Cardiac anesthesia and intensive care

Dr. Kiss Rudolf

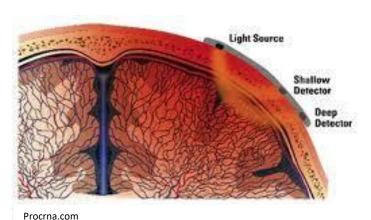
Cardiac procedures - anesthesia


- Cardiac surgical procedures:
 - coronaries, valves, septal defects
 - aorta
 - pericardial diseases (fluid, tumor)
 - Transplant, assist devices
 - congenital diseases
- Anesthesia intensive therapy:
 - Patient safety
 - Ensure the conditions for surgical procedure

Anesthesia

- Patient's state possible complications
 - Monitoring
 - Induction of anesthesia
 - Transfusion, bleeding
 - Other complications

Anesthesia - Monitoring


- Basic monitoring:
 - ECG,
 - Invasive BP,
 - CVP (central venous line),
 - SpO₂,
 - Urine output
 - Temperature
 - (+ large-bore periferal venous line)

- Transoesophageal echocardiography (TOE or TEE)
- Invasive haemodynamic monitor:
 - Swan-Ganz catheter
 - PiCCO (Pulse Conture Cardiac Output)
- Near InfraRed Spectroscopy, BiSpectral index

