From order to disorder

From the Chemistry Exam to the Final Exam in Biochemistry Dr. Lengyel Anna

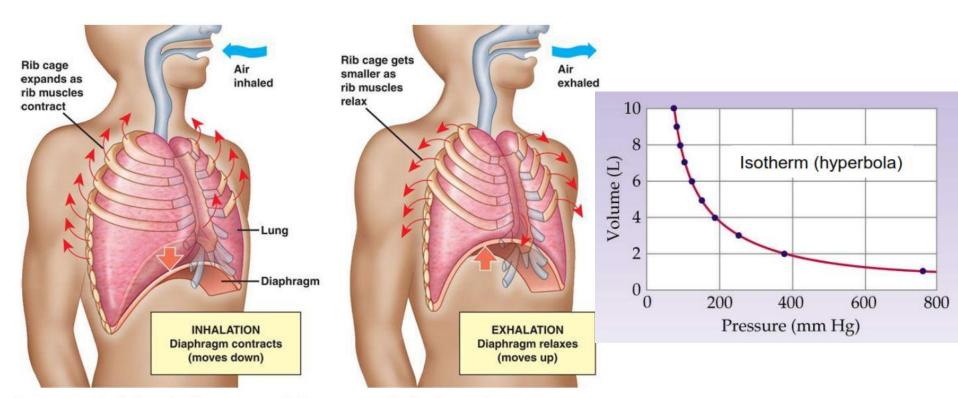
Units

nultiple	prefix	symbol	sub- multiple	prefix	symbol
10 ¹	deca	da	10-1	deci	d
10 ²	hecto	h	10-2	centi	с
10 ³	kilo	k	10-3	milli	m
10 ⁶	mega	М	10-6	micro	μ
10 ⁹	giga	G	10-9	nano	n
10 ¹²	tera	Т	10-12	pico	р
1015	peta	Р	10-15	femto	f
10 ¹⁸	exa	Е	10 ⁻¹⁸	atto	а

Gas laws

Give the relationship between the state marker parameters (pressure (p), temperature (T), volume (V), molar amount (n). **State marker parameters**: depend only on the current equilibrium state of the system, but not on the path by which the system arrived at its present state.

Process functions are e.g. mechanical work and heat, they describe quantitatively the transition between equilibrium states of a thermodynamic system.


Boyle's law: Relationship between the pressure and volume of the ideal gas at constant temperature.

p · **V** = **k** T and n are constant (*isotherm*)

for two different states of the gas:

 $\mathbf{p}_1 \cdot \mathbf{V}_1 = \mathbf{p}_2 \cdot \mathbf{V}_2$

Boyle's law

During an inhalation, the lungs expand, the pressure in the lungs decreases, and air flows towards the lower pressure in the lungs. During an exhalation, lung volume decreases, pressure within the lungs increases, and air flows from the higher pressure in the lungs to the outside.

For a perfect gas, according to Boyle's law (where p = Absolute pressure, V = Volume, and T = Absolute temperature)

V/T = constant, if p is kept constant
 p V = constant, if T is kept constant
 T/p = constant, if V is kept constant
 p/T = constant, if V is kept constant

When two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other. This statement is called

- 1. Second law of thermodynamics
- 2. First law of thermodynamics
- 3. Kelvin Planck's law
- 4. Zeroth law of thermodynamics

First law of thermodynamics provides

a. a statement that energy balance occurs when a system undergoes the change of state or the process
b. a statement about whether the change of state or the process is at all feasible or not
c. both a. and b.
d. none of the above

Which of the following statements best describes the Second Law of Thermodynamics?

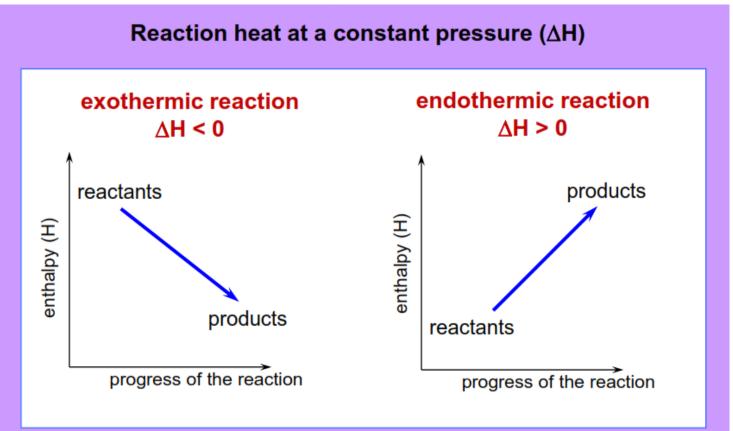
a) The internal energy of the universe is constant.
b) Energy can be neither created nor destroyed.
c) When an isolated system undergoes a spontaneous change, the entropy of the system will increase.
d) At absolute zero, the entropy of a perfect crystal is considered to be zero.

Thermodynamics

The zeroth law of thermodynamics: If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other (thermometer, thermostat).

