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2. Abbreviations 

 

Akt    protein kinase B 

Bax    Bcl-2-associated X protein 

CM    conditioned medium  

DKO    double knockout  

EC    effective concentration 

ERK1/2   extracellular signal regulated kinases 1/2  

Gi    inhibitory G protein 

GPCR    G protein-coupled receptor  

GRI    Genome Research Institute  

GRI977143   [2-((3-(1,3-dioxo-1Hbenzo[de]isoquinolin-2(3H)-yl)propyl)thio)benzoic acid]  

Gy    Gray (radiation unit) 

H2L    Hit2Lead 

H2L5547924   [4,5-dichloro-2-((9-oxo-9H-fluoren-2-yl)carbamoyl)benzoic acid] 

H2L5828102   [2-((9,10-dioxo-9,10-dihydroanthracen-2-yl)carbamoyl)benzoic acid] 

HUVEC   human umbilical vein endothelial cells  

IEC-6    rat intestinal epithelial cell line 6 

LD    lethal dose  

LIM    Lin-11, Isl-1 and Mec-3 proteins  

LPA    lysophosphatidic acid 

LPAR    LPA receptor  

MEF    mouse embryonic fibroblast cell 

MEK    mitogen-activated protein kinase/extracellular signal regulated kinase 

MM1    rat hepatoma cells  

NFB    nuclear factor B  

NHERF2   Na
+
-H

+
 exchange regulatory factor 2  

NSC12404   [2-((9-oxo-9H-fluoren-2-yl)carbamoyl)benzoic acid] 

OTP    octadecenyl thiophosphate  

PARP-1   poly (ADP-ribose) polymerase 1  

PDZ    PSD95/Dlg/ZO-1 domain 

PI3K   phosphoinositide-3-kinase 

PPARγ    peroxisome proliferator-activated receptor gamma 



PSD95    postsynaptic density protein 95  

QPCR    real-time quantitative polymerase chain  reaction  

TNF-    tumor necrosis factor  

TRIP6    thyroid receptor interacting protein 6  

UC-DDC   University of Cincinnati Drug Discovery  Center  

U937    human monocyte lymphoma cell line  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Introduction 

 

 Lysophosphatidic acid (LPA) species regulate many fundamental cellular responses, ranging 

from cell survival through cell proliferation to cell motility and migration. Biological activities of LPA 

species are mediated through interactions with specific G protein-coupled plasma membrane 

receptors (GPCR; LPA receptor 1-6, LPAR 1-6) and the nuclear peroxisome proliferator-activated 

receptor gamma (PPARγ; Tigyi, 2010). 

 Dysregulated LPA signaling has been suggested to play a role in the pathogenesis of various 

human disorders. In the cardiovascular system activation of LPA1 and LPA3 receptors has been 

shown to influence cardiomyocyte contraction (Cremers et al., 2003) and lead to cardiac hypertrophy 

(Chen et al, 2008). LPA promotes tumor cell invasion, metastasis and angiogenesis via stimulation of 

LPA2 and LPA3 receptors (Kato et al., 2012; Pustilnik et al., 1999), while LPA1 might act as a tumor 

suppressor (Yamada et al., 2009). Different studies revealed the connection between activation of 

LPA1 receptor and the development of organ fibrosis (Tager et al., 2008), neuropathic pain (Inoue et 

al., 2004), osteoarthritis (Mototani et al., 2008), the absence of LPA1 and schizophrenia (Harrison et 

al., 2003), as well as the inhibitory role of LPA2 receptor in cholera toxin-induced secretory diarrhea 

(Li et al., 2005).   

 Discovery of individual LPA receptors followed by the effort to develop receptor-subtype 

selective agonists and antagonists accelerated understanding of LPA signaling and raised the 

possibility of pharmacotherapeutic LPAR modulation (Im, 2010). Despite the lack of ligand-bound 

GPCR crystal structures, mutagenesis studies combined with computational analysis led to the 

generation of numerous LPAR agonist and antagonist candidates (Im, 2010). Development of LPA-

based drug candidates has been limited to the discovery of lipid-like ligands, which is understandable 

due to the hydrophobic environment of the LPA GPCR ligand binding pockets (Valentine et al., 2008). 