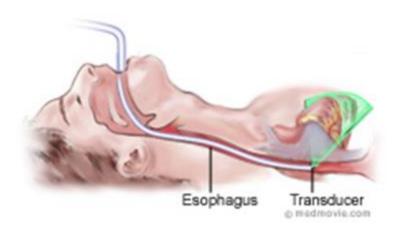
Near InfraRed Spectroscopy

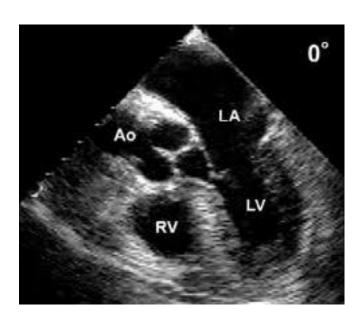
Wemed1.com

Cerebral oximetry

BiSpectral index

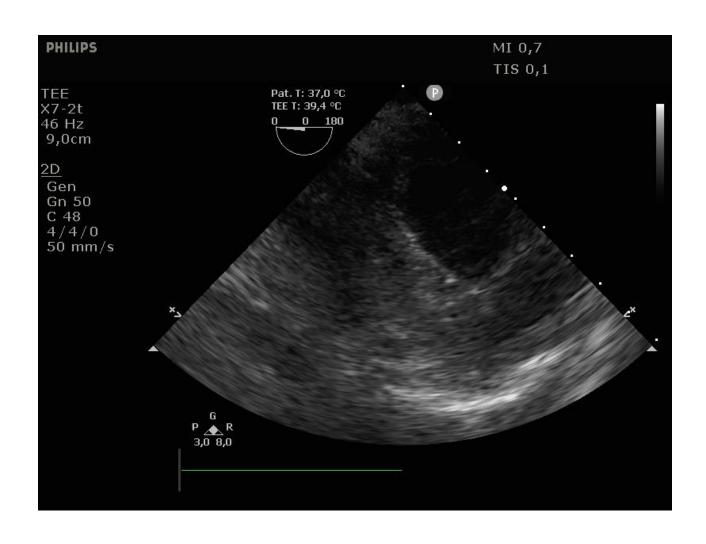

En.wikipedia.org

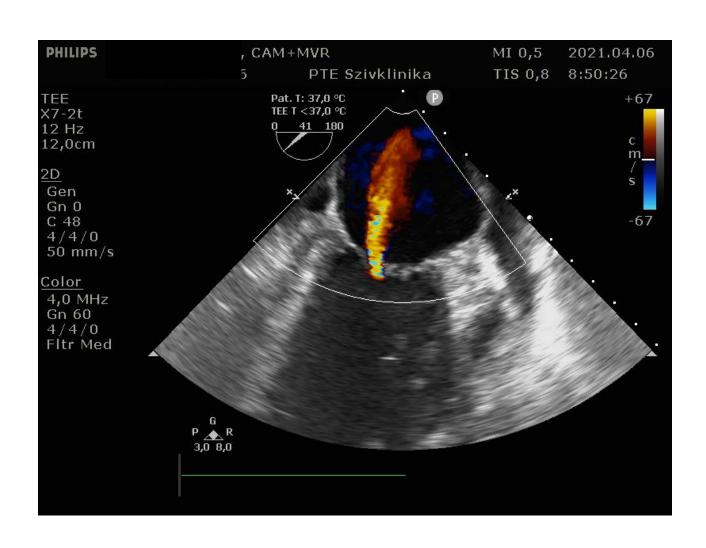


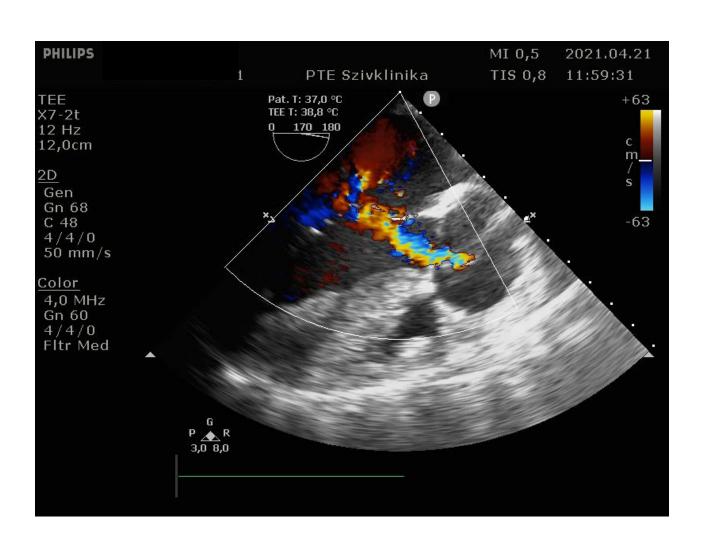

Figure 1 - Sensor with Four Electrodes.

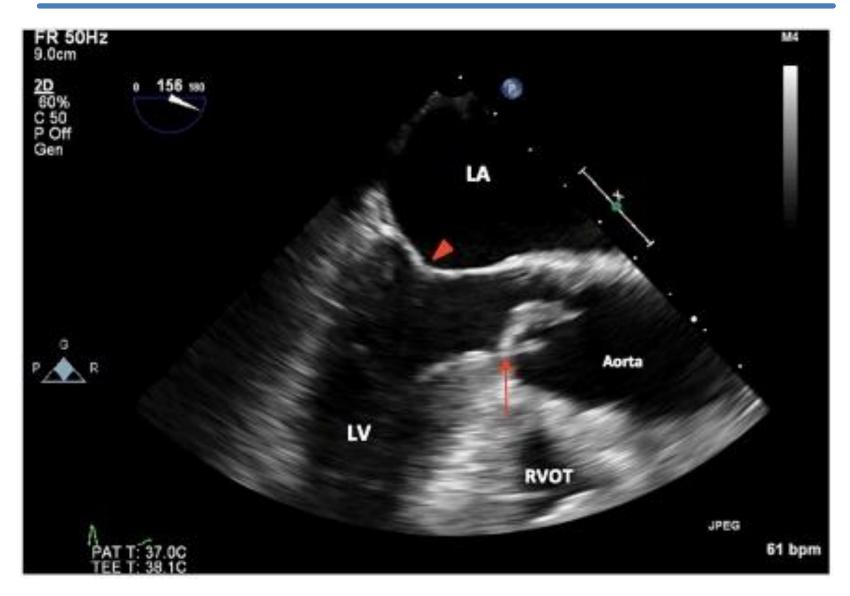

Doctorig.blogspot.com

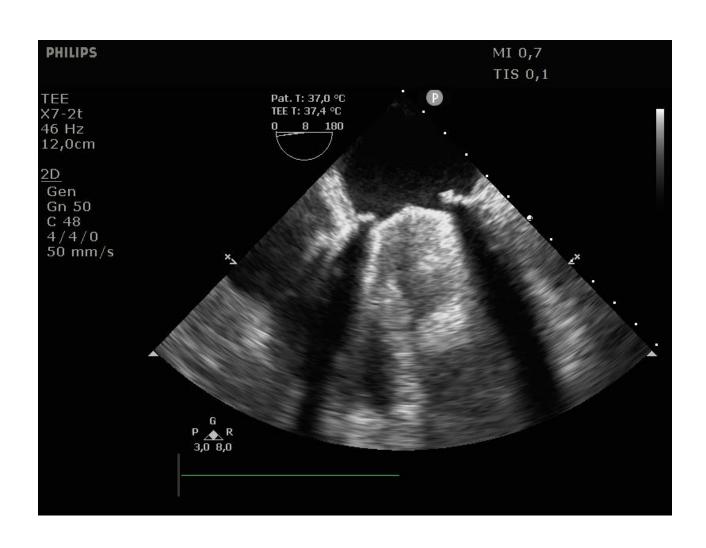
EEG-based "depth of anesthesia"

