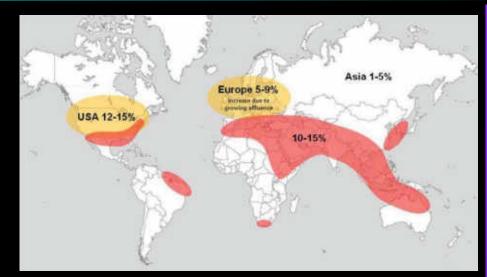
URINARY STONES

Kinga Villanyi MD PhD Dept. of Urology, University Medical School of Pecs

Prehistoric bladder stone



Epidemiology

- Prevalence: 2-4 %
- Incidence: 0,1-0,5%
- Recidive rate: 10 % per year

50% per 10 year

- ♂:♀=3:1
- Differences: geography, climate, feeding, life stile, feedings, gender, age, occlusion, infectio, metabolic disorders, familiar factors
 - Germany P:4% 4,7 % I: 0,54% 1,47%
 - **↑white, asian people**
 - Jblack, middle-south american people

Stone forming components

- Matrix: 2-10 %
- Stone forming crystals
 Ca oxalate, phosphate salts, uric acid, brushit, apatit, cystin
- Organic globulins, mucoprotein, hexosamin, water etc. matrix stone contains 65 %
- Rare components xantin, silicate, medicine induced stones: triamteren, indinavir
- Inhibitors: magnesium, citrate etc.

Inhibitors & promoters

INHIBITORS

Inhibits uptake – Oxalobact. formigenes

Inhibits crystal growth

- Citrate complexes with Ca
- Magnesium complexes with oxalates
- Pyrphosphate complexes with Ca
- Zinc

Inhibits crystal aggregation

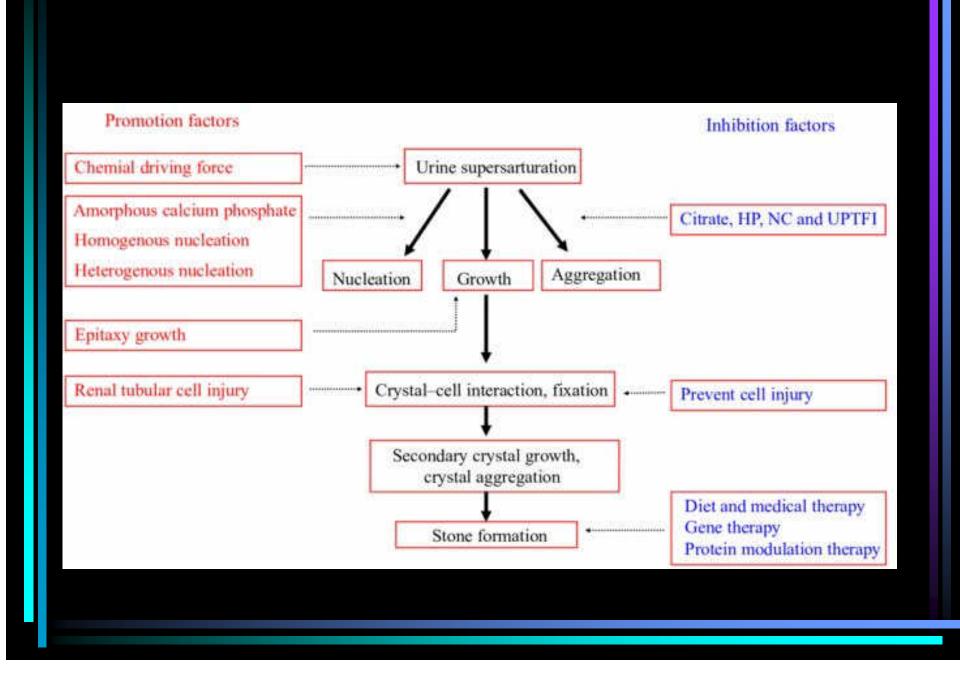
- Glycosaminoglycans
- Tamm- Horsfall protein etc.
- other proteins

