PhD értekezés tézisei

A humán miozin-7a molekuláris regulációs mechanizmusai

Holló Alexandra

Doktori Iskola:	Interdiszciplináris Orvostudományok Doktori Iskola
Doktori Iskola Vezetője:	Prof. Dr. Gallyas Ferenc
Doktori Program:	Funkcionális fehérjedinamika vizsgálata biofizikai
	módszerekkel (B-130)
Doktori Program Vezetője:	Prof. Dr. Nyitrai Miklós
Témavezetők:	Dr. Kengyel András Miklós
	Dr. James R. Sellers

Pécsi Tudományegyetem Általános Orvostudományi Kar Biofizikai Intézet

> Pécs 2024

Absztrakt

A humán miozin-7a aktin alapú motorfehérje nélkülözhetetlen az egészséges látáshoz és a halláshoz. Létfontosságú szerepet játszik az aktinban gazdag sztereocíliumok fejlődésében és működésében. A *Drosophila* homológjával végzett korábbi vizsgálatok kimutatták, hogy az alapvetően monomer miozin-7a magas munkaciklus-arányú motorfehérje, amely dimerizáció után képes processzív mozgásra is. A teljes hosszúságú emlős miozin-7a jellemzése azonban kihívást jelentett a stabil, intakt fehérje előállításának nehézségei miatt.

Munkánkban beszámolunk a teljes hosszúságú funkcióképes humán miozin-7a holoenzim előállításáról és tanulmányozzuk az intra- és intermolekuláris szabályozási mechanizmusokat. A humán miozin-7a regulatorikus könnyű láncot, a kalmodulint és a kalmodulin-szerű fehérje 4 (CALML4) könnyű láncot köt. A CALML4-ről nemrég fedezték fel, hogy magas koncentrációban megtalálható a sztereocíliumokban, és a veleszületett süketséget okozó gének egyik lehetséges jelöltjenként is azonosították. Kutatásaink azt mutatták, hogy a CALML4 döntő szerepet játszik a kalmodulin miozin-7a-hoz való dinamikus kötődésének szabályozásában Ca²⁺ szignál hatására. A csigában két miozin-7a splicing variáns található meg, amelyek csak egy rövid N-terminális extenzióban különböznek egymástól. In vitro motilitási esszék és biokémiai vizsgálatok segítségével kimutattuk, hogy az N-terminális extenzió jelentős hatással van az emlős miozin-7a mechanikai és enzimatikus tulajdonságaira. Hipotézisünk szerint, a szőrsejtek mechanoszenzitivitását a miozin-7a két izoformájának eltérő expressziós szintje szabályozza. Az egyedi molekula motilitási kísérleteink azt mutatták, hogy in vitro a teljes hosszúságú miozin-7a önmagában nem képes az aktin filamentumok mentén elmozdulni. A MyRIP miozin-7a kötő fehérje jelenlétében azonban processzív mozgást mutat. A motor-kötőpartner komplex alacsony sebességgel halad az aktin filamentumokon, azonban hosszú ideig kötődik és nagy távolságot képes megtenni.

Eredményeink arra utalnak, hogy a vizsgált szabályozási mechanizmusok komplex hálózata együttesen felelős a miozin-7a aktivitásának, szerkezetének, lokalizációjának, oligomer állapotának és funkciójának finomhangolásáért. Munkánk a retinasejtek és a belső szőrsejtek molekuláris szintű működésének megértéséhez is hozzájárul.

