evacuated and backfilled with Ar (×3). The Schlenk tube was sealed and the reaction mixture was stirred at 100 °C for 16 h under Ar. After cooling, the reaction mixture was diluted with CHCl₃ (10 mL) and evaporated to dryness. The residue was taken up in CHCl₃-MeOH (9:1, 10 mL), filtered through Celite, the filtrate washed with CHCl₂-MeOH (9:1, 10 mL) and the solvent evaporated again. The residue was dissolved in H₂O (15 mL), extracted with CH₂Cl₂ (10 mL) and the organic phase separated. The aq phase was acidified with glacial AcOH to pH 5, saturated with solid NaCl and extracted with CHCl₃-MeOH (9:1, 2 × 20 mL). The organic phase was separated, dried (MgSO₄), filtered, evaporated and the residue purified by flash column chromatography (CHCl₃-Et₂O, 2:1) to give the title paramagnetic sulfonamide 27.

Yield: 120 mg (35%); pale yellow solid; mp 253–255 °C; R_f = 0.25 (CH-Cl₃–Et₂O, 2:1).

IR (neat): 3475, 3354, 1670, 1626, 1585, 1319, 1156 cm⁻¹.

¹H NMR [500 MHz, DMSO- d_6 + (PhNH)₂]: δ = 8.36 (s, 1 H), 7.67 (d, J = 8.5 Hz, 2 H), 6.59 (d, J = 8.5 Hz, 2 H), 1.28 (s, 6 H), 1.24 (s, 6 H).

¹³C NMR [125 MHz, DMSO-*d*₆ + (PhNH)₂]: δ = 174.2, 157.5, 153.4, 152.1, 131.0, 129.2 (2 C), 125.6, 112.1 (2 C), 66.5, 64.2, 26.4 (2 C), 24.8 (2 C).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₆H₂₁N₅O₃S: 363.1365; found: 363.1352.

Anal. Calcd for $C_{16}H_{20}N_5O_3S$: C, 53.02; H, 5.56; N, 19.32; S, 8.85. Found: C, 53.08; H, 5.65; N, 19.50; S, 8.71.

Funding Information

This work was supported by the National Research Development and Innovation Office (OTKA 104956) and GINOP 2.3.2-15-2016-00049.

Acknowledgment

The authors thank Balázs Bognár (University of Pécs, Medical Faculty) for assistance with NMR measurements. The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1589034.

References

- (a) Altenbach, C.; Lopez, C. J.; Hideg, K.; Hubbell, W. L. *Methods Enzymol.* **2015**, 564, 59. (b) Shelke, S. A.; Sigurdsson, S. Th. In *Modified Nucleic Acids*; Nakatani, A.; Tor, Y., Eds.; Springer: Cham, **2016**, 159. (c) Kyrilyuk, I. A.; Polienko, Y. F.; Krumkacheva, O. A.; Strizhakov, R. K.; Gatilov, Y. K.; Grigor'ev, I. A.; Bagryankaya, E. G. *J. Org. Chem.* **2012**, 77, 8016. (d) Haugland, M. M.; Anderson, E. A.; Lovett, J. E. In *Electron Paramagnetic Resonance*; Chechik, V.; Murphy, D. M., Eds.; RSC Publishing: Cambridge, **2017**, 1.
- (2) (a) Prescott, C.; Bottle, S. E. *Cell Biochem. Biophys.* 2017, 75, 227.
 (b) Krainz, T.; Gaschler, M. M.; Lim, C.; Sacher, J. R.; Stockwell, B. R.; Wipf, P. *ACS Cent. Sci.* 2016, *2*, 653. (c) Zakharova, O. D.; Frolova, T. S.; Yushkova, Y. V.; Chernyak, E. I.; Pokrovski, A. G.; Pokrovski, M. A.; Morozov, S. V.; Sinitsina, O. I.; Grigor'ev, I. A.; Nevinsky, G. A. *Eur. J. Med. Chem.* 2016, *122*, 127.
- (3) (a) Wang, X.; Emoto, M.; Miyake, S.; Itto, K.; Xu, S.; Fujii, H.; Hirata, H.; Arimoto, H. *Bioorg. Med. Chem. Lett.* **2016**, *26*, 4947.
 (b) Hilt, S.; Tang, T.; Walton, J. H.; Budamagunta, M.; Maetawa, I.; Kálai, T.; Hideg, K.; Singh, V.; Wulff, H.; Gong, Q.; Jin, L-W.; Loie, A.; Voss, J. C. J. Alzheimer Dis. **2017**, *55*, 1667.
- (4) Ciriminna, R.; Pagliaro, M. Org. Process Res. Dev. 2010, 14, 245.
- (5) Thetiot-Laurent, S.; Gosset, G.; Clément, G. L.; Cassien, M.; Mercier, A.; Siri-Gaudel, A.; Rockenbauer, A.; Culcasi, M.; Pietri, S. ChemBioChem 2017, 18, 300.
- (6) Tansakul, C.; Lillie, E.; Walter, D. E.; Rivera, F.; Wolcott, A.; Zhang, J. Z.; Millhauser, G. L.; Braslau, R. J. Phys. Chem. C 2016, 114, 7793.