Only a few LPA receptor ligands break away from lipid-like structural features, among which Ki16425, 

an LPA1/2/3 antagonist (Ohta et al., 2003), and the AM095-152 series of LPA1-selective compounds 

are of importance (Swaney et al., 2011).   

 A decade ago, we had already shown that LPA has profound activity in preventing apoptosis 

and can also rescue apoptotically condemned cells from the progression of the apoptotic cascade 

(Deng et al., 2002; Deng et al., 2007). We developed a long-acting LPA mimic, octadecenyl 

thiophosphate (OTP; Durgam et al., 2006), which has superior efficacy compared to LPA in vitro and 

in vivo in rescuing cells and animals from radiation-induced apoptosis (Deng et al., 2007). LPA and 

OTP not only prevented apoptosis induced by radiation injury when applied prior to the irradiation of 

the cells but acted as radiomitigators by rescuing apoptotically condemned cells when applied two 

hours postirradiation (Deng et al., 2002). Prosurvival effects of OTP and LPA were mediated by the 

LPA2 receptor subtype. However, in spite of OTP’s effectiveness in animal models of acute radiation 

syndromes, it is lipid-like with suboptimal partition coefficient from a drug development standpoint and 

it lacks receptor subtype specificity. The pan-agonist properties of OTP  might lead to suboptimal 

antiapoptotic efficacy in cells coexpressing LPA1 and LPA2 receptors because the former receptor has 

been shown to promote apoptosis via anoikis (Funke et al., 2012).  



 Our laboratory focused on developing metabolically stabilized analogs of LPA that could be 

used as long-acting stimulators of the prosurvival signaling mediated by LPA receptors. These studies 

led to the previously unrealized role of the LPA2 GPCR as a center of a macromolecular signaling 

complex mediated through unique sequence motifs present in its C-terminal domain (E et al., 2009; 

Lin et al., 2007). We discovered that LPA2 via a C311xxC half zinc-finger-like motif binds the 

proapoptotic protein Siva-1 from the Lin-11, Isl-1 and Mec-3 (LIM) family of proteins and this complex 

is withdrawn from GPCR recycling, undergoes polyubiquitination and is degraded in the proteasome 

(Lin et al., 2007). In a subsequent study, we have determined that the LPA2 GPCR makes a ternary 

complex with two other PSD-95, DlgA, and ZO-1 (PDZ) binding domain containing proteins, the 

thyroid receptor interacting protein 6 (TRIP6) and the Na
+
-H

+
 exchange regulatory factor 2 (NHERF2). 

The ternary complex consisting of LPA2 – TRIP6 – 2x(NHERF2) is formed upon LPA stimulation of 

the GPCR leading to enhanced, long-lasting activation of the mitogen activated protein 

kinase/extracellular signal regulated kinase (MEK)-extracellular signal regulated kinases 1/2 (ERK1/2) 

and phosphoinositide-3-kinase (PI3K)-protein kinase B (Akt)-nuclear factor B (NFB) prosurvival 

pathways required for the LPA2-mediated antiapoptotic effect (E et al., 2009). Ternary complex 

formation upon LPA2 receptor activation plays a unique role in chemoresistance (Tigyi et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Aims of the study 

  

4.1 Identify novel nonlipid and drug-like hits specific for the LPA2 receptor subtype:  

4.1.1  Similarity searching of NSC12404 [2-((9-oxo-9H-fluoren-2-yl)carbamoyl)benzoic acid], 

 a serendipitously identified, week nonlipid LPA2 receptor agonist using the University 

 of Cincinnati Drug Discovery Center (UC-DDC) chemical library database.  

4.1.2  Experimentally characterize new nonlipid LPA2 agonist analogs at the LPA1-5, GPR87, 

 and P2Y10 receptors using stable cell lines individually expressing these LPA 

 receptors, vector-transfected control cells and receptor mediated Ca
2+

 mobilization 

 assay. 

4.2 Determine the effect of the lead compound on cell growth using vector- and LPA2-transduced 

mouse embryonic fibroblast (MEF) cells derived from LPA1 and LPA2 double knockout (DKO) 

mice.  