Bevezetés

Miozin motorfehérjék

A miozinok aktin alapú motorfehérjék, melyek elengedhetetlenek a különböző típusú sejtmozgásokhoz, mint például a citokinézis, a fagocitózis, a sejtszervecske mozgások vagy a sejt alakjának fenntartása Az emberben 39 miozin gént azonosítottak, amelyeket motor és farok-szerkezetük alapján 12 osztályba lehet sorolni [2, 3]. A miozin szupercsalád tagjai több alegységből, nehéz- és a könnyűláncokból épülnek fel. A nehézláncok általában három funkcionális doménből állnak. A motor- vagy fejdomén felelős az aktin filamentum, valamint ATP kötésért és hidrolízisért. A motor régió központi szekvenciája minden miozin osztályban konzervált. Az egyes osztályokban megtalálható N-terminális extenziók hossza változatos, és olyan osztályspecifikus tulajdonságokért felelősek, mint a membránkötés vagy a kinázaktivitás [2]. A nyaki domén általában egy vagy több konszenzus szekvenciájú IQ-motívumot tartalmaz, amelyek a könnyű lánchoz való kötődésért felelősek [2, 4]. A miozin holoenzim stabilitását a könnyű láncok biztosítják, amelyek lehetővé teszik, hogy nyaki domén a munkacsapás (az ún. powerstroke) végrehajtásához nélkülözhetetlen merev erőkarként szolgáljon. Ezek a könnyű láncok szabályozó hatással lehetnek a miozin mechano-enzimatikus aktivitására is [5, 6]. A holoenzim akkor alakul ki, amikor a könnyű láncok nem-kovalens módon kötődnek a nehézlánchoz. A farok domének mutatják a legnagyobb változatosságot a miozin osztályok között mind szekvenciában, mind hosszban. A nem-konvencionális miozinok sokféle funkcióval rendelkeznek, és számos sejtfolyamatban vesznek részt. Sokféleségük a szerkezetük és motor tulajdonságaik változatosságán keresztül figyelhető meg [7, 8].

Miozinok enzim-aktivitása

Bár a miozin izoformáknak határozott szerkezeti különbségei vannak, közös bennük az ATPhidrolizáló mechanizmus [9]. ATP hiányában a miozin fej szorosan kötődik az aktin filamentumhoz, ún. *rigor* állapotban. ATP kötődése csökkenti a miozin fej és az aktin filamentum közötti kötés erősségét, ezáltal a miozin fej leválását okozza az aktinról. A miozin fej az ATP-t ADP-re és szervetlen foszfátra hidrolizálja, ami konformációs változást eredményez, és az erőkar felhúzott állapotba kerül, lehetővé téve az aktin filamentum újrakötését. A szervetlen foszfát felszabadulása megkönnyíti az aktin és a miozin közötti erős kötődés kialakulását. Az ADP felszabadulás hatására az erőkar végrehajtja a munka-csapást, ami a szorosan kötött aktin filamentum előre irányuló mozgásához vezet. A *rigor* állapot helyreáll, és a ciklus egy újabb ATP-molekula kötődésével folytatódik [9-11].

Miozinok szabályozása

A miozinok sokféleségük és az őket expresszáló sejttípusok különbözősége miatt szigorú szabályozást igényelnek. A miozinokat a sejt több szinten szabályozza annak érdekében, hogy aktivitásukat, konformációjukat, sejten belüli lokalizációjukat, oligomer állapotukat és általános működésüket összehangolja. Ennek eléréséhez a sejtek különböző mechanizmusokat alkalmaznak [5, 12]. Az alternatív splicing számos variánst eredményezhet, amelyek eltérő jellemzőkkel, sejten belüli lokalizációval és sejt/szövetspecifikus funkciókkal rendelkeznek. Sok miozin esetében splicing szabályozza az izoformák eltérő N-terminális extenzióját, melyek méretükben és funkciójukban is különbözhetnek. Az extenzió befolyásolhatja az aktin vagy nukleotid kötődést, a fehérje-fehérje kölcsönhatásokat, a hidrolizált termék disszociációt vagy az erőkar mozgását/forgását [5, 6, 12]. Számos monomer miozin szorosan zárt konformációt vesz fel, ami alacsony aktin-affinitást és ATPáz aktivitást eredményez. Ezt az auto-inhibíciós állapotot szüntethetik meg például kötőpartnerek, foszforiláció vagy kationok bekötése. A kétértékű kationok, mint például a Ca²⁺ és az Mg²⁺, többféleképpen befolyásolják a miozin működését, beleértve a holoenzim konformációs változásait és motoros aktivitását. Bizonyos miozin könnyű láncok képesek kationokat kötni, és a holoenzim szabályozása a könnyű láncok specifikus kötődésén keresztül valósul meg [5, 6, 12]. Számos nem-konvencionális miozin fontos transzporterként működik. A szállítandó kargót adapter fehérjék kötik a molekuláris motor kargó-kötő doménjéhez. A miozin és a kargó közötti kölcsönhatások szabályozzák a motorkomplex mechanokémiáját, oligomerizációját és lokalizációját. A kargó kötése a miozin nehézláncainak dimerizációját vagy oligomerizációját okozhatja, és elősegítheti a miozin processzivitását [5, 6, 12]. A fent említett különböző szabályozó mechanizmusok összehangoltan, egymással kölcsönhatva vesznek részt a motorfehérje működésének alakításában.