Paper

- (7) (a) Kermagoret, A.; Gigmes, D. Tetrahedron 2016, 72, 7672.
 (b) Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science; Gigmes, D., Ed.; RSC Publishing: Cambridge, 2015.
- (8) Kálai, T.; Schindler, J.; Balog, M.; Fogassy, E.; Hideg, K. Tetrahedron 2008, 64, 1094.
- (9) Kálai, T.; Jekő, J.; Hideg, K. Tetrahedron Lett. 2004, 45, 8395.
- (10) Kálai, T.; Borza, E.; Antus, Cs.; Radnai, B.; Gulyás-Fekete, G.; Fehér, A.; Sümegi, B.; Hideg, K. *Bioorg. Med. Chem.* **2011**, *19*, 7311.
- (11) Kálai, T.; Jekő, J.; Hideg, K. Synthesis 2000, 831.
- (12) Kálai, T.; Altman, R.; Maezawa, I.; Balog, M.; Morisseau, C.; Petrlova, J.; Hammock, D. B.; Jin, L. W.; Trudell, J. R.; Voss, C. J.; Hideg, K. *Eur. J. Med. Chem.* **2014**, *77*, 343.
- (13) (a) Zhadonov, R. I. In *Bioactive Spin Labels*; Zhdanov, R. I., Ed.; Springer: Berlin, **1992**, 23. (b) Chudinov, A. V.; Rosantsev, E. G.; Rosinov, B. V. *Izv. Akad. Nauk Ser. Khim.* **1983**, 409; *Chem. Abstr.* **1983**, 98, 197927.
- (14) Kálai, T.; Balog, M.; Jekő, J.; Hideg, K. Synthesis 1998, 1476.
- (15) Kálai, T.; Bognár, B.; Jekő, J.; Hideg, K. Synthesis **2006**, 2573.
- (16) Úr, Gy.; Kálai, T.; Hideg, K. Tetrahedron Lett. **2016**, 57, 778.
- (17) Yat Sun, O.; Ce, W.; Xiaoven, P.; Lu, Y.; Yao-Ling, Q. US 0074863A1, **2010**; *Chem. Abstr.* **2010**, *152*, 405729.
- (18) Hideg, K.; Hankovszky, H. O.; Lex, L.; Kulcsár, Gy. Synthesis **1980**, 911.
- (19) Berliner, L. J.; Grünwald, J.; Hankovszky, H. O.; Hideg, K. Anal. Biochem. **1982**, 119, 450.
- (20) Altenbach, C.; Oh, K.-J.; Trabanino, R. J.; Hideg, K.; Hubbell, W. L. *Biochemistry* **2001**, *40*, 15471.
- (21) Hankovszky, H. O.; Hideg, K.; Lex, L. Synthesis 1980, 914.
- (22) Hideg, K.; Kálai, T.; Sár, P. C. J. Heterocycl. Chem. 2005, 42, 437.
- (23) (a) Úr, G.; Kálai, T.; Balog, M.; Bognár, B.; Gulyás-Fekete, G.; Hideg, K. Synth. Commun. 2015, 45, 2122. (b) Dell'Acquua, M.; Pirovano, V.; Confalionieri, G.; Arcadi, A.; Rossi, E.; Abbiati, G. Org. Biomol. Chem. 2014, 12, 8019.
- (24) Klapars, A. In Cross Coupling and Heck-Type Reactions; Wolfe, J. P., Ed.; Thieme: Stuttgart, 2013, 215.
- (25) Kiss, L.; Fülöp, F. Chem. Rev. 2014, 114, 1116.
- (26) Manley, P. J.; Bilodeau, M. T. *Org. Lett.* **2004**, 6, 2433.
- (27) Brown, D. J.; Evans, R. F.; Cowden, W. B.; Fenn, M. D. *The Pyrimidines*; Wiley: New York, **1994**.
- (28) Popov, K.; Volovnenko, T.; Turov, A.; Volovenko, Y. J. Heterocycl. Chem. **2010**, 47, 85.
- (29) Yantao, C. Synthesis 2016, 48, 2483.
- (30) Sár, P. C.; Kálai, T.; Bárácz, M. N.; Jerkovich, Gy.; Hideg, K. Synth. Commun. **1995**, 25, 2929.
- (31) Ono, N.; Yamada, T.; Saito, T.; Tanaka, K.; Kaji, A. Bull. Chem. Soc. Jpn. 1978, 51, 2401.