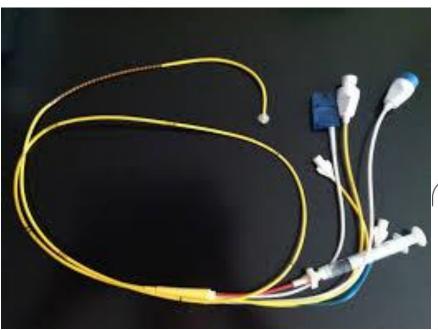


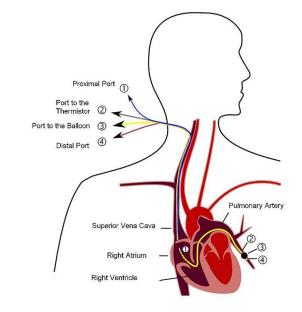


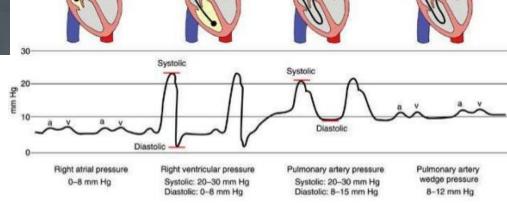





- Questions after induction:
 - Wall motion abnormality
 - Valves regurgitation, stenosis
 - Significant?
 - Atrial septum defect
 - Ascending aorta plaque
- Valvuloplasty planing, control
- Heart function after CPB

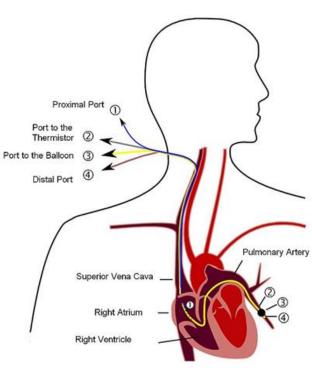





Swan-Ganz catheter

Catheter in the pulmonary artery via right heart

- Pressures: pulmonary art pressure, pulm capillary wedge press.
- Thermodilution measurement: cardiac output, vascular resistance (SVR)



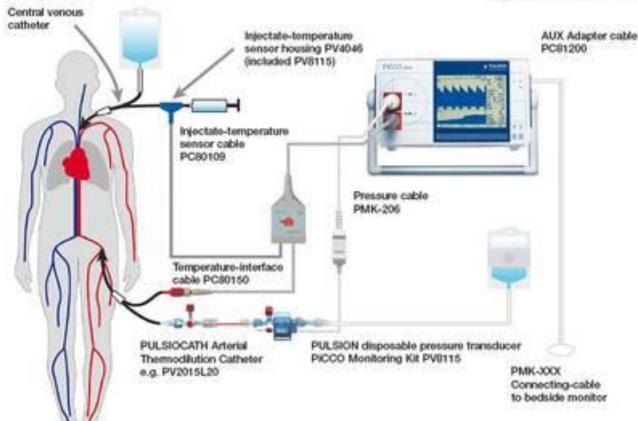
Normal values and wave configurations produced by the pulmonary artery catheter.

Copyright © 2005 Lippincott Williams & Wilkins. Instructor's Resource CD-ROM to Accompany Critical Care Nursing: A Holistic Approach, eighth edition.

Swan-Ganz catheter

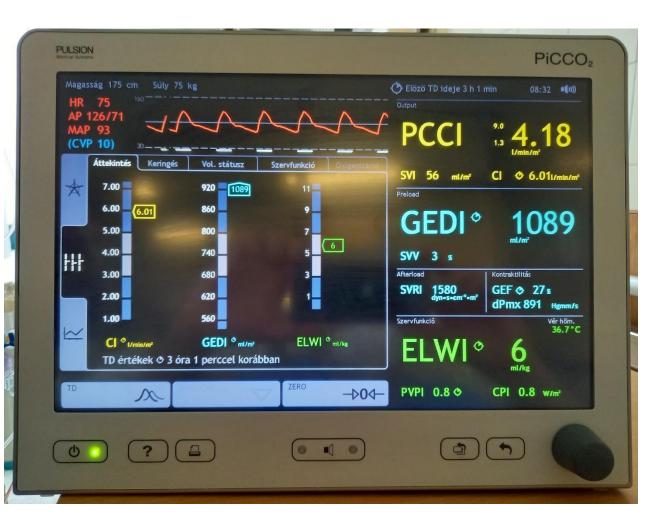
Swan-Ganz catheter

- Weaning from CPB
 - RV failure
 - Inotrop (个 contractility) dobutamin, PDE3 inhibitors, levosimendan
 - Inhaled NO (↓ afterload)