Miozin-7a

A miozin szupercsalád egyik fontos tagja a miozin-7, ami nélkülözhetetlen az egészséges látás és a hallás folyamataiban [13-16]. Emlősökben a miozin-7a számos szövetben megtalálható, például a herében, a vesében és a tüdőben, de különösen fontos szerepet töltenek be a belső fülben: a belső fül szőrsejtjeinek sztereocíliumaiban, valamint a retinában: a fotoreceptorokban és a retina pigment epitélumában. A miozin-7a mutációi süketséghez, vesztibuláris diszfunkcióhoz és retina degenerációhoz vezethetnek [15, 17]. A teljes hosszúságú miozin-7a motor doménből, 5 IQ-motívumot tartalmazó rövid nyaki régióból, és farokdoménből áll, amelyben két MyTH4-FERM-motívumot egy SH3 motívum választ el egymástól [18].

Drosophila homológ fehérjén végzett korábbi kutatások kimutatták, hogy a miozin-7a magas munkaciklus-arányú, monomer motor, amely nem képes processzív mozgásra az aktin filamentumokon [19, 20]. A teljes hosszúságú emlős miozin-7a jellemzése kihívást jelentett a stabil, intakt fehérje expressziójának és tisztításának nehézségei miatt. Egy korábbi tanulmány feltárta, hogy a csiga szőrsejtjei alternatív splicing révén két myosin-7a izoformát expresszálnak, amelyek csak egy rövid N-terminális extenzióban különböznek egymástól. A kanonikus hosszú izoforma, amely tartalmazza a 11 aminosav hosszú (MVILQQGDHVW) extenziót, egységesen expresszálódik a belső szőrsejtekben, de tonotopikusan a külső szőrsejtekben [21, 22].

Korábbi vizsgálatok kimutatták, hogy a humán miozin-7a IQ-motívumai képesek a regulatórikus (RLC) és az esszenciális könnyűlánc (ELC) kötésére [23], míg a CALML4 azonosítása a miozin-7b endogén könnyű láncaként pedig felvetette a miozin-7a kötődésének lehetőségét [24, 25]. A miozin-7a MyTH4-FERM-motívumai számos fehérjével képesek kölcsönhatásba lépni [26-28]. Ezen partner-fehérjék, valamint a miozin-7a zavara együttesen felelős az Usher-szindróma kialakulásáért, amely egy recesszív genetikai rendellenesség, látó- és hallószervi károsodással, amely a kombinált siketség-vakság elsődleges oka. A myosin-7a defektusai a sztereocílium kötegek dezorganizációját, valamint a transzdukciós és adaptációs folyamatok megváltozását eredményezhetik, emellett más sztereocílium-fehérjék szállítása is károsodhat [29]. A miozin-7a pontos élettani szerepe még nem teljesen ismert. A dimerizált motor valószínűleg képes kargót szállítani az aktin citoszkeleton mentén, de a legújabb bizonyítékok arra utalnak, hogy a belső fül mechano-elektromos transzdukciójában is részt vesz rögzítés és a feszültség generálása révén [21, 26, 30]. A miozin-7a számos szerteágazó funkciója a belső fülben és a neuroretinában komplex szabályozási folyamatokat igényel. Munkánk célja, hogy megvizsgáljuk a szabályozásért felelős specifikus mechanizmusokat.

Kérdésfelvetés

Ahhoz, hogy a humán miozin-7a betöltse fiziológiai szerepét, többféle szabályozó mechanizmus szükséges. Ezek a mechanizmusok mind intra-, mind intermolekulárisan szabályozzák a miozin lokalizációját, konformációját, oligomer állapotát és enzim-aktivitását. A disszertáció célja egyes kiválasztott mechanizmusok megértése. A következő kérdésekre kívántunk választ adni:

• **Hogyan lehet expresszálni és tisztítani a teljes hosszúságú humán miozin-7a-t?** A humán miozin-7a motoros funkcióinak vizsgálatára eddig csak farok-domént nem tartalmazó, rövid konstrukciókat használták, mivel a stabil, intakt, teljes hosszúságú fehérje expresszálása és tisztítása nehézségekbe ütközött. Célunk egy olyan protokoll kidolgozása és optimalizálása volt, amellyel a teljes hosszúságú miozin-7a stabilan tisztítható.

 Mely könnyűláncokat köti a humán miozin-7a? Bár a humán miozin-7a-t eddig kalmodulinnal expresszálták és tisztították, tanulmányok kimutatták, hogy más könnyűláncok is képesek kötődni a miozin-7a IQ-motívumaihoz. Célunk a miozin-7a pontos könnyűláncösszetételének meghatározása volt.