The first law of thermodynamics: energy can not be created or destroyed, just transformed in other types of energy (law of conservation of energy)

In a closed system the internal energy (E) remains constant till work (W) or heat (Q) change it: $\Delta E = Q + W$ Q: reaction heat


- Without expansion work: $\Delta E = Q_V$ (Q_v: reaction heat by constant volume) - With expansion work: $\Delta E = Q_p - p\Delta V$ (Q_p: reaction heat by constant pressure)

$$\mathbf{Q}_{\mathbf{p}} = \Delta \mathbf{E} + \mathbf{p} \Delta \mathbf{V}$$

$$\Delta \mathbf{H}$$

$$\mathbf{A} \mathbf{H} = \Delta \mathbf{E} + \mathbf{p} \Delta \mathbf{V}$$
 $\Delta \mathbf{H} = \text{Enthalpy change (reaction heat at a constant pressure)}$

Hess' law: the enthalphy change of a chemical reaction depends only on the starting and the final states of the system, and it is independent of reaction pathway. (law of conservation of energy for chemical reactions)

Enthalpy chage (reaction heat) of a chemical reaction:

 $\Delta \mathbf{H} = \Sigma \mathbf{H}_{\text{products}} - \Sigma \mathbf{H}_{\text{reactants}}$

Enthalpy (H) is the measure of the energy of a thermodynamic system

The second law of thermodynamics: In spontaneous processes entropy increases (direction of reactions).

Entropy change: $\Delta S = S_{\text{final state}} - S_{\text{initial state}}$ The 2nd law: $\Delta S_{\text{total}} > 0$ $(\Delta S_{\text{system}} + \Delta S_{\text{surrounding}} > 0)$

Entropy (S): the measure of disorder (J/K) S = k ln W

k: Boltzmann's constant (1.381 · 10⁻²³ J/K) W: number of microstates, which give a certain macrostate

Spontaneous processes: take place without external force

Non-spontaneous processes: do not take place, requires external energy

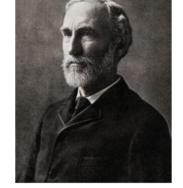
The third law of thermodynamics:

the entropy of a perfect crystal at 0 K temperature is 0 J/K.

Effect of temperature on entropy change during chemical reactions:

$$\Delta S = \frac{\Delta Q}{T}$$
 at a constant pressure: $\Delta S = \frac{\Delta H}{T}$

ΔQ: reaction heat

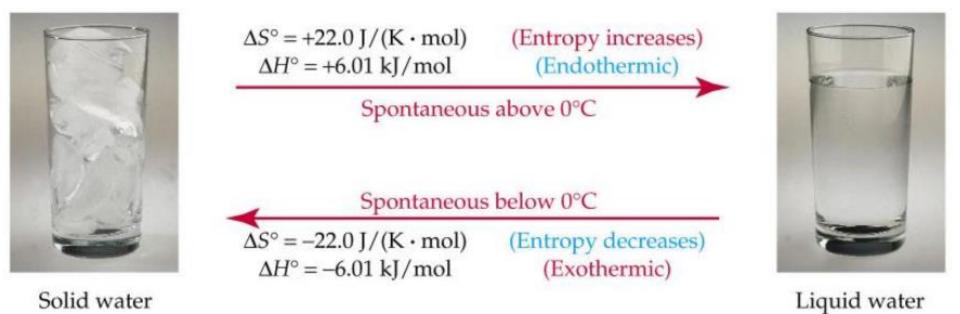

Spontaneous chemical reactions occurs in that direction which decreases enthalpy and increases entropy.

enthalpy = free energy + energy 'stored' in disorder H = G + TS Free energy (G): the work capacity of the system

Free energy change in chemical reactions:

 $\Delta \mathbf{G} = \mathbf{G}_{\text{final state}} - \mathbf{G}_{\text{initial state}}$

 $\Delta G = \Delta H - T \Delta S$ Gibbs equation



Josiah Willard Gibbs (1839-1903)

If $\Delta G < 0$ the process takes place spontaneously, exergonic If $\Delta G > 0$ the process doesn't take place, endergonic If $\Delta G = 0$ no net transformation, equilibrium In the eq

For standard state reactants and products: standard free energy change: $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

In the equilibrium: ∆G = 0 0 = ∆G° + RT In K ∆G° = – RT In K

Free energy and chemical equilibrium – the extent of the reaction

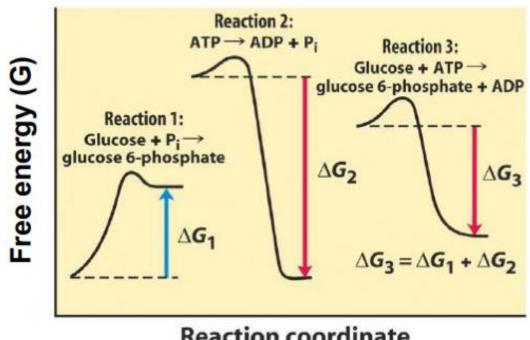
 $Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

aA+bB=cC+dD

Characterization of the composition of the reaction mixture: reaction quotient (Q) or mass-action ratio

at any moment of the reaction

(here [X] doesn't mean equilibrium conc.!)