PiCCO

Continous pulse contour cardiac output measurement

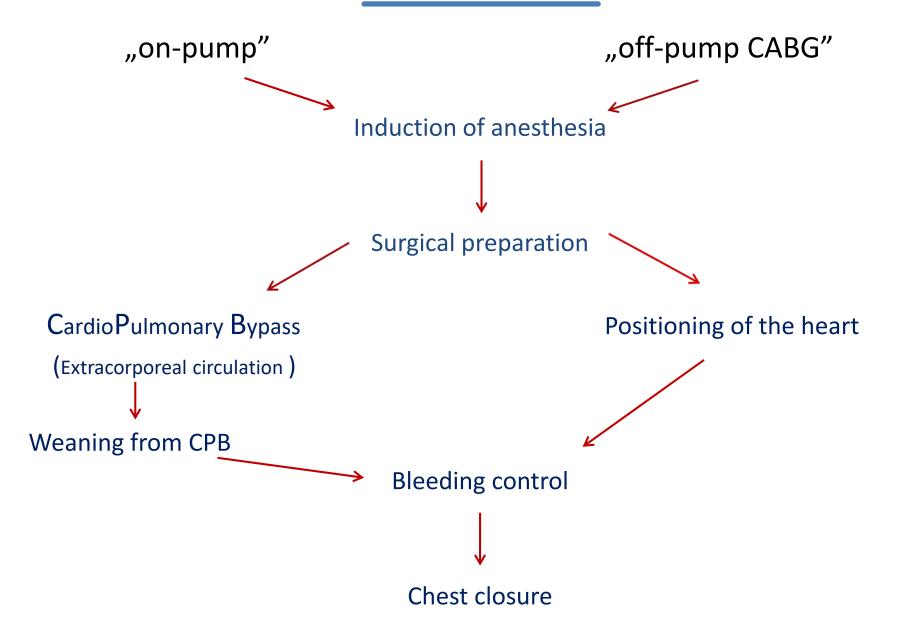


Spec. arterial catheter + central venous line (transpulmonary technic):

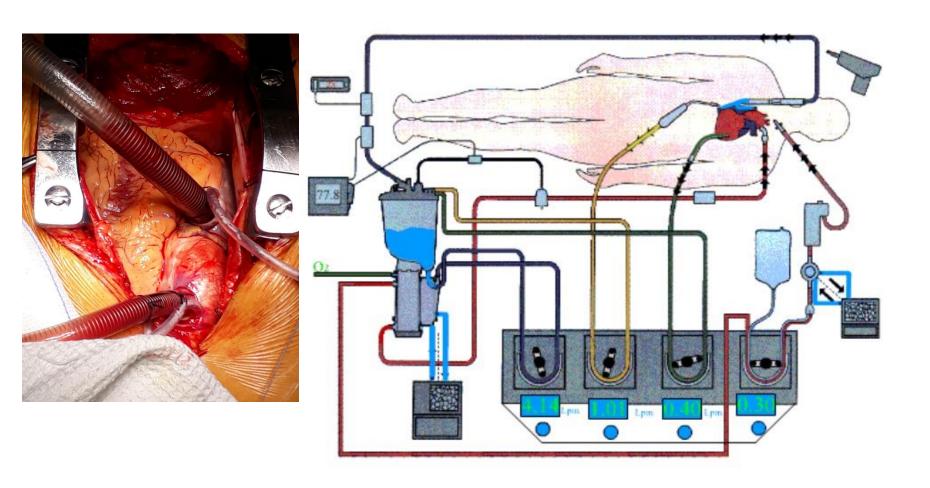
Thermodilution
 measurement – volumes,
 cardiac output, SVR, others

 Continuous cardiac output, SVR, others

PiCCO

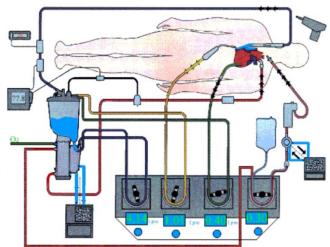


Spec. arterial catheter + central venous line (transpulmonary technic):

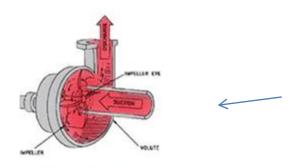

Thermodilution
 measurement – volumes,
 cardiac output, SVR, others

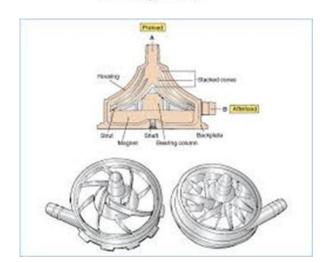
 Continuous cardiac output, SVR, others

Procedure


CPB

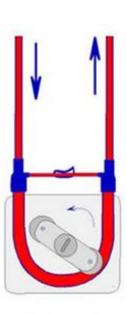
CPB


Ultrasonic Flow Sensor



CPB

Centrifugal Pump



- More biocompatibility (usable for longer period – days)
- Afterload dependent
- Not usable for suction during the procedure

- Usable for hours
- Afterload independent
- Cheaper than centrifugal pump
- Not for circulation support only

Roller Pump

Anesthesia – cardiopulmonary bypass

- Continuous or pulsatile flow Counted cardiac output
- Prime (fluid in the CPB machine)
- Cardioplegic solution
- Activation of thrombocytes
- Heparine (300 IU/kg)
- Activation of inflammatory system
- Activation of complement cascade

↓ → Coagulopathy

> Systemic Inflammatory Response Syndrome (SIRS)

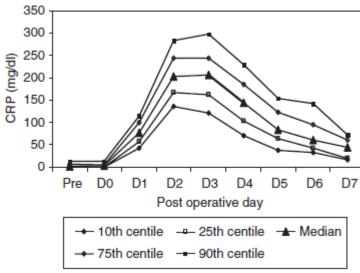
"Normal" laboratory-parameter changes (WBC, CRP, PCT) after procedure