PROMOTERS

- Bacterial infection
- Matrix
- Anatomic abnormalities PUJ obst., MSK
- Prolonged immobilisation
- ?? Nanobacteria seen in 97% of renal stones

Inhibitor proteins

28 proteins

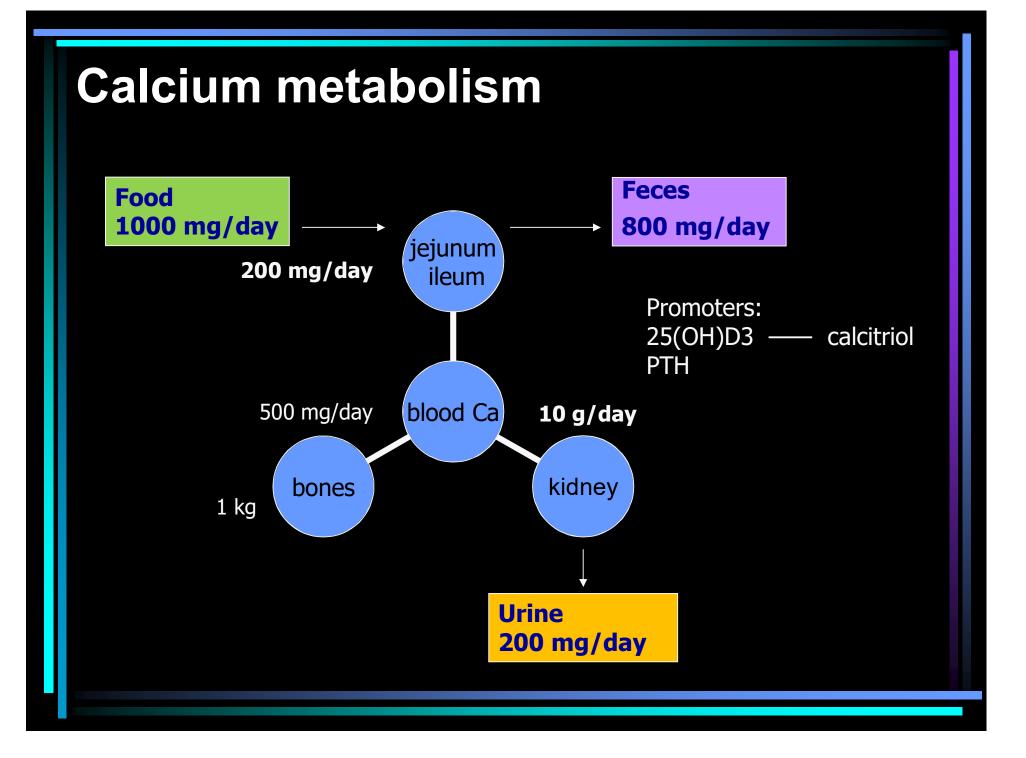

neutrophil elastase superoxide dismutase collagen type I a -1-microglobulin apolipoprotein A1 haemoglobin hyaluronan Tamm-Horsfall glycoprotein fibronectin collagen type IV ·a-1-antitrypsin albumin chondroitin sulphate transferrin α & γ-globulins prothrombin fragment 1 α-defension lithostathine inter-a-trypsin inhibitor CD59 protein matrix Gla protein calgranulin annexin-II β-2-microglobulin retinol-binding protein a-1-acid glycoprotein heparan sulphate myeloperoxidase chain A osteocalcin bikunin

osteopontin

Stone formation

CONC.