The direction of the reaction always depends on the actual composition! (Le Châtelier-Braun principle) $\Delta G = \Delta G^{\circ} + RT \ln Q$

The energy of an isolated system

- a. is always decreasing
- **b.** is always constant
- c. is always increasing
- **d.** none of the above

glucose + $P_i \rightarrow glucose-6-phosphate + H_2O$	ΔG°' = 13.8 kJ/mol
$ATP + H_2O \rightarrow ADP + P_i$	ΔG°' = -30.5 kJ/mol

ATP + glucose \rightarrow ADP + glucose-6-phosphate ΔG° = 13.8 – 30.5 = -16.7 kJ/mol

Reaction coordinate

$\Delta \mathbf{G} = \Delta \mathbf{G}^\circ + \mathbf{RT} \ln \mathbf{Q}$

Anaerobe and aerobe metabolysis: fill-up of the 'ATP-stock'

Energy production of anaerobic cells: fermentation

glucose \rightarrow 2 lactate ΔG° ' = -218 kJ/mol

Fill-up of the 'ATP-stock':

glucose + 2 P_i + 2 ADP \rightarrow 2 lactate + 2ATP + 2 H_2O ΔG° = -158 kJ/mol

Energy production of aerobic cells:

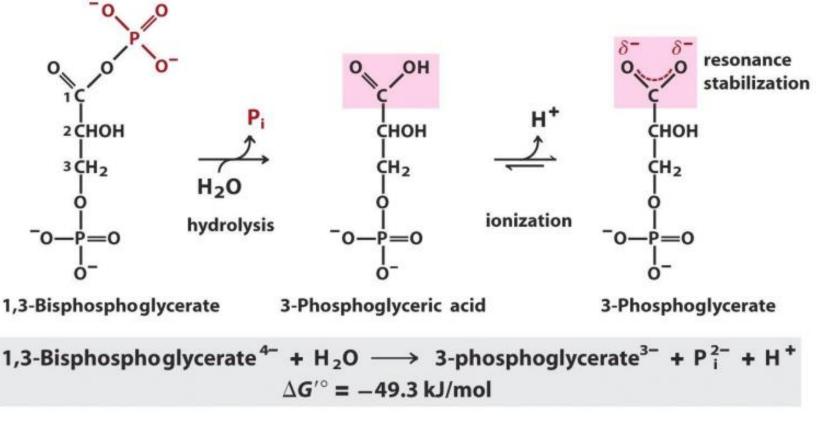
glucose \rightarrow 6 CO₂ + 6 H₂O ΔG° ' = -2880 kJ/mol

During the aerobe oxidation of 1 glucose molecule 32 ATP form!

 $32 \cdot 30 \text{ kJ} = 960 \text{ kJ}$ energy is stored

glucose + 6 O_2 + 32 P_i + 32 ADP \rightarrow 6 CO_2 + 2 H_2O + 32 ATP

∆G'° = -1920 kJ/mol

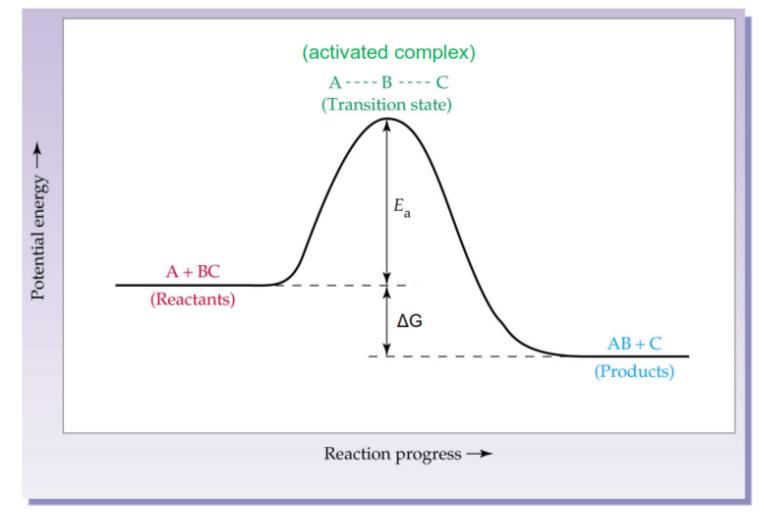

Which of the following statements will always apply when a reversible chemical reaction has attained equilibrium?

a) All reactants will convert to products
b) The reaction proceeds alternately in the forward and reverse directions
c) The Gibbs free energy of the system reaches a

minimum

d) The forward reaction will dominate over the reverse reaction

Calculate the free energy of the phosphoglycerate kinase reaction under standard circumstances! Which partial reaction is exergonic, and which is endergonic?