Systemic Inflammatory Response Syndrome

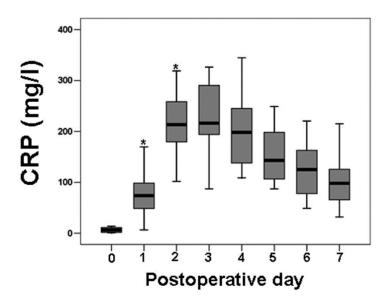
- The response of the body to infectious and noninfectious insults
- This inflammatory state affects the whole body
 - Pro- and anti-inflammatory processes
 - Complement-system activation
 - Changes in blood cloting
- Metabolic changes
 - Insulin-resistance
 - Catabolic processes

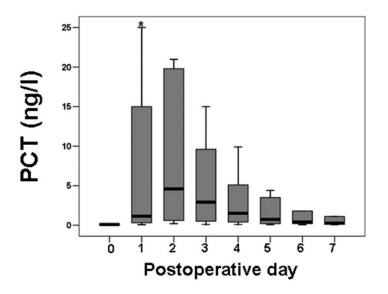
What can we see...

- Eleveated withe blood cell count
- Fever (elevated body temperature):
 - Endogen pyrogens
 - There is no conection between the postop 1. day fever and infection
- Elevated CRP and PCT
 - C-Reactive Protein:
 - The liver produces, IL-6 trigger connects to the surfice of "dying" cells causing complement activation
 - Non-specific inflammatory protein
 - Procalcitonin:
 - Produced by the parafollicularis cells of thyroid gland and the neuroendokrin cells of gut and lungs
 - Elevated level in bacterial infections


Decsuit GFR (EPI)	00	шт/Р/т./ш	
LDH	927	U H U/1	240-480
COM	55	U H U/1	<44
GOT GPT	12	U/1	<50
Kreatin-kináz	587	U H U/1	<170
MIEGEIII-KIIIAZ	307	0 11 0/1	1110
PTR idõ	12,80	U H sec	9,40-12,50
Protrombin ráta	1,08	U .	0,90-1,15
Protrombin INR	1,09	U .	0,90-1,15
Trombin idõ	16,6	U sec	11,0-17,0
Trombin idő ráta	1,11		0,80-1,20
APTI	30,8	sec	25,0-37,0
APTI ráta	1,07		23/0 3//0
Fibrinogén	2,78	g/l	2,00-4,00
Tibilliogen	2,70	9/1	2,00 1,00
Vérkép automatával:			
Fehérvérsejt	24 890	U H Giga/l	4,000-10,000
renerversejt	24,030	0 11 019a/1	1,000 20,000
Minőségi vérkép (kenetellenőrzé	501.		
	19,2	9	
Neutrofil karéjozott #	75,8	%	
Neutrofil Stab #		8	
Limfocita #	0,5	90	
Monocita #	4,5		
Eozinofil #	0,0	%	
Bazofil #	0,0	90	
Szétesett sejt #	3,5	/100FV	S
Vörösvértest	4,10	D T/1	3,90-5,30
Hemoglobin	123	D g/l	120-157
Hematokrit #	35,7	D %	34,1-44,9
MCV	87,1	fl	80,0-95,0
MCH	30,0	pg	26,0-33,0
MCHC	345	g/1	310-360
RDW	13,7	%CV	11,6-14,4
Trombocita	107,0	D L Giga/l	140,0-440,0
MPV	11,80	fl fl	9,40-12,40
	37,5	%	19,5-43,8
Nagyméretû trombocita #		96	0,0
Magvas vvt #	0,0	Giga/1	0.000-0.015

What can we see...


- Eleveated withe blood cell count
- Fever (elevated body temperature):
 - Endogen pyrogens
 - There is no conection between the postop 1. day fever and infection
- Elevated CRP and PCT
 - C-Reactive Protein:
 - The liver produces, IL-6 trigger connects to the surfice of "dying" cells causing complement activation
 - Non-specific inflammatory protein
 - Procalcitonin:
 - Produced by the parafollicularis cells of thyroid gland and the neuroendokrin cells of gut and lungs
 - Elevated level in bacterial infections


CRP and **PCT**

C-reactive protein levels following cardiac surgery in adults J. Ayala, A. Smith, D. Farrar

Delannoy *et al.* Effect of cardiopulmonary bypass on activated partial thromboplastin time waveform analysis, serum procalcitonin and C-reactive protein concentrations Critical Care Vol 13 No 6

Anesthesia – weaning from CPB

To rebuild the patient's normal circulation

- Normalisation of metabolic state
- Normalisation of bodytemperature
- Normalisation of heart rhythm defibrillation, pacemaker
- Gradual loading heart takes over the pump function pump stops
- Loading of reservoir content
 - Blood pressure control
 - Right and left ventricle function

