### Reactions and enzymes

- 1. Energy is transfered
- 2. Electron is transfered
- 3. Water molecule can be a participant
- 4. Metabolic pathways
- 5. Enzymes

### Energy is transfered

- Exergonic reaction: energy-generating reaction (reaction gives energy)
- Endergonic reaction: energy-consuming reaction (reaction uses energy)

### Electron is transfered

- Oxidation: reactant (A) loses electrons, reactant is oxidized
- Reduction: reactant (B) gains electrons, reactants is reduced
- Oxidant= oxidizing agent (B): reactant gaining electron
- Reductant (A): reactant losing electron



# Water molecule can be a participant

- condensation (dehydration):

   formation of a bond between 2
   reactants accompanied by
   formation of a H<sub>2</sub>O molecule,
   eg. peptide bond formation,
   ester bond formation
- hydrolysis (hydration):
   breakdown of a bond
   accompanied by breakdown of
   a H<sub>2</sub>O molecule, eg. breakdown
   of peptide bond, breakdown of
   ester bond



### Metabolic pathways

- a series of individual chemical reactions in a living system
- product of one reaction in a pathway serves as the reactant for the following reaction
- always accompanied by energy transfer and electron transfer (electron transporters are involved eg. NAD)

### Nicotinamide adenine dinucleotide

Wikipedia

Ribo ADP Ribo ADP Ribo ADP Ribo NH<sub>2</sub> Reduction 
$$Oxidation$$
  $Oxidation$   $Oxid$ 

flavin adenine dinucleotide (FAD)

Wikipedia

### Metabolic pathways

- <u>anabolic pathway</u>= biosynthetic pathway: synthesis (production) of a molecule
  - needs energy (eg. energy of sunlight or ATP)
  - reactants are reduced
  - example:

photosynthesis: synthesis of glucose from CO<sub>2</sub> and water in plants (needs energy of sunlight)

- catabolic pathway: breakdown of a molecule
  - produces energy (ATP, heat)
  - reactants are oxidized
  - examples:
    - biological oxidation of glucose (aerobic cellular respiration): breakdown of glucose into CO<sub>2</sub> and water
    - Fermentation (anaerobic cellular respiration): breakdown of glucose into lactate and CO<sub>2</sub>



 $1 C_6 H_{12}O_6 = 6 CO_2 + 6H_2O + 36 ATP$ 

#### **Glycolysis**

#### Krebs cycle/citrate cycle





#### Panel 13-1 Details of the 10 steps of glycolysis





In addition to the pyruvate, the net products are

two molecules of ATP and two molecules of NADH.

glucose

two molecules

of pyruvate



### Enzymes=biocatalysts

- reaction is faster at the presence of an enzyme (even 10 000 times faster)
- reaction needs less activation energy at the presence of an enzyme (even 10 times less)



#### Mechanism of enzyme activity



- 1. reactant (=substrate) binds to the active center (or site) of the enzyme (<u>"lock and key" model)</u>
- 2. chemical reaction is performed (substrate is chemically modified) in enzyme-substrate complex: product is made
- 3. product leaves enzyme
- 4. enzyme can bind substrates again

### Hydrolysis of sucrose



- 1. chemically <u>proteins</u> (some enzymes are chemically RNA, eg. peptidyl transferase)
- 2. Holoenzyme (eg.holoenzyme for DNA synthesis=replisome)
- 3. Coenzymes (eg. coenzyme A), electron transporters (eg. NAD, FAD)
- 4. sensitivity for pH and temperature



- 5. Scientific name: name of substrate+name of reaction+ASE (eg. Glycogensynthase)
- 6. examples:
- digestive enzymes: catalyze breakdown of nutrients in digestive system eg.: amylase (breakdown of carbohydrates) pepsin (breakdown of proteins), lipase( breakdown of lipids)
- biosynthetic enzymes: DNA polymerase (synthesis of DNA), RNA polymerase (synthesis of RNA), peptidyl transferase (synthesis of proteins)

## replisome



### Albinism=hypomelanism





**Connie Chiu** 