ATP (aq) + H₂O (I) \rightarrow ADP (aq) + P_i⁻ (aq) + H⁺ (aq) Δ G'= -30 kJ/mol

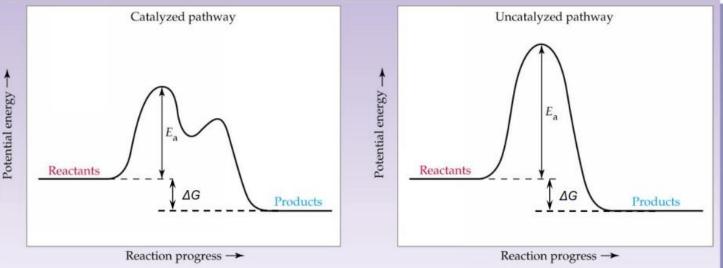
Living systems are never in thermodynamical equilibrium The direction of the reactions is determined by the actual intracellular concentrations of the metabolites involved

"Thermodynamically favoured" does not necessarily mean "quick" Reaction rate is independent of ΔG . Catalysts (e.g. enzymes) do **not** influence the "position" of chemical equilibrium, they only accelerate the reactions leading to it.

Every elementary reaction is reversible – in theory In biochemistry a reaction is called ,,irreversible" when: under cellular conditions (temperature, concentrations) one of the reactions appears to be *undetectably slow*.

Reaction kinetics

E_a: <u>activation energy</u>: the energy, which is needed to form the activated complex


 ΔG : reaction free energy

<u>Catalysis</u>

Catalyst: a substance which increases the rate of the reaction without being consumed by the reaction.

In the absence of catalyst the reaction is much slower.

The catalyst decreases the activation energy by opening an other reaction pathway, e.g. by forming a lower energy activated complex.

In biological systems the enzymes catalyse the transformations of molecules. homogenous catalyst: is in the same phase as the reactants

heterogeneous catalyst: exist in different phase as the reactants. Inhibitor: decreases the rate of a reaction without being consumed by

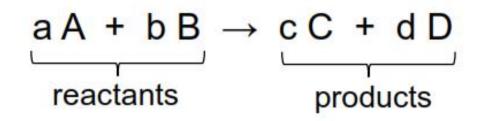
the reaction.

The rate of a reaction

It's a measure of how fast the changes are taking place in a reaction per unit time:

- increase in the concentration of the product(s) or
- decrease in the concentration of the reactant(s).

It depends on:


- the chemical quality of the reactants
- the concentration of the reactants
- the temperature
- the physical state of the reactants

Rate law:

Equation which describes the rate of the reaction as a function of the concentration of the reactants.

Rate limiting step: the slowest step in a reaction mechanism

Stoichiometric equation:

capital letters (A, B, C, D): compounds or elements small letters (a, b, c, d): stoichiometric coefficients

Rate law:

v: rate of the reaction

k: rate constant

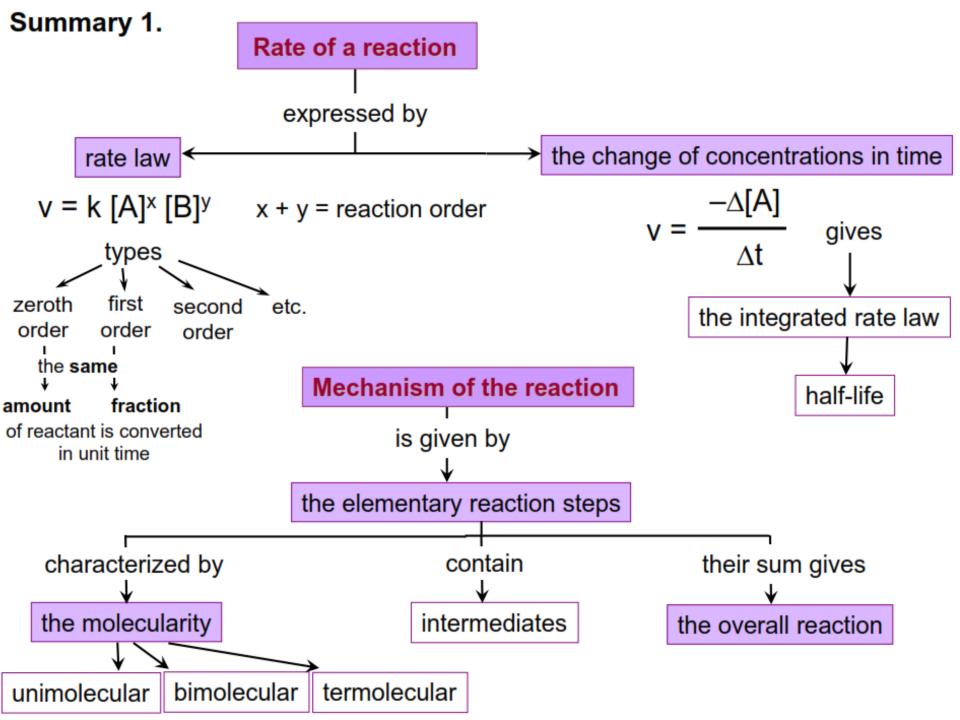
square brackets ([A], [B]): concentrations (mol/dm³)