4.3 Determine the effect of the lead compound on tumor cell invasion using invasive rat 

hepatoma (MM1) cells and human umbilical vein endothelial cell (HUVEC) monolayers. 

4.4 Characterize the selected nonlipid LPA2 agonist for antiapoptotic action using different 

intrinsic and extrinsic apoptosis models.  

4.4.1  Determine anti-apoptotic efficacy of the lead compound in a model of Adriamycin-, 

 and serum withdrawal-induced  apoptosis, using vector- and LPA2-transduced MEF 

 cells derived from LPA1 and LPA2 DKO mice, based on Bcl-2-associated X protein 

 (Bax) translocation, caspase 3, 7, 8, 9 activation, poly (ADP-ribose) polymerase 1 

 (PARP-1) cleavage and DNA fragmentation assays.  

4.4.2  Determine anti-apoptotic efficacy of the lead compound in a model of tumor necrosis 

 factor α (TNF-α)-induced apoptosis, using the rat intestinal epithelial cell line 6 (IEC-

 6), based on DNA fragmentation assay. 

4.5 Characterize the selected nonlipid LPA2 agonist for radiomitigating action in vitro and in vivo:  

4.5.1  Determine radiomitigative efficacy of the lead compound in a model of γ-irradiation-

 induced apoptosis using vector- and LPA2-transduced MEF cells derived from LPA1 

 and LPA2 DKO mice, based on Bax translocation, caspase 3, 7, 8, 9 activation, 

 PARP-1 cleavage and DNA fragmentation assays. 

4.5.2  Determine anti-apoptotic efficacy of the lead compound in a model of γ-irradiation-

 induced bystander apoptosis using unirradiated IEC-6 cells and conditioned medium 

 (CM) of γ-irradiated human monocyte lymphoma cell line (U937), based on caspase 3 

 and 7 activation. 

4.5.3  Determine the radiomitigative effect of the  lead compound on the hematopoietic 

 acute radiation syndrome using C57BL6 mice exposed to 6.6 Gray (Gy) total body γ-

 irradiation (~ lethal dose, LD100/20). 

4.5.4  Determine the effect of the lead compound on malignant transformation of γ-

 irradiated cells using LPA2-transduced  MEF cells derived from LPA1 and LPA2 DKO 

 mice and soft agar assay. 



4.6 Characterize prosurvival signaling mechanisms activated by the selected nonlipid LPA2 

agonist:  

4.6.1  Determine ERK1/2 activation in the presence of the lead  compound using vector- and 

 LPA2-transduced mouse MEF cells derived from LPA1 and LPA2 DKO mice and 

 immunoblot analysis.  

4.6.2  Determine ligand induced supramolecular complex formation between LPA2, TRIP6 

 and NHERF2 in the presence of the lead compound using HEK293T cells, pull-down 

 assay, and immunoblot analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Discussion and Conclusions 

 

 Our previous work aimed at the virtual discovery of LPA1-specific compounds has 

serendipitously identified NSC12404, which is a weak but specific agonist of LPA2 (Perygin, 2010).  In 

the present study, we used this hit for virtual screening of the UC-DDC chemical library database. 

This approach identified three new selective nonlipid LPA2 agonists:  

GRI977143 [2-((3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propyl)thio)- benzoic acid], 

H2L5547924 [4,5-dichloro-2-((9-oxo-9H-fluoren-2-yl)carbamoyl) benzoic acid], and H2L5828102 [2-

((9,10-dioxo-9,10-dihydroanthracen-2yl)- carbamoyl) benzoic acid]. In receptor mediated Ca
2+

 

mobilization assays NSC12404, H2L5547924, H2L5828102, and GRI977143 only activated LPA2 and 

failed to activate any of the other established and putative LPA GPCRs when applied up to 10 µM. A 

10 µM concentration of these compounds have also been tested for the inhibition of the Ca
2+

 

response elicited by the ~EC75 concentration of LPA 18:1 at those receptors that the compound failed 

to activate when applied at 10 µM. We found that at this high concentration NSC12404 and 

GRI977143 inhibited LPA3 but none of the other receptors we tested were either activated or inhibited 

by these two compounds. H2L5547924 activated LPA2 but partially inhibited LPA1, LPA3, LPA4, 

GPR87, and P2Y10. H2L5828102 although was a specific agonist of LPA2 but fully inhibited LPA3 and 

partially inhibited LPA1, GPR87 and P2Y10. Based on its lower EC50 concentration to activate the 

LPA2 receptor compared to NSC12404 and because it only inhibited the LPA3 receptor compared to 

the H2L compounds we selected GRI977143 for further characterization in cell-based assays. 