GROWING PHASE	Precipitation, aggregation		
STONE FORMATION	Formation product salt can no longer be held in solution homogenous nucleation will occur 		
METASTABLE PHASE	 Metastable urin – supersaturated, inhibitors prevent crystallization heterogenous nucleation may occur de novo crystall formation very slow crystal growth or aggregation will occur 		
SOLUTION	Solubility product - depends on T, pH • solid and solvent stages in equilibrium • no crystal formation, or may dissolve		

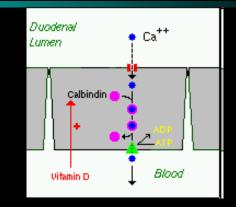


Stone types I. – Ca containing

STONE TYPE	%	RADIOPACITY	CHARACTER
Ca oxalate	75-80	opaque	hard
monohydrate		$CaC_2O_4 \times H_2O$	brown /pale yellow
dihydrate		$CaC_2O_4 \times 2H_2O$	mulberry surface
Ca phosphate apatite brushite		very opaque Ca ₁₀ (PO ₄) ₆ (OH) ₂ CaHPO ₄ 2H ₂ O	dark brown hard
Mg ammoniun	10	moderately op.	chalky white
phosphate		MgNH ₄ PO ₄ 6H ₂ O	often large
Carbonate apatite		Ca ₁₉ (PO ₄) ₆ CO ₃	strong alkaline pH

Stone types II.

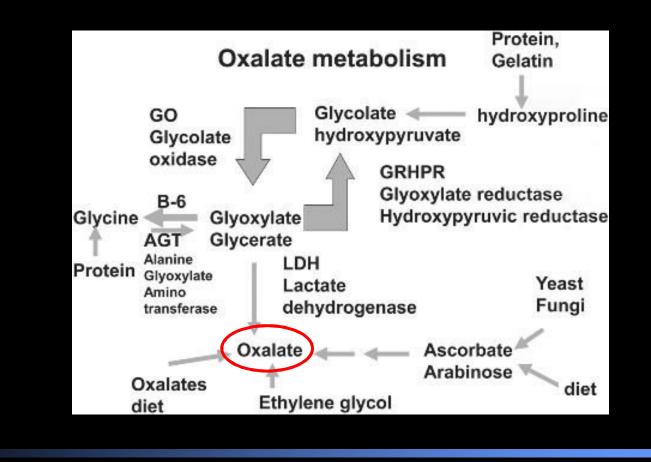
STONE TYPE	%	RADIOPACITY	CHARACTER
Uric acid	8-10	non-opaque	faceted multiple light brown acidic pH
Cystine	2	slightly opaque $H_{2N-C-COOH}$ $H_{2N-C-COOH}$ H-C-S $S-C-HH$ H	compact, yellowish metabolic acidic pH
Xanthin			rare
Indinavir (protease inhibitor for HIV)		non-opaque can not seen on CT!	rare acidify urine


Hypercalcaemia

- Se Ca ↑, U Ca ↑
- Causes:

malignancy associated sarcoidosis and other granulomatous diseases, glucocortoikoid induced, pheochromocytoma, AIDS, immobilization, familial,

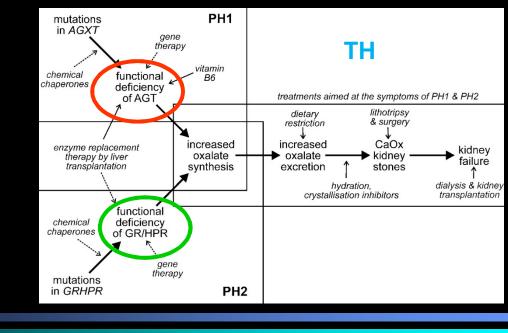
iatrogenic – thiazid, lithium, Vitamin A and D etc.)