• **Milyen hatást gyakorol a kalcium a miozin-7a szerkezetére és működésére?** A kalcium kulcsfontosságú szabályozó kation a belső fülben. A mechano-elektromos transzdukció során kalcium áramlik a szőrsejtekbe. Célunk az volt, hogy feltárjuk a kalcium lehetséges hatását a miozin szerkezetére és enzimatikus funkciójára.

• **Mi a szerepe az N-terminális extenziónak?** A miozinok gyakran rendelkeznek Nterminális extenzióval, amely módosítja a motor funkciót. Kutatásunk célja, hogy megvizsgáljuk a miozin-7a rövid N-terminális extenziójának a motoros funkcióra gyakorolt hatását.

• **Milyen motilitási tulajdonságokkal rendelkezik miozin-7a?** A monomer miozinok számos esetben aktiválhatók és dimerizálhatók kötőpartnerek segítségével. Ebben a tanulmányban azt vizsgáltuk, hogy a MyRIP, a miozin-7a egyik ismert kötőpartnere hogyan indukálja a motorfehérje processzivitását. Emellett mesterséges dimerizáció segítségével felmértük a miozin-7a intrinszik motilitását is dimer állapotban.

Módszerek

Miozin-7a klónozása

A munka során több különböző DNS-konstrukciót tartalmazó vektort hoztunk létre, valamint több különböző hosszúságú miozin-7a konstrukciót állítottunk elő. A teljes hosszúságú humán miozin-7a expressziójára és tisztítására tett kezdeti kísérleteink során, amikor több bakulovírus (nehézlánc, három különböző könnyűlánc) együttes transzfektálása történt, a tisztítási hozam nagyon alacsony volt, ezért áttértünk a MultiBac rendszerre, amelyet nagy, multimer fehérjekomplexek rovarsejtekben történő előállítására terveztek [31].

Miozin-7a tisztítása

A FLAG-taggel ellátott miozin-7a rekombináns fehérjét *Sf9* rovarsejtekben expresszáltuk, amelyeket előzőleg pACEBac1-Multi plazmiddal vagy különböző, a nehézláncot és a könnyű láncot tartalmazó pFastBac1 plazmidokkal együttesen fertőztük. A holoenzimet FLAG-affinitás kromatográfiával tisztítottuk a sejtlizátumból.

Egyéb fehérjék tisztítása

A C-terminális mCherry-taggal és FLAG-taggal ellátott MyRIP-konstrukciót pFastBac1 plazmidba klónoztuk. A tisztítási folyamat hasonló volt a miozin-7a esetében leírtakhoz. A CALML4 pET15b-MHL vektorba klónoztuk, majd KRX sejteket (Promega) transzformáltunk a plazmiddal. A könnyű láncot a sejtlizátumból His-affinitás kromatográfiával tisztítottuk. GFP-RLC-t pFastBac1 plazmidba klónoztuk és *Sf9* rovarsejtekben expresszáltuk, majd anioncserélő kromatográfiával tisztítottuk. Az aktint nyúl izom acetonporból (Pel Freeze Biologicals) tisztítottuk, és a standard protokoll szerint állítottuk elő [32]. A kalmodulint a korábban közzétett protokollok szerint tisztítottuk [33].

In vitro motilitási esszé

Az *in vitro* aktin motilitási esszé információt szolgáltat a felszínhez kötött miozinok aktin mozgatására való képességéről. A mikroszkópos tárgylemezeken kialakított folyadékcellába 0,2 mg/ml miozin 7a-t juttattunk, és 1 percig inkubáltuk, hogy a miozin megtapadjon a nitrocellulózzal bevont felületen. Alapos mosási lépések után rodamin-falloidinnal jelölt aktint (20 nM) juttattunk a cellába. Az egy-molekulás *in vitro* motilitási próba információt szolgáltat az egyedi miozin molekulák processzivitásáról, amint a felszínhez kötött aktin filamentumok mentén haladnak. A PEG-borítású mikroszkóplemezeken kialakított folyadékcellát NeutrAvidinnel mostuk, majd aktinnal töltöttük fel. ~ 0,01 mg/ml miozint juttattunk a cellába.