x, y: exponents, reaction order

Reaction order: the sum of the exponents in the rate law

 $v = k [A]^{x} [B]^{y}$ x + y = reaction order

e.g. if x = 1 the rate depends linearly on the concentartion of A

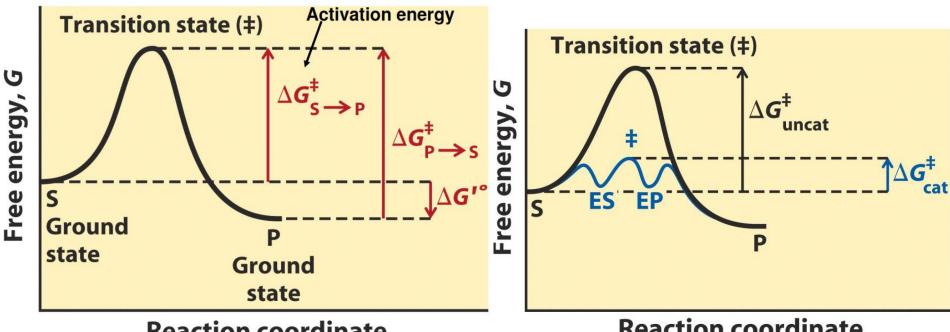

if x = 2 the rate is the quadratic function of the concentartion of A, etc.

The exponents must be determined by experiment, they cannot be deduced from the stoichiometry of the reaction!

 TABLE 12.2
 Balanced Chemical Equations and Experimentally Determined Rate Laws for Some Reactions

Reaction	Rate Law	
$(CH_3)_3CBr(aq) + H_2O(aq) -$	Rate = $k[(CH_3)_3CBr]$	
$HCO_2H(aq) + Br_2(aq) \longrightarrow 2$	Rate = $k[Br_2]$	
$BrO_3^{-}(aq) + 5 Br^{-}(aq) + 6 H^{+}$	Rate = $k[BrO_3^-][Br^-][H^+]^2$	
$H_2(g) + I_2(g) \longrightarrow 2 HI(g)$	Rate = $k[H_2][I_2]$	
$CH_3CHO(g) \longrightarrow CH_4(g) + G$	Rate = $k[CH_3CHO]^{3/2}$	
$2 \text{ NH}_{3(q)} \rightarrow \text{N}_{2(q)} + 3 \text{ H}_{2(q)}$ (2)	Rate = k	
Rate Law	Overall Reaction Order	Units for k
Rate $= k$	Zeroth order	M/s or $M s^{-1}$
Rate = k [A]	First order	$1/s \text{ or } s^{-1}$
Rate = $k[A][B]$	Second order	$1/(M \cdot s)$ or $M^{-1} s^{-1}$
Rate = $k[A][B]^2$	Third order	$1/(M^2 \cdot s)$ or $M^{-2} s^{-1}$

The rate always has unit of M/s, but the units of the rate constant (k) depend on the overall reaction order:


Summary 2.

Rate of a reaction is explained by the collision theory collisions have probability steric orientation energy depends on depends on concentration temperature given by \rightarrow Maxwell-Boltzmann distribution $v = k [A]^{x} [B]^{y}$ Pathway and energy profile of the reaction contains $\mathbf{k} = \mathbf{A} \, \mathbf{e}^{-\mathbf{E}_a / \mathbf{RT}}$ transition state needs \rightarrow activation energy (activated complex) Arrhenius equation

Which of the following is true of enzymes?

- I. They increase the rate of reaction by stabilizing the transition state
- II. They raise activation energy to shift the equilibrium to favor the products
- III. They lower activation energy by altering the products of a reaction
- A. I only
- B. II+III
- C. I+III
- D. III only

Enzymes

Reaction coordinate

Reaction coordinate

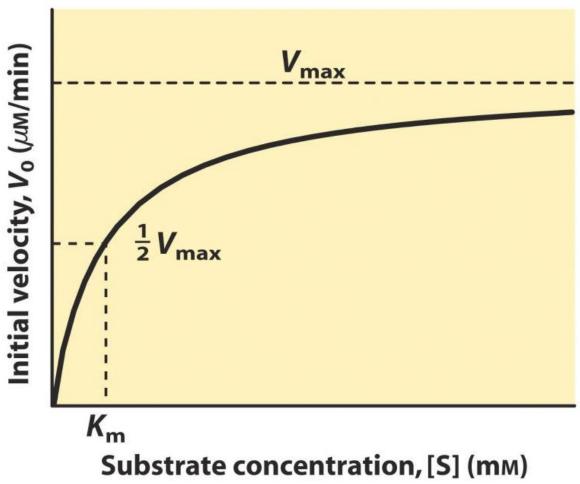
Classification of enzymes

TABLE 6-3	International C	lassification of Enzymes		
Class no. Class name		Type of reaction catalyzed		
1	Oxidoreductases	Transfer of electrons (hydride ions or H atoms)		
2	Transferases	Group transfer reactions		
3	Hydrolases	Hydrolysis reactions (transfer of functional groups to water)		
4	Lyases	Addition of groups to double bonds, or formation of double bonds by removal of groups		
5	Isomerases	Transfer of groups within molecules to yield isomeric forms		
6 Ligases		Formation of C—C, C—S, C—O, and C—N bonds by condensation reactions coupled to cleavage of ATP or similar cofactor		