Temporary pacemaker

- "Pull out" electrode thin temporary electrode
 - Ventrice always
 - Atrial
 - AAI frequency
 - DDD AV block
 - Postop atrial fibrillation cardioversion

Temporary pacemaker

Anesthesia – weaning from CPB

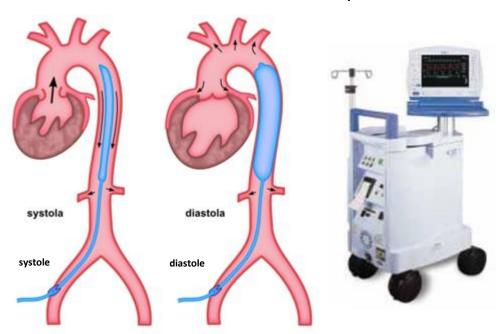
To rebuild the patient's normal circulation

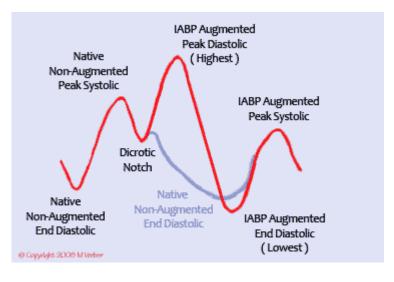
- Normalisation of metabolic state
- Normalisation of bodytemperature
- Normalisation of heart rhythm defibrillation, pacemaker
- Gradual loading heart takes over the pump function pump stops
- Loading of reservoir content
 - Blood pressure control
 - Right and left ventricle function

Anesthesia – postbypass period

Haemodynamic stability, bleeding control

- Inotrope, vasoconstrictor
 - Low systemic vascular resistance after CPB, protamine effect
 - Vasoconstrictor: noradrenalin, phenylephrine, epinephrine
 - Left or/and right heart failure
 - Inotrope: dobutamine, milrinone, levosimendan
 - Mechanical support: IABP, ECMO




Invasive hemodynamic monitoring, TEE

Anesthesia – Mechanical circulatory support

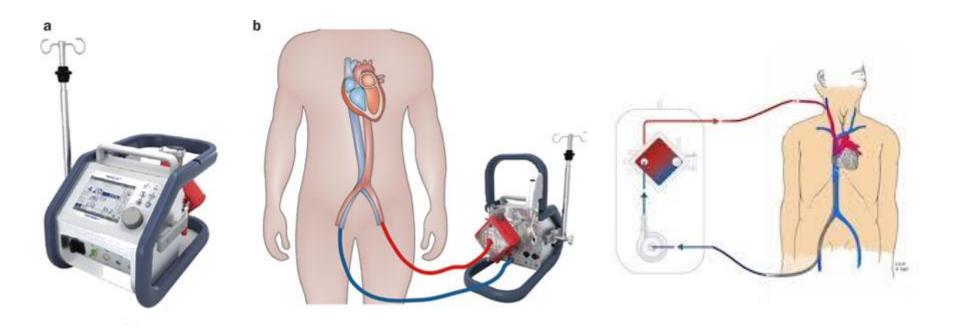
IntraAortic Balloon Pump

- makes "extra" pulse wave toward coronaries and brain
- Improves the coronary and brain circulation
- Just 0,5l "extra caridac output"

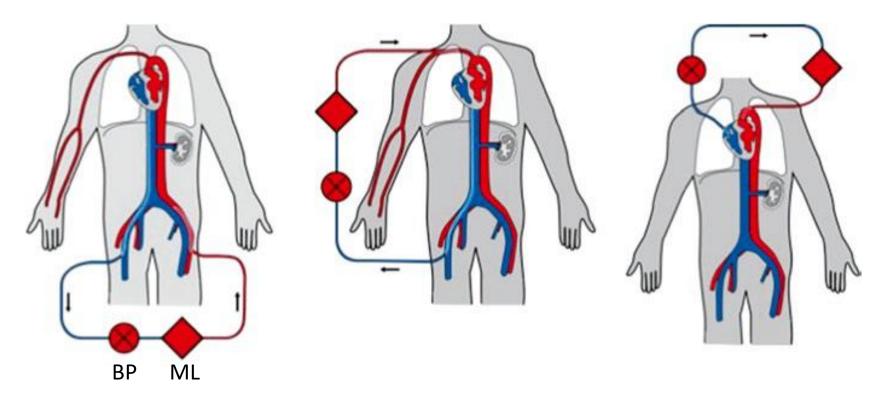
Contraindications:

- Severe aortic valve insufficientia
- Aortic dissection
- Severe aortoiliac occlusive disease

IntraAortic Balloon Pump



Anesthesia – Mechanical circulatory support


- ExtraCorporeal Membrane Oxygenation (ExtraCorporeal Life Support)
 - Similar to CPB used during operation
 - Veno-Arterial ECMO

ExtraCorporeal Membrane Oxygenation

(ExtraCorporeal Life Support)

VA-ECMO

Periferal canulation

Central canulation

Blood pump: BP Memebrane lung: ML

ExtraCorporeal Membrane Oxygenation

(ExtraCorporeal Life Support)