A felvételeket inverz Nikon Eclipse Ti-E mikroszkóppal gyűjtöttük, amelyhez H-TIRF modul tartozékot, CFI60 Apochromat TIRF 100x olaj immerziós objektívet és EMCCD kamerát használtunk. A processzív motilitást az ImageJ TrackMate plugin segítségével elemeztük. A hisztogramokat a GraphPad Prism 7 szoftverrel készítettük. A sebesség-hisztogramok Gaussillesztését használtuk az átlagos sebesség meghatározásához. A karakterisztikus futáshosszokat és futási időtartamokat a megfelelő hisztogramok exponenciális illesztésével határoztuk meg.

Steady-state ATPáz esszé

A miozin steady-state ATPáz aktivitást különböző F-aktin-koncentrációk mellett SpectraMax ID3 mikrolemez olvasóval mértük 37°C-on. Az ATP-hidrolízis sebességét a NADH oxidációja által okozott 340 nm-es abszorbancia csökkenésből számoltuk ki Michaelis-Menten kinetika alapján, és a miozin koncentrációra normalizáltuk. A kinetikai paraméterek meghatározásához az ATP-áz sebességét az F-aktin koncentrációjával szemben ábrázoltuk, és az adatpontokra Michaelis-Menten-görbét illesztettünk.

Negatív festésű elektronmikroszkópia és képfeldolgozás

A hígított fehérjéket UV-kezelt és szénnel bevont elektronmikroszkóp-rácsra vittük fel, majd azonnal 1%-os uranil-acetáttal festettük. A mikrofelvételeket JEOL 1200EX mikroszkópon rögzítettük AMT XR-60 CCD-kamerával 60000x nagyítás mellett. A referencia nélküli képillesztést és a K-középosztályozást a SPIDER szoftver segítségével végeztük el.

Tömegfotometria

Az egy-molekulás mérési adatok megszerzéséhez Refeyn One MP tömegfotométert használtuk. Minden egyes mintából vagy keverékből 20 nM-t töltöttünk a cellába. Az adatgyűjtést 1 percig végeztük szobahőmérsékleten, a képeket pedig a gyártó által biztosított szoftverrel (Refeyn, UK) dolgoztuk fel. A molekulatömeg és a kontraszt közötti kalibrációt ismert molekulatömegű fehérjestandardok segítségével állapítottuk meg [34]. A mérés során kapott eredményeket hisztogramon ábrázoltuk és Gauss-illesztést alkalmaztunk.

Izoterm Titrációs Kalorimetria

Az izoterm titrációs kalorimetria (ITC) kísérleteket MicroCal ITC-200 műszerrel (Malvern) végeztük. A reakciócellába 260 μM CALML4-et helyeztünk, az ITC fecskendőbe 8 mM Ca²⁺-t töltöttünk. A titrálás 20 injekcióból állt. Az adatelemzést a beépített szoftverrel végeztük el, a kalcium-puffer mérést használva kontrollként.

Mikroskálás Termoforézis

Az mikroskálás termoforézis (MST) méréseket Monolith NT.115 készülékkel végeztük. A Monolith NTTM His-Tag jelölő készletet használtuk a His-CALML4 és a His-kalmodulin jelölésére RED-tris-NTA festékkel. A kötési affinitásvizsgálatokat 16 koncentrációjú kalciumhígítási sorozat (kalmodulin: 5 mM - 150 nM, CALML4: 2 M - 60 μM) felhasználásával végeztük. Minden hígítást MonolithTM kapillárisokba töltöttünk (~5-7 μl). Az adatok illesztését a beépített Nanotemper szoftver segítségével a KD modell alapján számoltuk ki.

Tömegspektrometria

A mintákat NuPageTM 4-12%-os Bis-Tris gélen választottuk szét, Coomassie Blue-val festettük, majd desztillált vízzel öblítettük. A DTT-vel és IAD-vel történő redukcióra és alkilezésre való előkészítéshez a gélt bi-karbonát és metanol oldat segítségével víztelenítettük és dehidratáltuk. A peptideket 5%-os hangyasavval és 50%-os acetonitrillel extraháltuk egy éjszakán át tartó tripszin emésztés után. Ezután C₁₈ gyöngyöt tartalmazó ZipTip-ekkel tisztítottuk őket. LC-MS/MS segítségével a peptideket koncentráltuk és elemeztük.