Communication N-Vinylation of Imidazole and Benzimidazole with a Paramagnetic Vinyl Bromide

Györgyi Úr¹, Gergely Gulyás Fekete², Kálmán Hideg¹ and Tamás Kálai^{1,3,*}

- ¹ Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti st. 12, H-7624 Pécs, Hungary; gyorgyi.ur@aok.pte.hu (Gy.U.); kálmán.hideg@aok.pte.hu (K.H.)
- ² Institute of Pharmacognosy, University of Pécs, Rókus st. 2, H-7624 Pécs, Hungary; gergely.gulyas@aok.pte.hu
- ³ Szentágothai Research Center, Ifjúság st. 20, H-7624 Pécs, Hungary
- * Correspondence: tamas.kalai@aok.pte.hu; Tel.: +36-72-536-220

Received: 19 December 2017; Accepted: 31 January 2018; Published: 1 February 2018

Abstract: An *N*-vinylation of imidazole and benzimidazole with a paramagnetic vinyl bromide was investigated. Among the tested procedures, Pd-catalyzed reaction was the most powerful one. The *N*-vinylation of 2-aminobenzimidazole with a β -bromo- α , β -unsaturated pyrroline nitroxide aldehyde offered 1,1,3,3-tetramethyl-1*H*-benzimidazo[1,2-*a*]pyrrolo[3,4-*e*]pyrimidin-2(3*H*)-yloxyl radical and the corresponding non-cyclized Schiff base. The reaction of a β -bromo- α , β -unsaturated pyrroline nitroxide aldehyde with imidazole gave β -imidazo- α , β -unsaturated pyrroline nitroxide aldehyde, which was reduced to the alcohol and converted to an unstable allyl chloride.

Keywords: imidazole; benzimidazole; nitroxide; cross coupling reactions

1. Introduction

Nitroxides belong to a group of stable organic radicals, containing the nitroxyl group as a part of aliphatic, aromatic, bicyclic, or heterocyclic scaffolds. The most commonly used nitroxides are piperidine, pyrrolidine, pyrroline, isoindoline, oxazolidine, imidazoline, and imidazolidine nitroxides with a broad range of applications. They are used as co-oxidants in organic chemistry [1], spin labels on biomolecules [2], as antioxidants and antiproliferative drugs [3,4], mediators of polymerization [5], redox active materials in batteries [6], sensor molecules [7], and as magnetic imaging (MRI) [8] and electron paramagnetic imaging (EPRI) [9] contrast agents, just to name a few examples.

To fulfill these various requirements, a broad range of different nitroxides with miscellaneous substitution patterns need to be prepared, sometimes by using complex synthetic procedures. In the last two decades, transition-metal-catalyzed cross-coupling reactions have proven to be a powerful tool in modifications of vinyl or aryl halide derived stable nitroxide free radicals [10–12] including Heck-, Sonogashira-, and Suzuki-type cross-coupling reactions. In our laboratory, we used these reactions to introduce new substituents onto the pyrroline or tetrahydropyridine ring and to construct nitroxide-condensed heterocycles as well [13,14]. Very recently, we have reported Buchwald-Hartwig amidation procedures for nitroxide-condensed lactam and pyrimidine ring constructions [15] starting from β -bromo- α , β -unsaturated pyrroline nitroxide aldehyde. In this paper, we report the extension of the Buchwald-Hartwig cross-coupling for the *N*-vinylation of imidazoles and benzimidazoles with paramagnetic vinyl bromides.