- Anticoagulation
 - Heparine ACT or aPTT control
- Canulation organ perfusion
- Bleeding control
- Canulation site infection
- Patient moving

ExtraCorporeal Membrane Oxygenation

(ExtraCorporeal Life Support)

VV-ECMO

- CO₂ removal
- Oxygenation

ECMO – Extracorporeal life support in adults - Springer

Anesthesia – postbypass period

Haemodynamic stability, bleeding control

- Fliud management
 - I.v. fliuds, transfusion
- Transfusion
 - Pocked red blood cell, FFP, Tct
 - Factor concentrates (Prothombin Complex Concentrate,
 Fibrinogen Concentrate, Activated factor VII concentrate)
- Protamine (1:1 Heparine)

Point of Care tests (Blood gas, Activated Clotting Time, Thrombelastography) Laboratory tests

- Tranexamic acid continuous infusion from start of the procedure
- Aprotinin

What should wee give?

EXTRINSIC PATHWAY INTRINSIC PATHWAY XII (Hageman Factor) Tissue Injury Kallikrein ← HMWK collagen Beriplex*P/N 500 PCC: II, VII, IX, X Water for injection Prekallikrein Tissue Factor Eau pour injections Agua para inyeccine (Thromboplastin) VII · Thrombin (lla) **CLS Behring** Tissue Factor Tissue Factor Pathway Inhibitor (TPPI) 10 Thrombin (Ila) Ca2+ Ca2+ Xa Fibrinogen Ca2+ Thrombin (IIa) Ca2+ (Thrombin) (Prothrombin) → XIIIa Phospholipid Ca2+ surface THE PERSON NAMED IN Active Fibrinogen Fibrin Cross-linked THE REAL PROPERTY. Fibrin (la) Inactive COMMON PATHWAY Tct

(VIIa?)

Ca²⁺

- Activated Cloting Time
 - Monitoring of high-dose heparine-effect
 - $-300-400 \text{ IU/kg} \rightarrow >480 \text{s} (400 \text{s}) \text{ for CPB}, >350 \text{s for OPCAB}$

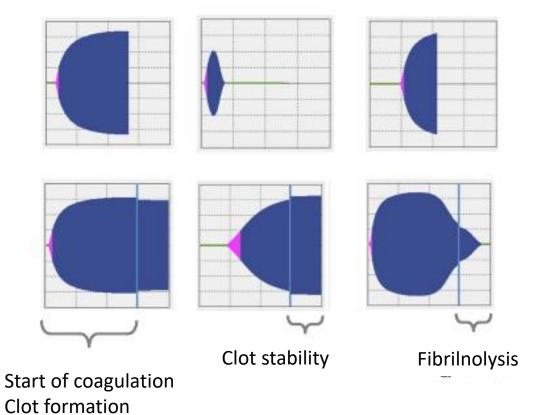
- Thrombelastography (TEG) (-metry)
 - Small blood sample
 - Diferent reagents diferent parts of blood cloting

ACTIVE-TIP TECHNOLOGY:

The pipette-tip contains test specific dry reagents.

All reagent handling is eliminated.

EX-test	Rapid overview of the coagulation process
FIB-test	Detection of functional fibrinogen under dual platelet inhibition
AP-test	Inhibition of fibrinolysis facilitating the detection of hyperfibrinolytic activity (in combination with EX-test)
IN-test	Intrinsic screening test, sensitive to heparin and coagulation factors e.g. FVIII
HI-test	IN-test with heparin neutralisation to ascertain residual coagulation activity
TPA-test	Activation of fibrinolysis for the detection of antifibrinolytic therapies
RW-test	Screening test for DOACs (e.g. rivaroxaban)
ECA-test	Screening specific for direct thrombin antagonists


Thrombelastometry

Clot.pro

Maximum 40 min measurement (usual presentation)

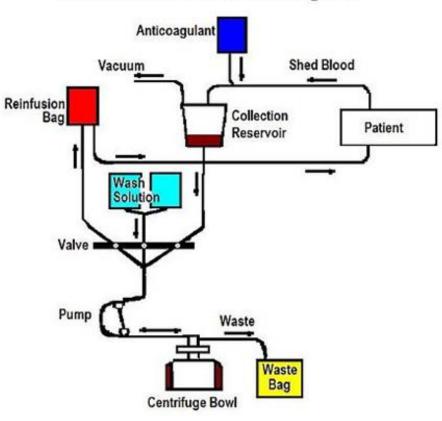
Longer than 40 min measurement (the first 30 and the last 10 min)

Decrease of transfusion, cell salvage

Intraoperative
 haemodilution: htc
 40% or higher - collect
 blood at the beginig of
 the procedure, volume
 replacement with i.v.
 fluid

