D.III.i.2.2

Analysis of granules' flowability

Introduction/ Object: flow property of solid grain aggregation is an important characteristic of material. It strongly depends on grain-size distribution, humidity, formal and surface property of grain, electrostatic charge, etc.

Performing the practice:

1: Measure 100.0 g sample.
2: Put the ASTM - funnel in such a way, that the orifice 4.0 cm from the desk.
3: Block the orifice of the funnel with a spatula.
4: Snatch the spatula, run off the material. Do at least five parallel measurements! Measure the flow time.
5: Measure the sample homogenised with flow enhancer excipients. Do the analysis in conformity with 2-4 points.

Assessment:

Calculate the angle of repose, the mass flow (g / s) of powder/granule, and the volumetric flow rate (ml / s) of powder/granule!
$\mathrm{h}=$ altitude of aggregate (mm)
$r^{\prime}=$ half line of aggragate (mm)
$\mathrm{d}_{1}=$ diameter of aggragate
$\mathrm{d}_{2}=$ inner diameter of discharge hole of funnel (mm) \{10mm $\}$

$$
\begin{aligned}
& \operatorname{tg} \alpha=\frac{h}{r^{\prime}} \\
& r^{\prime}=\frac{d_{1}-d_{2}}{2}
\end{aligned}
$$

University of Pécs	
Institute of Pharmaceutical Technology and Biopharmacy Laboratory education	Pages: $1 / 1$
Task: Granule flowability analysis	
Group:	Respor: D.III.i.2.2
Practice supervisor:	Responsible for the worksheet:

Aim of practice:

Purity and quality of tools:

Tools	Qualification		Controller's signature
	Appropriate	Inappropriate	
ASTM funnel			
plastic card			
measuring tube			
stop-watch			

Measuring: $\mathbf{1 0 0 . 0} \mathbf{g}$ granules

Measuring	Flow time (s)	weight of heap (g)	volume of heap (ml)	angle of repose $\left({ }^{\circ}\right)$
1.		100		
2.		100		
3.		100		
4.		100		
5.				

Measuring: $\mathbf{1 0 0 . 0} \mathbf{~ g}$ granules \qquad +
glidant

Measuring	Flow time (s)	weight of heap (g)	volume of heap (ml)	angle of repose $\left({ }^{\circ}\right)$
1.		100		
2.		100		
3.		100		
4.	100			
5.	100			

Assessment:

Calculate the mass flow (g / s), the volumetric flow rate (ml / s), the average angle of gradient and the efflux time of powder/granule.

D.III.i.4. 1

Powder-rheological analysis

Apparent volume

Introduction/Object

Performing the practice:

1: Measure 50.0 g of the sample.
2: Put it in the measuring cylinder with one movement.
3: Fix the measuring cylinder to the Erweka volumetric apparatus.
4: Set the tap number.
5: Read off the volume.
6: Discharge the sample and clean the measuring cylinder.

Assessment:

Calculate the rates of density and compactibility.
Illustrate on a diagram the volume, the density and the tap number (density and volume on y axis/tap number on x -axis).
Calculate the value of the Hausner-factor and the Carr-index:

$$
\begin{aligned}
& H f=\frac{\rho_{T}}{\rho t} \\
& C a r r-\text { index }=\frac{\rho_{T}-\rho_{t}}{\rho_{T}} \cdot 100
\end{aligned}
$$

$\rho_{\mathrm{T}}=$ tapped density
$\rho_{\mathrm{t}}=$ filled (bulk) density

According to the literature the flowability of the sample is:
Hausner-factor:

Carr-index:

University of Pécs	Institute of Pharmaceutical Technology and
Biopharmacy Laboratory education	Practice number: D.III.i.4.1
Task: Analysis of apparent volume	
Group:	Responsible for worksheet:
Practice supervisor:	Date:

Purity and quality of tools:

Tools:	Qualification		Controller's signature
	Appropriate	Inappropriate	
ERWEKA SVM 102			
Patendula			

Measuring: measurand 50.0 g

+ external phase of tablet

Impact number	Volume (V) $[\mathrm{ml}]$	Density $[\mathrm{g} / \mathrm{ml}]$	Compactibility $\left(\mathrm{V}_{\mathrm{n}}-\mathrm{V}_{\mathrm{n}+1}\right)[\mathrm{ml}]$	Hf factor	Carr- index
0					
10					
20					
30					
40					
50					
100					
150					
200					
250					
500					
750					
1000					
1010					
1020					
1030					
1040					
1050					
1100					
1150					
1200					
1250					

$$
H f=\frac{\rho_{T}}{\rho_{t}} \quad \quad \text { Carr }- \text { index }=\frac{\rho_{T}-\rho_{t}}{\rho_{T}} \cdot 100
$$

$\rho_{\mathrm{T}}=$ tapped density
$\rho_{\mathrm{t}}=$ filled (bulk) density

Assessment:

Illustrate on a diagram the volume, the density and the impact number of function (density and volume on y -axis/ impact number on x -axis).

Calculate the value of the Hausner-factor and the Carr-index!