2. Results and Discussion

Treatment of compound 1 [16] with imidazole (2a) or benzimidazole (2b) (1.0 equiv.) in the presence of Cs_2CO_3 (1.2 equiv.), Pd(OAc)₂ (3 mol %), and racemate 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl

(racBINAP) (4 mol %) in anhyd. toluene at reflux temperature [17] yielded compound **3a** in 45% yield and compound **3b** in 27% yield, respectively (Scheme 1). We note that our optimization attempts, based on reports from Mao [18] and Ho [19], to utilize CuI catalysis or microwave assisted synthesis have furnished, at best, only trace amounts of the desired products.

Scheme 1. Cross-coupling reaction of β -bromo- α , β -unsaturated pyrroline nitroxide aldehyde with imidazole and benzimidazole.

In order to explore the scope of the coupling reactions, *N*-vinylation of 2-aminobenzimidazole **4** with compound **1** was conducted under Pd-catalyzed conditions, as mentioned above, yielding the desired polycondensed heterocyle **5** in 27% yield and Schiff base **6** in 37% yield as a by-product (Scheme 2). The formation of Schiff base was revealed by mass spectrometry measurements, which showed molecular ion peaks at 361/363 with 1/1 intensity.

Scheme 2. Cross-coupling reaction of 2-aminobenzimidazole with β -bromo- α , β -unsaturated pyrroline nitroxide.

To achieve reactive spin label compounds [20,21] aldehyde, **3a** was reduced with NaBH₄ in EtOH at 0 °C to give alcohol **7**, which was converted to allylic chloride **8** via mesylate by nucleophilic substitution with LiCl in acetone (Scheme 3). However, this compound proved to be unstable, as decomposition products appeared after several days despite low temperature (-18 °C) storage. The freshly prepared chloromethyl compound **8** can be applied for irreversible SH specific labeling of proteins.

Scheme 3. Synthesis of 3-chloromethyl-4-imidazol-1-yl-pyrroline nitroxide compound.

3. Materials and Methods

Melting points were determined with a Boetius micro-melting point apparatus (Franz Küstner Nachf. K. G., Dresden, Germany) and were uncorrected. Elemental analyses (C, H, N, and S) were performed with a Fisons EA 1110 CHNS elemental analyzer (Fisons Instruments, Milan, Italy). Mass spectra were recorded on an Automass Multi spectrometer (ThermoQuest, CE, Instruments, Milan, Italy) in EI mode. NMR spectra were recorded on a Bruker Avance III Ascend 500 spectrometer (Bruker BioSpin Corp., Karsluhe, Germany); chemical shifts are referenced to TMS. The paramagnetic compound was reduced to N-hydroxylamine with five equivalents of hydrazobenzene (DPPH)/radical. Measurements were performed at a probe temperature of 298 K in CDCl₃ or DMSO-d₆ solution. ESR spectra were recorded on a Miniscope MS 200 (Magnettech Gmbh., Berlin, Germany) in CHCl₃ solution. All monoradicals gave a triplet line at 14.4–15.6 G. IR spectra were recorded with a Bruker Alpha FT-IR instrument (Bruker Optics, Ettlingen, Germany) with ATR support (ZnSe plate). Flash column chromatography was performed on a Merck (Darmstadt, Germany) Kieselgel 60 (0.040–0.063 mm). Compound 1 [16] was prepared as described previously; compound 5 was reduced to diamagnetic NH form by Fe/AcOH [22]. Other reagents were purchased from Sigma Aldrich (St. Louis, MO, USA), Alfa Aesar (Karlsruhe, Germany), Acros (Geel, Belgium), and TCI (Tokyo, Japan).