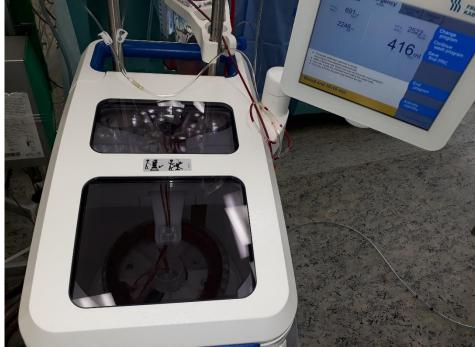
- Cell salvage technics:
 - Suction into the CPB
 - Cell-saver

Decrease of transfusion, cell salvage

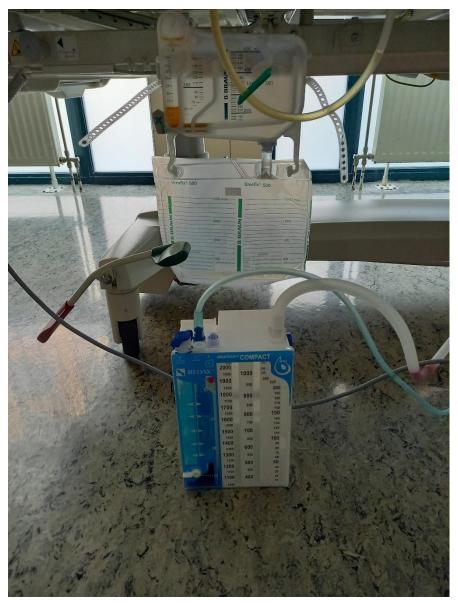

Cell salvage technics:

- Suction into the CPB
- Cell-saver

The shed blood from the operative filed, mixed with heparinised saline, goes into the reservoir and after centriuge it is collected in a bag and reinfused.


Autotransfusion Process Diagram

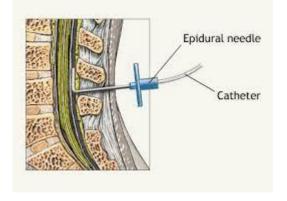
Cell-saver

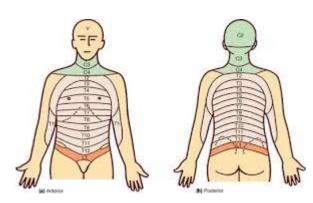


Patient usually is not wakened and extubated in the operating theatre

- Tasks on ICU:
 - To ensure haemodynamic stability
 - Bleeding control
 - Weaning from mechanical ventilation
 - Pain management
 - Physiotherapy

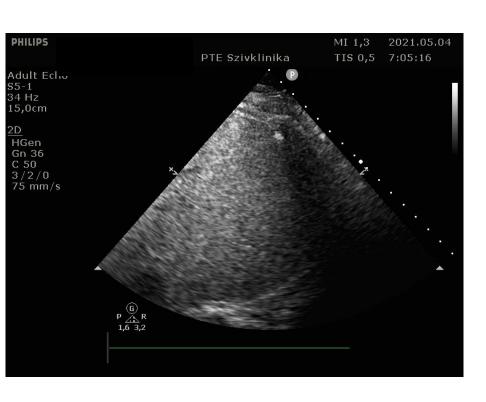
- To ensure haemodynamic stability:
 - Monitoring
 - Fluid therapy
 - Metabolic stability
 - Reduction of catecholamine dose
- Bleeding control
 - Hourly check severe > 100 -200ml/h (bodyweight!)
 - Medical therapy (as above)
 - Surgery reoperation




- Pain management
 - Opioids: morphine, sufentanyl
 - Nausea dehydrobensperidol, ondansetron
 - Drowsiness
 - NSAIDs: diclofenac, Ibuprophen,...
 - Kidney function ?
 - Bleeding?
 - Paracetamol
 - Tramadol
 - nausea
- Traditional method: i.v. opioid base and NSAID and/or paracetamol
- Multimodal therapy without opioids

- Pain management
 - I.V.:
 - Continuous infusion
 - I.V. infusion
 - Patient Controlled Analgesia special pump


- Per os
- Epidural catheter (sympathic tone $\downarrow \leftrightarrow$ local effect, antithrombotic th?)


Postoperative Intensive Care - Complications

- Bleeding
- Pericardial tamponade haemodynamic instability, RR↓, Urine output↓, CVP↑ - operation

- Kidney function ↓ diuretics, Haemodialysis
- Breathing problems phrenic nerve injury physiotherapy, stimulation, non-invasive ventilatory support
- Atrial fibrillation (40% after cardiac surgery) ions, ß-blocker, amiodarone


Postoperative Intensive Care - Complications

Postoperative Intensive Care - Complications

- Bleeding
- Pericardial tamponade haemodynamic instability, RR↓, Urine output↓, CVP↑ - operation

- Kidney function ↓ diuretics, Haemodialysis
- Breathing problems phrenic nerve injury physiotherapy, stimulation, non-invasive ventilatory support
- Atrial fibrillation (40% after cardiac surgery) ions, ß-blocker, amiodarone