Hypercalciuria

- U Ca ↑
- Active and passive uptake
- Absorptive: increased intestinal absorption
- Renal: primary renal leak of calcium (50-60%)
- Resorptive (hyperparathyreoidism): ↑SeCa, ↑ PTH, increased bone demineralisation
- Idiopathic (5-10%) familial

Oxalate metabolism

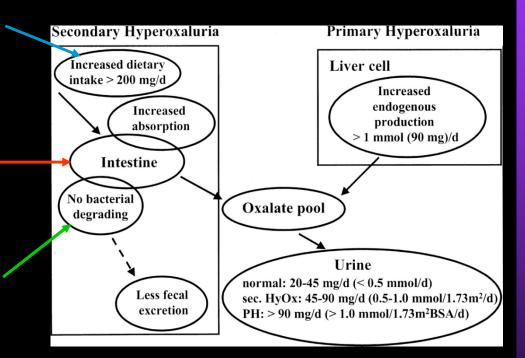
Hyperoxaluria: primary – liver deficiency secundary - dietary, intestinal damage



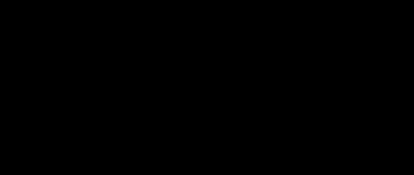
Primary hyperoxaluria

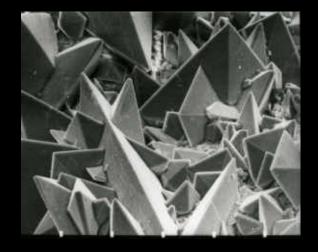
- Toxic: ethylen glykol, methoxyfluran, piridoxin deficiency
- Enzyme deficiency 1. type:

alanin-glyoxilate amino - transferase (AGT) defect 1/120000, AR, progressive, nephrocalcinosis, oxalosis, renal failure

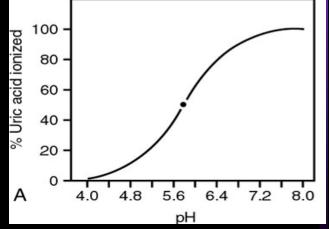

 Enzyme deficiency 2. type: glycolate and hydroxypiruvate reductase defect or L-glyceric aciduria (GR/HRP) much less, mild, ¹U glycerate

Secondary HO

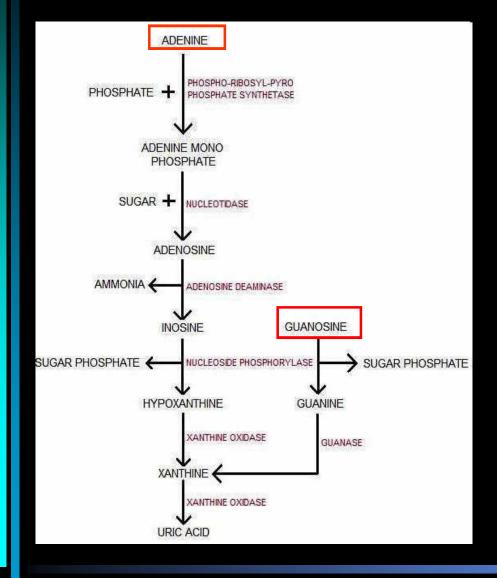

- 10-50% comes from food, exchanger protein
- Dietary imbalance
- Enteral: bypass surgery, infl. bowel disease, pancreatic insuff., ileal resection, fat malabasorption - fatty acids bind Ca
- Oxalobacter formigenes


 oxalate decarboxylase
- TH: low fat, low oxalate diet; and calcium

Ca-oxalate stones



Uric acid stones


- Origin endogenous - end product of purin metabolism exogenous – red meet, alcohol anchovy
- Kidney pK: 5,3 solubility: depends on the pH no inhibitor
- URIC ACID Glomerulus GLOMERULAR FILTRATION 100% 81 REABSORPTION 98%-100% Net reabsorption of 90% of Proximal 0%-2% 82 Convoluted filtered SECRETION Tubule uric acid 40%-48% REABSORPTION \$3 EXCRETION 100

• Types

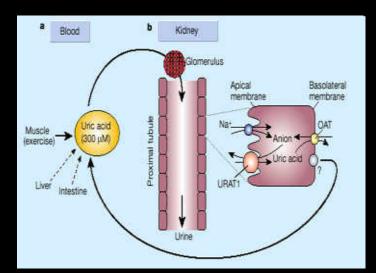
- hyperuricaemia: ↑Se UA, ↑U UA
- hyperuricosuria: ↑U UA
- idiopathic: acidic urine pH