Pd-Catalyzed N-Vinylation, General Procedure (3a, 3b, 5, 6)

A round-bottomed flask was charged under argon with compound **1** (1.0 mmol), imidazole **2a** or benzimidazole **2b** or 2-aminobenzimidazole **4** (1.0 mmol), anhyd. toluene (5 mL), Cs_2CO_3 (391 mg, 1.2 mmol), Pd(OAc)₂ (7 mg, 0.03 mmol) and racBINAP (25 mg, 0.04 mmol). The mixture was stirred and heated at reflux temperature for 20 h under Ar. After cooling down to room temperature, the mixture was diluted with THF (10 mL), filtered through Celite, and the solvents were evaporated. The residue was dissolved in CHCl₃ (15 mL), and then washed with brine (5 mL). The organic phase was separated, dried (MgSO₄), and then activated MnO₂ (17 mg, 0.2 mmol) was added. To re-oxidize the hydroxylamine traces, O₂ (200 cm³/min) was bubbled through the mixture for 15 min. The mixture was filtered, evaporated and purified by flash column chromatography with hexane/EtOAc, followed by CHCl₃/Et₂O to give compounds **3a** or **3b** or **5** and **6**.

3-Formyl-4-(1*H*-imidazol-1-yl)-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrole-1-yloxyl Radical (**3a**): 105 mg (45%), yellow solid, m.p. 92–93 °C, R_f 0.54 (CHCl₃/Et₂O/MeOH) (4:1.5:0.5). IR: 1653, 1626 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃ + (PhNH)₂): δ = 8.58 (s, 1H), 7.66 (s, 1H), 7.29 (s, 1H), 7.14 (s, 1H), 1.50 (s, 6H), 1.38 (s, 6H), ¹³C-NMR (125 MHz, CDCl₃ + (PhNH)₂): δ = 186.1, 153.4, 138.0, 136.9, 130.8, 120.2, 68.8, 67.6, 24.2 (2 C), 23.7 (2 C). MS (EI): *m*/*z* (%) = 234 (29) [M]⁺, 220 (29), 204 (22), 108 (54), 42 (100). Anal. calcd. for C₁₂H₁₆N₃O₂: C, 61.52; H, 6.88; N, 17.94; Found: C, 61.44; H, 6.80; N, 17.90.

3-Formyl-4-(1H-benzimidazol-1-yl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole-1-yloxyl Radical (**3b**): 76 mg (27%), deep yellow solid, m.p. 156–157 °C, R_f 0.30 (CHCl₃/Et₂O) (2:1). IR: 1688, 1634, 1604 cm⁻¹. ¹H-NMR (500 MHz, DMSO-d₆ + (PhNH)₂): δ = 9.30 (s, 1H), 8.50 (s, 1H), 7.82 (d, 1H, *J* = 6.0 Hz), 7.41–7.34 (m, 3H), 1.45 (m, 6H), 1.33–1.20 (m, 6H), ¹³C-NMR (125 MHz, CDCl₃ + (PhNH)₂): δ = 187.3, 152.7, 143.4, 143.2, 139.3, 136.2, 124.7, 123.3, 120.4, 110.6. 69.3, 67.0, 24.8, 24.0 (3C). MS (EI): *m*/*z* (%) = 284 (33) [M]⁺, 254 (11), 239 (25), 211 (27), 127 (100). Anal. calcd. for C₁₆H₁₈N₃O₂: C, 67.59; H, 6.38; N, 14.78; Found: C, 67.64; H, 6.20; N, 14.71.

1,1,3,3-Tetramethyl-1H-benzimidazo[1,2-a]pyrrolo[3,4-e]pyrimidin-2-yloxyl Radical (5): 76 mg (27%), yellow solid, m.p. 251–252 °C, $R_f 0.27$ (CHCl₃/Et₂O) (2:1). IR: 1645, 1539, 1510 cm⁻¹. ¹H-NMR of **5** NH-form (500 MHz, DMSO-*d*₆): $\delta = 9.47$ (s, 1H), 8.25 (d, 1H, *J* = 8.0 Hz), 7.82 (d, 1H, *J* = 8.0 Hz), 7.50 (t, 1H, *J* = 8.0 Hz), 7.39 (t, 1H, *J* = 8.0 Hz), 1.92 (s, 1H), 1.52 (s, 6H), 1.46 (s, 6H), ¹³C-NMR of **5** NH-form (125 MHz, DMSO-*d*₆): $\delta = 178.5$, 151.6, 144.4, 129.2, 128.0, 127.8, 125.9, 121.3, 119.5, 112.4,