Table 6-3

Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W. H. Freeman and Company


TABLE	6–1	Some Inorganic lons Th Cofactors for Enzymes	at Serve as		
lons		Enzymes			
Cu ²⁺		Cytochrome oxidase			
Fe ²⁺ or	Fe ³⁺	Cytochrome oxidase, ca peroxidase	atalase,	Co	ofactors
K +		Pyruvate kinase			
Mg ²⁺		Hexokinase, glucose 6- pyruvate kinase	phosphatase,		
Mn ²⁺		Arginase, ribonucleotic	le reductase		
Мо		Dinitrogenase			
Ni ²⁺		Urease			
Se		Glutathione peroxidase	e		
Zn ²⁺		Carbonic anhydrase, al dehydrogenase, carb A and B			
Table 6-1	Coenzym	e	Examples of chemi	ical groups transferred	Dietary precursor in mammals
© 2008 W. H. Freen	Biocytin		co,		Biotin
	Coenzym	ne A	Acyl groups		Pantothenic acid and other compounds
		vadenosylcobalamin syme B ₁₂)	H atoms and alky	l groups	Vitamin B ₁₂
	Flavin ad	lenine dinucleotide	Electrons		Riboflavin (vitamin B ₂)
	Lipoate		Electrons and acy	d groups	Not required in diet
	Nicotina	mide adenine dinucleotide	Hydride ion (:H ⁻)		Nicotinic acid (niacin)
	Pyridoxa	l phosphate	Amino groups		Pyridoxine (vitamin B ₆)
	Tetrahyd	rofolate	One-carbon grou	ps	Folate
	Thiamine	e pyrophosphate	Aldehydes		Thiamine (vitamin B ₁)

Isoenzymes (isozymes)

Isozymes catalyze the same reaction, but may differ in:

- sequence, structure, subunit composition
- encoding gene or even chromosome
- necessary cofactors
- substrate affinity (K_M)
- localization (among organs or organelles).

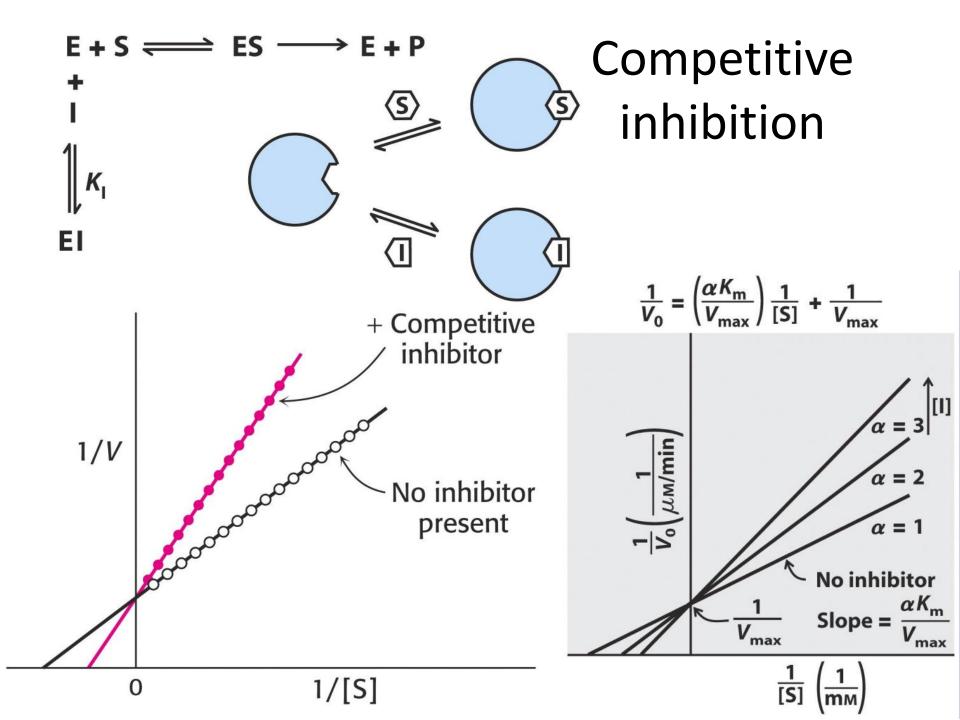
Affinity

 K_{M} is numerically equivalent to the substrate concentration at which the reaction rate is half of the maximal ($v = \frac{1}{2} \cdot v_{max}$), which is thus at half saturation. K_{M} measures also the affinity of the enzyme towards the substrate.