ARPE19 transzfekció

Az ARPE 19 sejtvonalat az ATCC-től szereztünk be (CRL 2302TM). A sejteket 25 cm²-es tenyésztőlombikokban 10% FBS-t tartalmazó DMEM:F12 tápfolyadékban tenyésztettük, 37 °C-on és 5% CO₂ mellett. A transzfekció előtt az alacsony passzázs-számú sejteket kamrás fedőüvegekbe (*In vitro* Scientific) juttattuk. Az Avalanche transzfekciós reagens (EZ Biosystems) és a CMV plazmid DNS-t Opti-MEM I redukált szérumos közegben (GibcoTM) hígítottuk, majd óvatosan, cseppenként adagoltuk minden egyes kamrába. A transzfekciós oldatot 5 órás, 37 °C-on, CO₂ inkubátorban végzett inkubációs időszakot követően eltávolítottuk. A sejtmegfigyeléseket 48 órával a transzfekció után végeztük el.

Eredmények

A teljes hosszúságú miozin-7a sikeres expressziója és tisztítása

A M7a-5IQ különböző könnyű láncokkal való együttes expressziója során több könnyű láncot tudtunk azonosítani, amelyek kötődtek a miozin-7a nehézlánchoz, ezért a MultiBac rendszer segítségével olyan konstrukciót állítottunk elő, amely a teljes hosszúságú miozin-7a nehézláncot, kalmodulint, CALML4-et és RLC-t is tartalmazza. Ez a módszer végül nagy mennyiségű, tisztított miozin-7a holoenzimet eredményezett, amelyben a nehézlánc és a háromféle könnyűlánc is jól elkülöníthető a gélen.

A motor funkciót a C-terminális domén szabályozza

Negatív festésű elektronmikroszkópiát alkalmazva megfigyeltük a humán miozin-7a alacsony ionerősségnél kialakuló zárt konformációját, amelyben a farok domén visszahajlik a motor doménre. A $20,7 \pm 1,9$ nm-es kontúr összhangban van az erőkar várható hosszával 5IQ motívumok esetén (~19 nm). Mivel az SAH domén várhatóan további ~ 9 nm-t ad a kar hosszához, feltételezzük, hogy az SAH domén nem járul hozzá az erőkar hosszához, hanem inkább a visszatérő oldal részét képezi a farokdomén többi motívumával együtt. A sókoncentráció növelése egy nyitott konformációt eredményezett, ami a farok domén nagyfokú rugalmasságát is mutatja.

A farok és a motor domén kölcsönhatása az enzimfunkció drasztikus csökkenését eredményezi. A teljes hosszúságú miozin-7a aktin-aktivált steady-state ATPáz aktivitását NADH-csatolt teszttel mértük. A maximális reakciósebesség (v_{max}) 0,2 s⁻¹, a félmaximális reakciósebességhez tartozó subsztrát koncentráció ($K_{ATPáz}$) 54 μ M értékeket adott. Ezzel szemben a csak a motor domént és az első IQ domént tartalmazó M7a-S1 miozin ~7,5-szer magasabb maximális reakciósebességgel rendelkezik (1,5 s⁻¹) és a $K_{ATPáz}$ ~5-ször kisebb (11 μ M) a teljes hosszúságú miozinhoz hasonlítva. Az alacsonyabb $K_{ATPáz}$ nagyobb affinitást jelent az aktinhoz.

A humán miozin-7a elsődlegesen monomer

Az expresszált rekombináns miozin-7a-S1 molekulasúlya a tömegfotometriás kísérletek során 103 kDa-nak adódott, amely leginkább egy nehézlánc (~89 kDa) és egy könnyű lánc (RLC, ~20 kDa) összegének felel meg. A teljes hosszúságú miozin-7a molekulasúlya 325 kDa-nak aódott, amely megegyezik egy nehézlánc (~255 kDa) és négy könnyűlánc molekulasúly összegével (egy RLC: ~20 kDa, három kalmodulin és CALML4: ~17 kDa), ami azt jelzi, hogy a teljes hosszúságú miozin-7a nehézlánca monomer. Nem volt megfigyelhető olyan magasabb

molekula súlyú csúcs, amely dimernek vagy multimernek felelt volna meg. Ezzel szemben a mesterségesen dimerizált miozin-7a-S1SAH (a miozin-7a motor és nyak doménje, amelyet egy Leucin-zipzár motívum követ) egy körülbelül 406 kDa molekulasúlyt formált, amely megfelel két nehézlánc (~141 kDa) és hat-nyolc könnyűlánc molekulasúly összegének. A tömegfotometria felbontása nem teszi lehetővé, hogy a könnyűláncok pontos számát megadjuk.