62.3, 58.7, 32.5 (2 C), 30.2 (2 C). MS (EI): m/z (%) = 281 (27) [M]⁺, 251 (71), 236 (42), 219 (55), 133 (100). Anal. calcd. for C₁₆H₁₇N₄O: C, 68.31; H, 6.09; N, 19.91; Found: C, 68.25; H, 6.10; N, 19.80.

3-[(1H-Benzimidazol-2-yl)iminomethyl]-4-bromo-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl Radical (6): 134 mg (37%), yellow solid, m.p. 122–123 °C, R_f 0.32 (hexane/Et₂O) (1:1). IR: 1583, 1514 cm⁻¹. ¹H-NMR (500 MHz, DMSO- d_6 + (PhNH)₂): δ = 9.22 (s, 1H), 7.67 (br s, 3H), 7.23 (d, 1H, *J* = 9.0 Hz), 1.50 (s, 6H), 1.28 (s, 6H), ¹³C-NMR (125 MHz, CDCl₃ + (PhNH)₂): δ = 159.0, 155.8, 143.6, 139.8, 71.1, 69.6, 24.9 (2 C), 24.8 (2 C). Remark: 2 quaternary carbons and 4 CH carbons are missing because of overlap with DPPH signals. MS (EI): m/z (%) = 363/361 (7/7) [M]⁺, 333/331 (2/2), 252 (67), 41 (100). Anal. calcd. for C₁₆H₁₈BrN₄O: C, 53.05; H, 5.01; N, 15.47; Found: C, 53.10; H, 4.98; N, 15.41.

3-(*Hydroxymethyl*)-4-(1*H-imidazol-1-yl*)-2,2,5,5-*tetramethyl*-2,5-*dihydro*-1*H-pyrrol*-1-*yloxyl Radical* (7): To a stirred solution of compound **3a** (234 mg, 1.0 mmol) in dry EtOH (5 mL), NaBH₄ (46 mg, 1.5 mmol) was added in one portion at 0 °C. After consumption of the starting material (~15 min), the reaction mixture was quenched with aq. NH₄Cl solution (3 mL), and the mixture was immediately diluted with CHCl₃ (10 mL). The organic phase was dried (MgSO₄), filtered and evaporated. The residue was purified by flash column chromatography (CHCl₃/Et₂O) to provide the title alcohol as a pale yellow solid 215 mg (91%), m.p. 129–130 °C, R_f 0.32 (CHCl₃/Et₂O/MeOH) (4:1.5:0.5). IR: 3260, 1654, 1617 cm⁻¹. ¹H-NMR (500 MHz, DMSO-*d*₆ + (PhNH)₂): δ = 7.67 (s, 1H), 7.20 (s, 1H), 7.07 (s, 1H), 3.86 (s, 2H), 1.31 (s, 6H), 1.14 (s, 6H), ¹³C-NMR (125 MHz, CDCl₃ + (PhNH)₂): δ = 139.0, 138.4, 136.2, 129.1, 120.8, 68.1, 67.3, 54.2, 25.1 (2 C), 24.4 (2 C). MS (EI): *m*/*z* (%) = 236 (20) [M]⁺, 222 (12), 206 (3), 191 (16), 41 (100). Anal. calcd. for C₁₂H₁₈N₃O₂: C, 61.00; H, 7.68; N, 17.78; Found: C, 60.92; H, 7.70; N, 17.72.