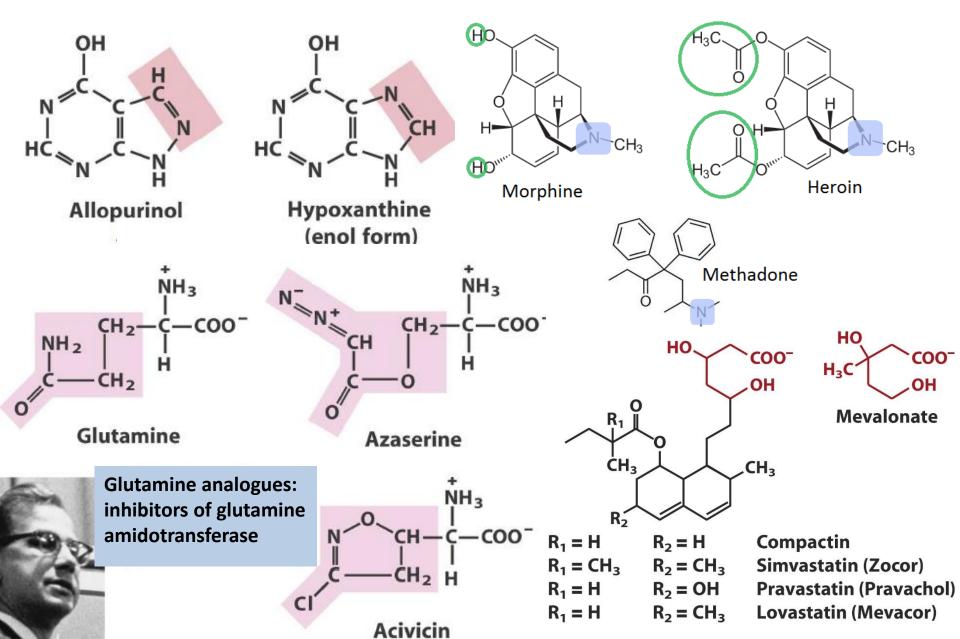
Definition: The activity of a catalyst (a.k.a. catalytic activity) is a measure of how fast a catalyst converts starting materials into products.

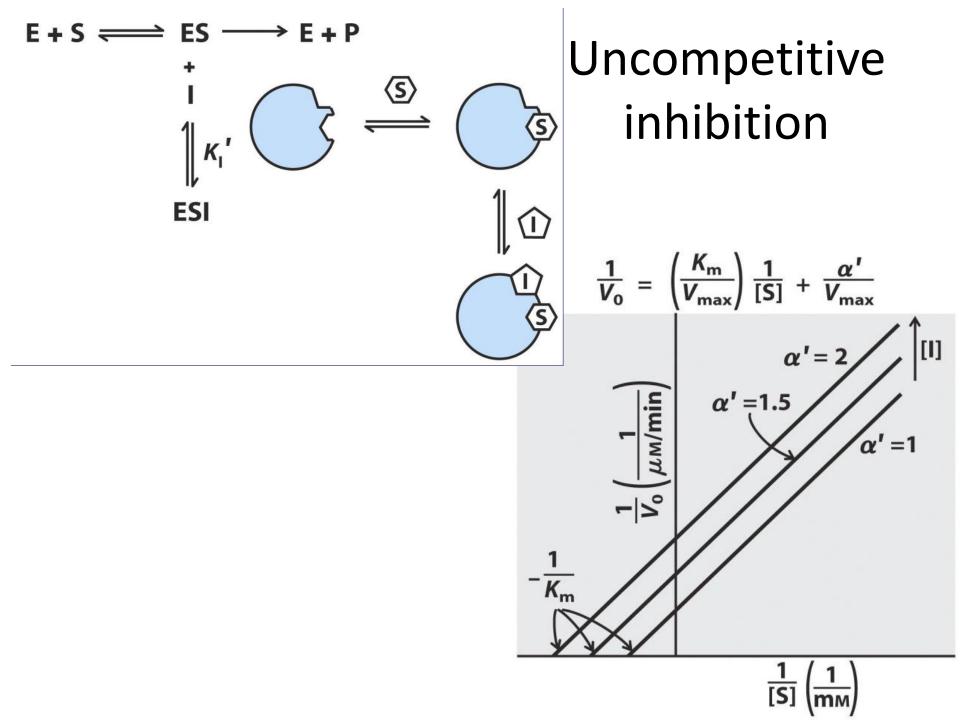
Enzyme activity is a measure of the quantity of active enzyme present: moles of substrate converted per unit time. The SI unit is the katal, the enzyme amount capable to convert 1mol substrate in a second, but this is an excessively large unit. A more practical and commonly used value is enzyme unit (U), 1 µmol in 1 minute. Pure enzymes have well-defined specific activities on this scale between 5 and 500 U/mg.