A CALML4 kritikus könnyűlánca a mzion-7a-nak

Az *Sf9* sejtekben expresszált teljes hosszúságú humán miozin-7a nehézlánc fehérje minősége jelentősen javult a CALML4 együttes expressziójával. Anti-CALML4 antitestet és tömegspektrometria segítségével igazoltuk a CALML4 jelenlétét a tisztított miozin-7a mintákban. Továbbá, a kalmodulin csak akkor tisztult együtt a M7a-S1 nehézlánccal, ha a CALML4 is jelen volt, ami arra utal, hogy a CALML4 elősegíti a kalmodulin kötődését. Ezt a hipotézist alátámasztja az is, hogy endogén *Sf9* kalmodulint detektáltunk tisztítás után a nehézlánchoz kötve, olyan kísérletekben, ahol nem volt exogén kalmodulin az expresszióhoz vagy a sejtlizátumhoz adva, viszont CALML4 jelen volt az expresszió során.

CALML4 elektroforetikus sebessége nem változás kalcium hatására

A kalmodulin és a CALML4 aminosav összetétele 44%-ban azonos. Ha a CALML4 aminosavszekvenciáját összehasonlítjuk a humán kalmodulinéval, a Ca²⁺-kelát képzéshez szükséges döntő fontosságú aminosavak hiányoznak a CALML4 mindegyik EF-kéz motívumából. Néhány konzervált aminosav jelenléte a CALML4 negyedik EF-kéz motívumában arra utal, hogy az részben megőrizheti a kalcium megkötésének képességét. Tisztított kalmodulin és CALML4 felhasználásával elektroforetikus mobilitási sebesség vizsgálatot végeztünk a CALML4 kalcium-kötő képességének közvetlen vizsgálatára. Ca²⁺ jelentében a kalmodulin megváltozott elektroforetikus mobilitást mutatott a kalcium-függő konformációs változás hatására, míg ugyanezen körülmények között a CALML4 mobilitása nem változott Ca²⁺

CALML4 alacsony affinitással köt kalciumot

A Ca²⁺ által kiváltott változások vizsgálatára izoterm titrációs kalorimetria kísérleteket végeztünk a CALML4 mintákon 8 mM Ca²⁺ alkalmazásával. Az adatok illesztése rámutatott egy potenciális kötődésre (K_A = 700 ± 1730 M⁻¹) azonban a rendellenesen magas standard deviáció és a nem reális kötési sztöchiometria (N_{CALML4-Calcium} = 5,56 ± 3,23; míg N_{CaM-Calcium} = 4) kétségeket ébresztett a kötési esemény valódiságával kapcsolatban. A CALML4 molekuláris hidratációs héjában, töltésében vagy méretében bekövetkező kalcium-indukált

változások nyomon követésére mikroskálás termoforézist alkalmaztunk. 10^{-2} M (10 mM) és 10^{-5} M (10 μ M) kalcium koncentráció tartományban a CALML4 minták a kalmodulinhoz képest kisebb kalcium-affinitást mutattak. Az 1 M kalciumkoncentrációt használva a CALML4 kalcium-affinitását szigmoidális illesztéssel K_D = ~ 350 mM-ra becsültük. Ezek az eredmények azt mutatják, hogy a CALML4 egy olyan EF-kéz motívummal rendelkező fehérje, amely elvesztette Ca²⁺-kötődési képességét.

A könnyű láncok kötődése miozin-7a-hoz kalcium függő

A tömegfotometria segítségével a holoenzimben bekövetkező változásokat is meg tudtuk figyelni. 1 μ M EGTA hozzáadásával a teljes hosszúságú miozin-7a egy 325 kDa molekulasúlyú csúcsot mutatott, ami egy nehézláncnak és négy könnyű láncnak felel meg. Ca²⁺ hozzáadásakor egy kisebb, 293 ± 25 kDa molekulasúlyú csúcs felé történő elmozdulást figyeltünk meg, amely egy nehézláncnak és egy 38 kDa tömegnek felel meg. Mivel az RLC és a CALML4 inert a kalciummal szemben, ezt a 38 kDa tömeget egy RLC és egy CALM4 együttes jelenlétének tulajdonítjuk. A tömegfotométer nem érzékeli a 25 kDa-nál kisebb fehérjéket, így ebben a kísérletben nem tudtuk kimutatni a disszociált, szabad könnyű láncokat.