3-Chloromethyl-4-(1H-imidazol-1-yl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl Radical (8): To a stirred solution of compound 7 (118 mg, 0.5 mmol) in dry CH₂Cl₂ (5 mL) and Et₃N (60 mg, 0.6 mmol), methanesulfonyl chloride (69 mg, 0.6 mmol) was added in one portion at 0 °C. After stirring at this temperature for 1 h, the reaction mixture was washed with brine (5 mL), and the organic phase was separated, dried (MgSO₄), filtered, and evaporated. The residue was immediately dissolved in dry acetone LiCl (42 mg, 1.0 mmol) was added and the mixture was stirred at 40 °C for 30 min. After cooling, the solvent was evaporated, the residue dissolved in CHCl₃ (10 mL) washed with water (5 mL), and the organic phase was separated, dried (MgSO₄), filtered, and evaporated. The residue was purified by flash column chromatography (CHCl₃/Et₂O) to furnish compound **8**, 99 mg (78%) as a yellow solid, mp 105–107 °C, R_f 0.41 (CHCl₃/Et₂O/MeOH) (4:1.5:0.5). IR: 1682 cm⁻¹. (EI): *m/z* (%) = 254/256 (40/13) [M]⁺, 239/241 (20/6), 224/226 (5/2), 189 (74), 42 (100). Anal. calcd. for C₁₂H₁₇ ClN₃O: C, 56.58; H, 6.73; N, 16.50; Found: C, 56.62; H, 6.75; N, 16.43.

4. Conclusions

The *N*-vinylation of imidazole and benzimidazole with activated paramagnetic vinyl bromide (β -bromo- α , β -unsaturated pyrroline nitroxide aldehyde) was accomplished by Pd-catalyzed Buchwald-Hartwig cross-coupling reaction, offering the desired products with moderate yields. As far as we know, this is the first report on *N*-vinylation of heterocycles with nitroxide free radicals. Currently, extending the scope of the developed methodology on other heterocycles, such as nucleic bases [23], is being pursued in our laboratory.

Supplementary Materials: Copies of the ¹H-NMR, ¹³C-NMR spectra are available online http://www.mdpi. com/1422-8599/2018/1/M980/s1.

Acknowledgments: This work was supported by the National Research Development and Innovation Office (OTKA FK 124331) and GINOP 2.3.2-15-2016-00049. The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