- IUBMB unit is called "unit" U (µmol / min)
- SI unit is called "katal"
 - katal (mol / s)
 - Nanokatal = 10⁻⁹ katal

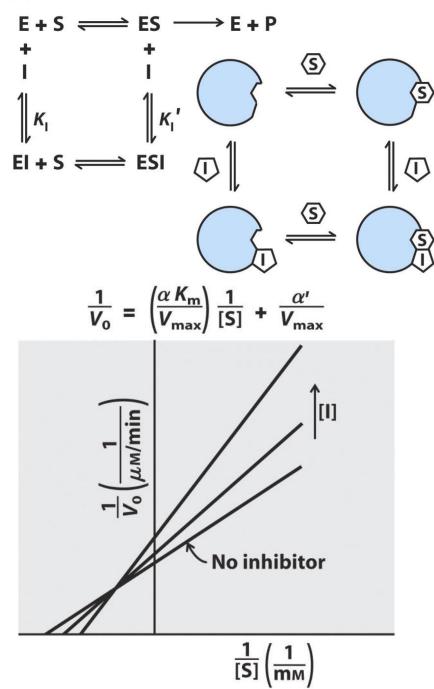

-1U=16.7 nkatal -60mU=1 nkatal

Enzyme inhibitions

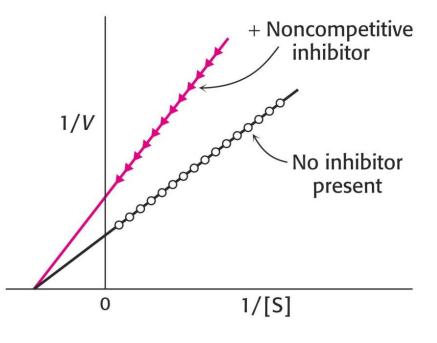

Reversible:


- Michaelis-Menten type: competitive inhibition uncompetitive inhibition mixed inhibition (incl. noncompetitive inhibition)
- Allosteric regulation
- Covalent modification
- Binding protein association

Irreversible: inactivation of the enzyme



Pharmaceuticals



(c) Mixed inhibition

Mixed type inhibition Noncompetitive inhibition

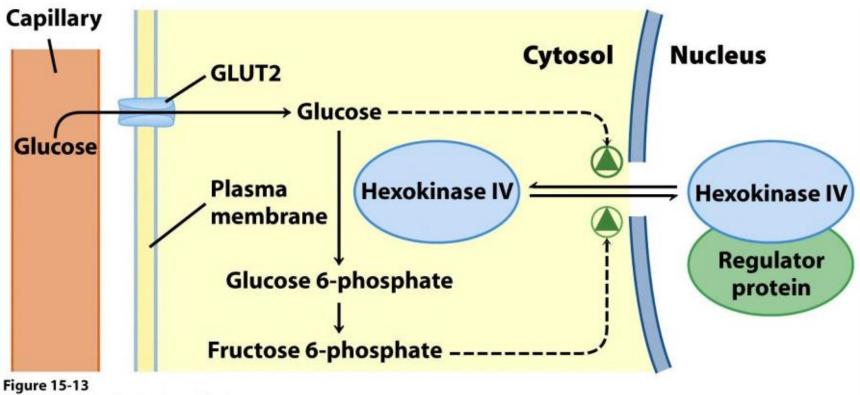
Potassium cyanide is a poison which combines with cytochrome a_3 to prevent binding of oxygen to the enzyme without altering the K_M of the reaction with respect to reduced cytochrome c. Which type of inhibition does this represent?

- a. Competitive inhibition
- b. Uncompetitive inhibition
- c. Noncompetitive inhibition
- d. Irreversible inhibition

Summary

- Competitive inhibitors increase the K_M -value, but the v_{max} remains unchanged. (Active center)
- Uncompetitive inhibitors (rare) bind specifically the enzyme-substrate complex. They decrease v_{max} and the apparent K_{M} -value.
- Mixed type inhibitors increase the $K_{\rm M}$ -value and decrease $v_{\rm max}$.
- As a special case of the mixed type, the noncompetitive inhibitors decrease only the v_{max} but the K_M-value remains unchanged. In the case of singlesubstrate enzymes, this type does not occur.

Allosteric inhibition (or activation)


- Homotropic the substrate and the modulator are the same
- Heterotropic they are different

Covalent modifications

TABLE 10.1 Common covalent modifications of protein activity

Modification	Donor molecule	Example of modified protein	Protein function	
Phosphorylation	ATP	Glycogen phosphorylase	Glucose homeostasis; energy transduction	
Acetylation	Acetyl CoA	Histones	DNA packing; transcription	
Myristoylation	Myristoyl CoA	Src	Signal transduction	
ADP ribosylation	NAD ⁺	RNA polymerase	Transcription	
Farnesylation	Farnesyl pyrophosphate	Ras	Signal transduction	
γ-Carboxylation	HCO ₃	Thrombin	Blood clotting	
Sulfation	3'-Phosphoadenosine-5'- phosphosulfate	Fibrinogen	Blood-clot formation	
Ubiquitination	Ubiquitin	Cyclin	Control of cell cycle	

Binding protein association (Sequestrational regulation)

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

In the first step of glycolysis, hexokinase produces glucose-6-phosphate. G-6-P itself can also bind to hexokinase at the active site, blocking access to ATP. This is an example of:

- a) allosteric inhibition
- b) feedback inhibition
- c) noncompetitive inhibition
- d) uncompetitive inhibition