Hyperuricaemia

- gout
- others: psoriasis, pagets disease, alcoholism, obesity, high blood pressure, hypothyroidism, eclampsia, Down syndrome, sarcoidosis, dehydration
- renal failure
- deficiency of enzymes
- drugs: aspirin, cyclosporine, ethambutol, diuretics (increase urine formation)

Hyperuricosuria

• Reabsorption: exchange for anions,


Passively by Na⁺-coupled transport
Actively by organic anion transport (OAT) and URAT1 proteins

• Defects

-tubular dysfunctions

-deficiency of transport genes: 9 genes

-drugs: amlodipine, atorvastatin, losartan, ACTH, cortisone

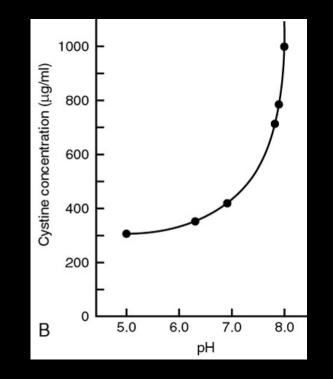
TH: diet alkalization allopurinol (analogue to hypoxanthine)

Uric acid stones

Struvite stones

- Conditions: urine pH of 7.2 or above ammonia in the urine
- Urea splitting bacteria: Proteus, Klebsiella, Pseudomonas, Serratia, Providentia, Haemophilus, Ureaplasma etc. except E. coli and Gram + species

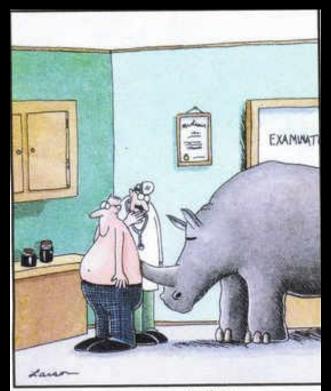
 $\frac{\text{NH}_2-\text{CO}-\text{NH}_2+\text{H}_2\text{O} \text{ (urea)}}{\text{NH}_3+\text{H}_2\text{O}\rightarrow\text{NH}_4^++\text{OH}^-} \rightarrow 2\text{NH}_3+\text{CO}_2$ $\frac{\text{NH}_3+\text{H}_2\text{O}\rightarrow\text{NH}_4^++\text{OH}^-}{\text{CO}_2+\text{H}_2\text{O}\rightarrow\text{H}_2\text{CO}_3\rightarrow2\text{H}^++\text{CO}_3^-}$


- Alkaline pH: precipitation of Mg, ammonium, carbonate and apatite crystals
- **TH:** antibiotics acidify urine

Struvite stone

Cystin stone

- autosomal-recessive disorder of transmembrane transport of dibasic amino-acids (COLA), manifested in the intestine and in the kidney
- Solubility depends on the pH
 - pH5 300 mg/l,
 - pH7 400 mg/l,
 - pH9 1000mg/l
- TH: ↑ fluid intake alkalization - pH 7,5 ↑ diet -↓ methionin D penicillamin tiopronin (Thiola, Acadione) others: vitamin C, glutamin, acetazolamid