Author Contributions: Gy.U.: experimental synthetic work; G.G.F.: NMR recording and interpretation, K.H.: synthesis planning, writing of the manuscript; T.K.: recording MS spectra, writing of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Wertz, S.; Studer, A. Nitroxide-catalyzed transition-metal-free aerobic oxidation processes. *Green Chem.* 2013, 15, 3116–3134. [CrossRef]
- 2. Haugland, M.M.; Lovett, J.E.; Anderson, E.A. Advances in the synthesis of nitroxide for use in biomolecule spin labeling. *Chem. Soc. Rev.* 2018. [CrossRef] [PubMed]
- Lewandowski, M.; Gwozdzinski, K. Nitroxides as Antioxidants and Anticancer Drugs. *Int. J. Mol. Sci.* 2017, 18, 2490. [CrossRef] [PubMed]
- 4. Kálai, T.; Kuppusamy, M.L.; Madan, E.; Bognár, B.; Balog, M.; Jekő, J.; Kuppusamy, P.; Hideg, K. Synthesis and biological evaluation of new paramagnetic curcumin analogues. *Med. Chem.* **2017**, *13*, 761–772.
- 5. Gigmes, D. Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science; Royal Society of Chemistry: London, UK, 2015.
- 6. Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M.D.; Schubert, U.S. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. *Angew. Chem. Int. Ed.* **2017**, *56*, 686–711. [CrossRef] [PubMed]
- 7. Lussini, C.V.; Colwell, J.M.; Fairfull-Smith, K.E.; Bottle, S.E. Profluorescent nitroxide sensors for monitoring photo-induced degradation in polymer films. *Sens. Actuators B* **2017**, *241*, 199–209. [CrossRef]
- Hilt, S.; Tang, T.; Walton, J.H.; Budamagunta, M.; Maetawa, I.; Kálai, T.; Hideg, K.; Singh, V.; Wulff, H.; Gong, Q.; et al. A Metal-Free Method for Producing MRI Contrast at Amyloid-β. *J. Alzheimer Dis.* 2017, 55, 1667–1681. [CrossRef] [PubMed]
- Khramtsov, V.V.; Bobko, A.A.; Tseytlin, M.; Driesschaert, B. Exchange Phenomena in the Electron Paramagnetic Resonance Spectra of the Nitroxyl and Trityl Radicals: Multifunctional Spectroscopy and Imaging of Local Chemical Microenvironment. *Anal. Chem.* 2017, *89*, 4758–4771. [CrossRef] [PubMed]
- 10. Kálai, T.; Balog, M.; Jekő, J.; Hubbell, W.L.; Hideg, K. Palladium Catalysed Coupling Reactions of Paramagnetic Vinyl Halides. *Synthesis* **2002**, *34*, 2365–2372.
- Kokorin, A.I.; Zaripov, R.B.; Gromov, O.I.; Sukhanov, A.A.; Kálai, T.; Lamperth, É.; Hideg, K. Spin Density Distribution in a Nitroxide Biradical Containing ¹³C-Enriched Acetylene Groups in the Bridge: DFT Calculations and EPR Investigation. *Appl. Magn. Reson.* 2016, 47, 1057–1067. [CrossRef]
- 12. Keddie, D.J.; Johnson, T.E.; Arnold, D.P.; Bottle, S.E. Synthesis of profluorescent isoindoline nitroxides via palladium-catalysed Heck alkenylation. *Org. Biomol. Chem.* **2005**, *3*, 2593–2598. [CrossRef] [PubMed]
- 13. Kálai, T.; Bognár, B.; Zsolnai, D.; Berente, Z.; Hideg, K. Synthesis of Nitroxide annulated carbocycles and heterocycles. *Synthesis* **2012**, *44*, 3655–3660. [CrossRef]
- 14. Úr, G.; Kálai, T.; Hideg, K. Facile syntheses of 3,4-disubstituted pyrroline nitroxides and their further synthetic applications. *Tetrahedron Lett.* **2016**, *57*, 778–780. [CrossRef]
- 15. Úr, G.; Fekete, G.G.; Jekő, J.; Hideg, K.; Kálai, T. Palladium- and/or Copper-Catalyzed Cross-Coupling Reactions of Paramagnetic Vinyl Bromides and Iodides. *Synthesis* **2017**, *49*, 3740–3748.
- 16. Zhdanov, R.I. Nitroxyl Radicals and Non-Radical Reactions of Free Radicals. In *Bioactive Spin Labels;* Zhdanov, R.I., Ed.; Springer: Berlin, Germany, 1992; pp. 23–82.
- 17. Hesse, S.; Kirsch, G. Buchwald-Hartwig amination of β-chloroacroleins by Lactams and Heteroarylamines. *Synthesis* **2007**, *39*, 1571–1575. [CrossRef]
- Mao, J.; Hua, Q.; Guo, J.; Shi, D.; Ji, S. CuI-Catalyzed Cross-coupling Reactions of β-Vinyl Bromides with Nitrogen–Containing Heterocycles. *Synlett* 2008, *19*, 2011–2016. [CrossRef]
- 19. Ho, S.L.; Dao, P.D.Q. Microwave-Assisted Synthesis of Benzo[4,5]imidazo[1,2-*a*]pyrimidines from β-bromo-α,β-unsaturated aldehydes and 2-aminobenzimidazoles. *Synlett* **2017**, *28*, 1811–1815.
- 20. Hankovszky, H.O.; Hideg, K.; Lex, L. Nitroxyls; VII¹. Synthesis and Reactions of Highly Reactive 1-Oxyl-2,2,5,5-tetramethyl-2,5-dihydropyrrole-3-ylmethyl Sulfonates. *Synthesis* **1980**, *12*, 914–916. [CrossRef]
- 21. Berliner, L.J.; Grünwald, J.; Hankovszky, H.O.; Hideg, K. A Novel Reversible Thiol-Specific Spin Label: Papain Active Site Labeling and Inhibition. *Anal. Biochem.* **1982**, *119*, 450–455. [CrossRef]

- 22. Sár, P.C.; Kálai, T.; Bárácz, M.N.; Jerkovich, G.; Hideg, K. Selective Reduction of Nitrones and Nitroxides to Functionalized Secondary Amines. *Synth. Commun.* **1995**, *25*, 2929–2940. [CrossRef]
- 23. Shelke, S.A.; Sigurdsson, S.T. Site Directed Spin Labeling for EPR Studies of Nucleic Acids. In *Modified Nucleic Acids*; Nakatani, K., Tor, Y., Eds.; Springer: Basel, Switzerland, 2016; pp. 159–187.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).