 We showed that specific stimulation of the LPA2 receptor subtype promotes cell growth. This 

is the first pharmacological evidence that this receptor subtype mediates mitogenesis. Surprisingly, 

the LPA receptor panagonist OTP and GRI977143 had equally robust activity on cell proliferation. We 

note that OTP and GRI977143 after 3 days also promoted the growth of vector-transduced MEF cells, 

which might be due to off-target or indirect effects. We cannot exclude the possibility that OTP and 

GRI977143 somehow potentiated the effect of the 1.5% serum present in the medium.  There might 

be differences in the pharmacokinetic properties of these ligands, which could explain the differences 

we noted. Future experiments will have to address the differences on cell growth observed between 

these ligands. 

 LPA has been shown to promote cancer cell invasion and metastasis (Kato et al., 2012; 

Pustilnik et al., 1999). We tested the effect of GRI977143 in an in vitro invasion model that has been 

considered a realistic model of metastasis (Mukai et al., 2005; Uchiyama et al., 2007). Stimulation of 

MM1 hepatocarcinoma cells with GRI977143 elicited a dose-dependent increase in the number of 

cells that penetrated the HUVEC monolayer. However, this effect, although significant at a 10 µM 

concentration of GRI977143, was modest compared to that of LPA. The MM1 cells express LPA2 >> 

LPA1 > LPA6 > LPA5 > LPA4 transcripts, whereas HUVECs express LPA5 >> LPA4 > GPR87 ~ LPA1 > 

LPA2 transcripts determined by quantitative RT-PCR (Lee & Tigyi – unpublished). The increase in 

GRI977143-induced invasion of MM1 cells is likely to represent the effect of selective stimulation of 

LPA2 in the invading MM1 cells rather than in HUVEC due to the very low expression of this receptor 

subtype in the cells of the monolayer (Gupte et al., 2011). 



 Studies have already established the role of the LPA2 receptor in protecting cells from 

programmed cell death (Deng et al., 2002; E et al., 2009; Lin et al., 2007). The LPA2-specific agonist 

properties of GRI977143 allowed us to test this hypothesis in the LPA2 knock-in MEF cells and in IEC-

6 cells, the latter of which endogenously expresses multiple LPA GPCRs (Deng et al., 2002; Deng et 

al., 2007). Our experiments showed that by activating the LPA2 receptor GRI977143 effectively 

reduces cytosolic Bax translocation, activation of initiator and effector caspases, DNA fragmentation 

and PARP-1 cleavage associated with Adriamycin-, serum withdrawal-, or γ-irradiation induced 

intrinsic apoptosis. GRI977143 had no effect in the vector-transduced MEF cells with the exception of 

a minimal reduction in DNA fragmentation in the Adriamycin model of apoptosis, which might be due 

to some yet unknown off-target effect of the compound. There was no such detectable effect of 

GRI977143 in the serum withdrawal- or γ-irradiation-induced apoptosis models. In contrast to 

GRI977143, we have also noticed that LPA and OTP had a slight attenuating effect in vector-

transfected MEF cells. Quantitative RT-PCR analysis showed that the MEF cells derived from LPA1 

and LPA2 double KO mouse embryos express appreciable amounts of LPA4/5/6 and P2Y10, which can 

explain the antiapoptotic effect of LPA and OTP. It is also important to recognize that GRI977143 

protected IEC-6 cells from apoptosis, which endogenously express multiple LPA GPCR subtypes. 

This result is the first evidence that we know of in the literature that specific activation of LPA2 is 

sufficient to evoke an antiapoptotic effect and this effect is not limited to the LPA2 knock-in MEF cells. 