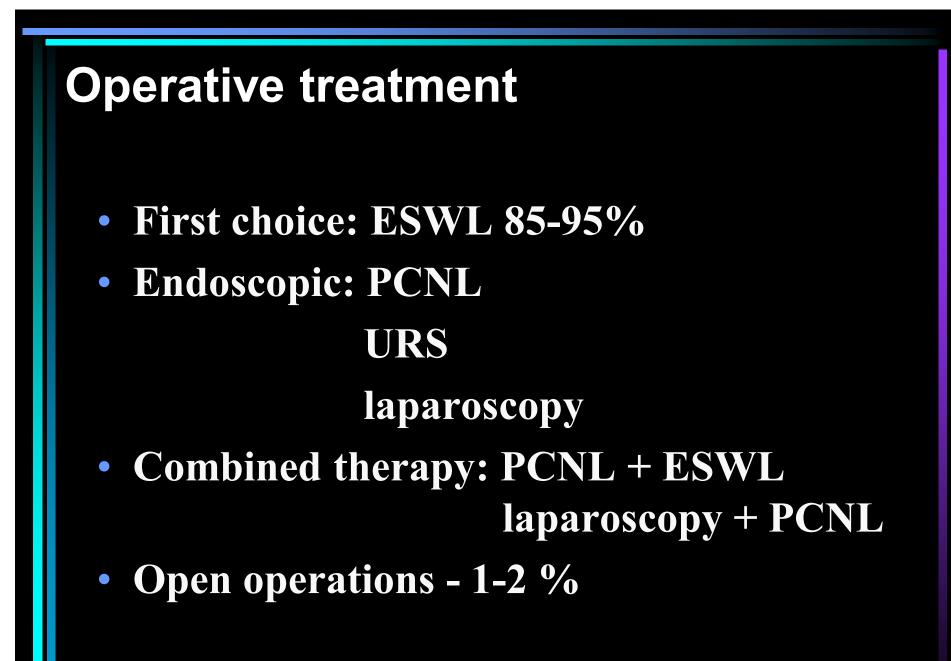
Clinical signs


- renal stone no pain, or blunt renal pain
- ureteric stone renal colic ± radiation
- Diff: acut abdomen
- haematuria
- frequency
- complications:
 - obstruction
 - infection
 - chills / fewer
 - renal failure

"Wait a minute here, Mr. ADANS ... Maybe it isn't kidney stones after all."

Diagnosis I.

- Anamnesis: familial, concomittant diseases, operations, feeding, medicines
- Phisical examination, differential diagnostic signs (acut abdomen)
- Urine sediment: blood, white blood cells, crystals, bacteria
- Urin culture
- Laboratory examinations
- 24 h urin collection for Ca, P, uric acid, (Mg, citrate, oxalate)


Diagnosis II.

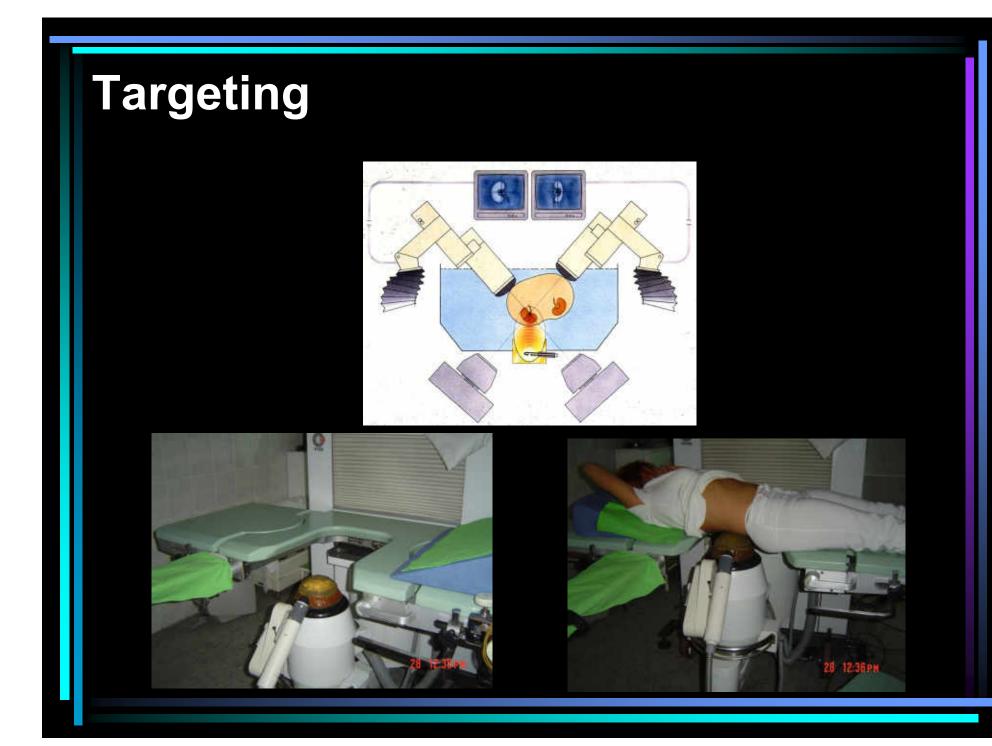
- Ultrasonography
 - Renal stone direct signs
 - Ureteric stone indirect signs
- Plain abdominal film
- Intravenous urography before operation mandatory!
- CT
- MR urography
- (scintigraphia)