Thus, we propose that specific activation of LPA2 is sufficient to protect cells from apoptosis. The 

specific agonist properties of GRI977143 might represent an advantage over LPA and other receptor-

nonselective LPA mimics that also stimulate LPA1 receptor subtype activation, which has been shown 

to promote cell death via anoikis in tumor cells (Furui et al., 1999), in cardiac myocytes (Chen et al., 

2006), and in pulmonary epithelial cells (Funke et al., 2012). 

 We also examined the effect of LPA and GRI977143 in a model of radiation-induced 

bystander apoptosis in vitro. This model has relevance to the radiomitigative action of LPA analogs 

because in the animal experiments the LPA analogs were not present during the first 24 h 

postirradiation when the initial wave of radiation-elicited apoptosis takes place. Nevertheless, 

administration of GRI977143 or OTP (Deng et al., 2007) at +24 h postirradiation is effective in 

protecting the lives of the animals. We hypothesize that GRI977143-mediated activation of LPA2 

receptors in the tissues exerts some of its protective action by attenuating bystander effects of 

radiation injury that occur 24 – 48 h post injury and are possibly mediated by agents similar to those 

present in the CM of irradiated U937 cells in our in vitro model (Kim et al., 2008). Our results obtained 

with GRI977143 in the different γ-irradiation injury models consistently suggest that this compound 

exerts a radiomitigative action and is capable of rescuing apoptotically condemned cells in vitro and in 

vivo.  In this context we were surprised to find that malignant transformation of the irradiated and 

rescued MEF cells did not show enhancement after GRI977143 treatment. This observation will need 

to be followed up in vivo but already hints that GRI977143-treated cells have been able to repair DNA 

damage that otherwise could have led to a high-rate of transformation revealed by growth in soft agar. 

 LPA2-mediated activation of the ERK1/2 prosurvival kinases is a required event in 

antiapoptotic signaling (E et al., 2009; Lin et al., 2007).  Consistent with our previous results obtained 



with LPA and OTP (Deng et al., 2007; E et al., 2009; Lin et al., 2007), GRI977143 treatment resulted 

in a robust ERK1/2 activation. We have previously shown that in addition to the Gi protein-mediated 

signals demonstrated by the partial pertussis toxin-sensitivity of the effect (Deng et al., 2002), the 

LPA2-mediated antiapoptotic effect requires additional ligand-induced assembly of a C-terminal 

macromolecular complex consisting of LPA2, TRIP6, and a homodimer of NHERF2 (E et al., 2009; Lin 

et al., 2007). We found that GRI977143 elicited the assembly of this signalosome, which can explain 

the concomitant robust ERK1/2 activation. 

 Taken altogether, the present findings indicate that nonlipid LPA2-specific agonists, such as 

those described here, represent an excellent starting point for the development of lead compounds 

with radiomitigative effect and potential therapeutic utility for the prevention of programmed cell death 

involved in many types of degenerative and inflammatory diseases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. Summary of scientific results 

 

6.1 Identification of novel nonlipid compounds, GRI977143, H2L5547924, and H2L5828102, that 

are specific agonists of LPA2 and do not activate other LPA GPCRs including LPA1/3/4/5, 

GPR87, or P2Y10. 

6.2 Lead compound GRI977143 is less potent but equally efficacious as LPA and OTP in 

protecting cells against different forms of intrinsic and extrinsic apoptosis in vitro. 

6.3 GRI977143 promotes carcinoma cell invasion of human umbilical vein endothelial cell 

monolayers and fibroblast proliferation, however, it does not induce malignant transformation 

of the irradiated and rescued MEF cells. 

6.4 GRI977144 shows the features of a radiomitigator:  

6.4.1  It rescues apoptotically condemned cells in vitro from high-dose γ-irradiation injury 

 when administered 1 h after radiation exposure. 

6.4.2  It is effective in rescuing the lives of mice from deadly levels of radiation when 

 administered 24 h after radiation exposure. 

6.5 GRI977143 inhibits bystander apoptosis elicited by soluble proapoptotic mediators produced 

by irradiated cells. 

6.6 By specifically activating LPA2 receptors GRI977143 robustly activates the ERK1/2 survival 

pathway and leads to the assembly of a macromolecular signalosome consisting of LPA2, 

TRIP6, and NHERF2, required for the prosurvival signaling elicited via this receptor subtype. 
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