Conservative treatment

- Stone < 5 mm can pass spontaneously
- Wait: max. 4-6 weeks no chronic occlusion no infection no functional disorder no serious complaint
- TH: high fluid intake, combined spasmolytics and pain killers, Rowatinex, non steroid anti-inflammatory drugs, Ca channel blockers, α-blockers

ESWL

- Extracorporeal Shock Wave Lithotripsy
- Shock wave (SW) focused acoustic waves, generated externally by a lithotriptor and transmitted into the body, building to a strength sufficient to fragment a stone only at the target site
- stone fragments pass spontaneously
- First treatment: München 1980 february



ESWL

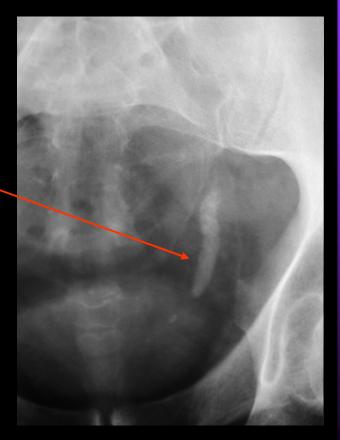
INDICATION

First treatment of choice, except:

- Size: renal stones larger than 20-25 mm ureteral stones – larger than 10 mm or impacted
- Composition:
 - uric acid stones
 - bad stone desintegration: COM cystin, brushit

CONTRAINDICATIONS

GENERAL


- uncorrected bleeding disorders
- untreated hypertension
- aortic or renal aneurysm
- pregnancy
- pacemakers: standby
- CAVE: anticoagulation treatment, drugs
- abnormality of body habitus

UROLOGICAL

- non functioning kidney
- untreated uroinfection
- obstruction distal to the stone
- functional impairment of ureteral motility, immobolization
- anatomic anomalies in form and position of kidney

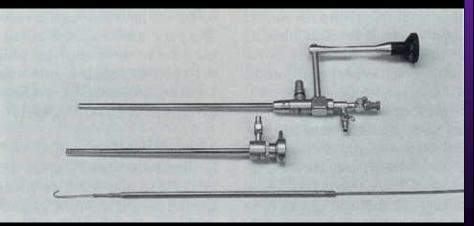
COMPLICATIONS

- Peri- and intrarenal, subcapsular haematoma – UH: 1-2 %, CT, MRI: 20-25 %
- haematuria
- renal colic
- occlusion, Steinstrasse
- infection, fewer
- rare: haemoptoe,
 - haemorrhage of the surr. organs
- ecchymosis
- renal functional disorders

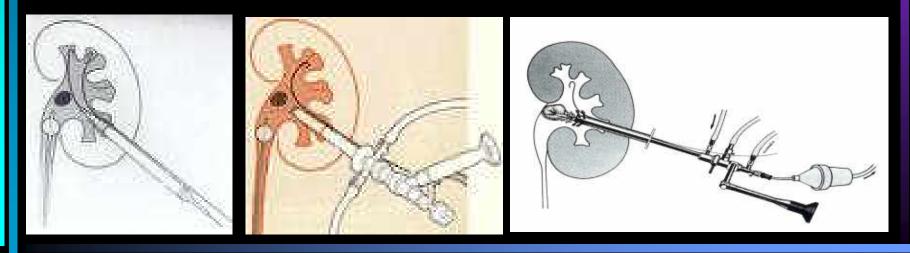
PCNL

- Percutaneous NephroLytholapaxy
- Indications

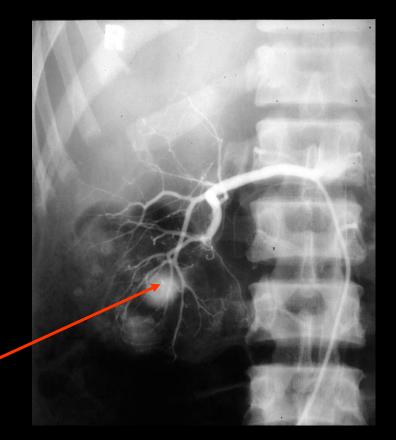
Renal stones unsuitable for ESWL


Failure of ESWL

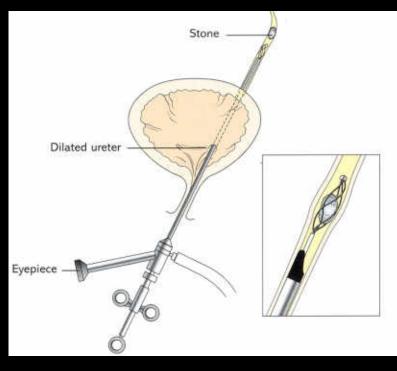
Other: for treatment of strictures (PUJ) or other anatomical disorders


Contraindications

uncorrected bleeding disorder untreated uroinfection relative: hepato-splenomegaly obesity body deformities


TECHNIQUE

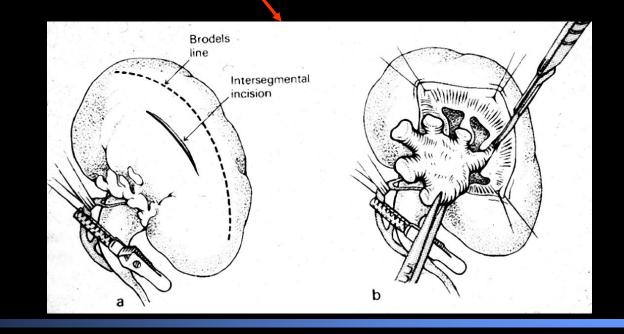
- insertion of ureteric catheter, filling contrast material
- punction of the renal calyx under X-ray or US giudance
- insertion of guide wire, dilatation of the working channel with telescopic dilatators
- insertion of the nephroscope
- removal of the stone or disintegration of the stone with: UH, electohydraulic energy, electrokinetic energy, laser energy
- nephrostomy tube


PCNL COMPLICATIONS

- injuries of the adjacent organs: liver, spleen, colon, pleura, lung, vessels
- bleeding
- extravasation of irrigating fluid
- urine leakage, urinoma
- infection
- arteriovenous fistula

URS

- Uretero-Renoscopic Surgery
- Indications
 - diagnostic, biopsy
 - for treatment of ureteric stone
 - lower retrograde upper – antegrade for trootmont of urotor
 - for treatment of ureteral strictures,



URS COMPLICATIONS

- Success rate: 90-95%
- Complications:
 - Technical failure: BPH, ureteric problems
 - Bleeding
 - Infection
 - Ureter laceration, perforation or rupture
 - Stricture
 - -VUR

Open operations

- pyelotomy, pyelocalycotomy
- radier nephrotomy
- marginal nephrotomy
- ureterotomy

Good clinical judgement comes from experience, and experience comes from bad judgement.

R. Clayman