A kalcium befolyásolja a miozin-7a ATPáz aktivitását és aktin affinitását

Mivel úgy tűnik, hogy a kalciumkötés elősegíti bizonyos könnyű láncok disszociációját a holoenzimről, megvizsgáltuk a kalciumnak az enzimaktivitásra gyakorolt hatását. A NADH kapcsolt ATPáz esszét megismételtük 500 nM kalcium jelenlétében. A Ca²⁺ hozzáadását követően a teljes hosszúságú miozin-7a maximális reakciósebessége 0.98 ± 0.27 s⁻¹ növekedett.

Az aktin mozgatási sebesség lecsökken kalcium jelenlétében

TIRF-mikroszkópia segítségével *in vitro* aktin motilitási esszét végeztünk, hogy megvizsgáljuk a kalcium hatását a miozin motoros aktivitására. A felszínhez kötött miozin molekulák ~ 22 nm/s sebességgel mozgatták a fluoreszcensen jelölt aktint, Ca^{2+} jelenlétében azonban a sebesség ~ 7 nm/s-ra csökkent, ami arra utal, hogy a miozin motilitása a kalmodulin holoenzimről való disszociációja következtében károsodott, annak ellenére, hogy szabad kalmodulin jelen volt az esszé során.

Az N-terminális extenzió befolyásolja a mzion-7a lokációját és aktivitását

A csigában két miozin-7a nehézlánc izoforma expresszálódik, egy kanonikus hosszú N-terminális és egy rövid N-terminális miozin-7a, amelyből hiányzik a motor domén előtti tizenegy aminosav hosszú N-terminális extenzió [21]. Az N-terminális extenzió szerepének feltárása érdekében expresszáltuk és tisztítottuk a két izoformát. Farok-csonkított konstrukciókat (M7a-5IQ) használtuk, hogy elkerüljük a farok domén auto-inhibíciós hatását. Ezenkívül az N-terminális pozícióban lévő GFP-tag általános használata kérdéseket vet fel az N-terminális extenzió szabályozó funkciójára gyakorolt lehetséges hatásával kapcsolatban. Ezért egy hosszú N-terminális konstrukciót is létrehoztunk, amely egy GFP-t is tartalmazott az N-terminális régió előtt.

In vitro aktin motilitási esszében a kanonikus hosszú izoforma magasabb aktin mozgatási sebességet mutatott ($3 \pm 1,6$ nm/s), mint a rövid izoforma ($1,3 \pm 0,95$ nm/s). Hasonló eredményeket tapasztaltunk a steady-state ATPáz esszékben is, ahol a hosszabb izoforma aktin-aktivált ATPáz aktivitása magasabbnak bizonyult ($0,84 \pm 0,14$ s⁻¹), mint a rövidebb izoformaé ($0,24 \pm 0,06$ s⁻¹). Érdekes módon az N-terminális GFP-tag jelenléte a hosszú izoformán szintén alacsonyabb sebességértékeket ($1,6 \pm 0,9$ nm/s) és alacsonyabb ATPáz-aktivitást ($0,11 \pm 0,07$ s⁻¹) eredményezett a jelöletlen hosszú N-terminális izoformához képest.

A mesterségesen dimerizált miozin-7a processzív mozgásre képes

A miozinok intrinszik processzivitásának mechanisztikus tanulmányozásához egyedimolekulás in vitro motilitási kísérleteket végeztünk, amelyben TIRF-mikroszkópiával tudtuk megfigyelni az egyes miozin molekulák processzivitását. A folyadékcella felszínén rodaminfalloidinnal jelölt aktin filamentumokat immobilizáltunk majd a GFP-vel jelölt, leucinzipzárral mesterségesen dimerizált miozin-7a-S1SAH-Zipper konstrukciót a kamrába mostuk, végül ATP hozzáadásával aktiváltuk a motorfehérjéket. 150 mM NaCl és 5 mM ATP jelenlétében a dimerizált miozin-7a elmozdult a felülethez kötött aktin filamentumok mentén. A FiJi TrackMate segítségével a motilitás részletes jellemzése kimutatta, hogy a miozin-7a lassan mozog az aktin filamentumokon (~4,2 nm/s), azonban hosszú ideig (136 s) fenntartja a kötődést és nagy távolságot (379 nm) tesz meg. Korábbi tanulmányok vizsgálták a dimerizált miozin-7a processzivitását sejtkultúrákban, de nem az ARPE19 humán retina pigment epitélium (RPE) sejtvonalban [35]. Az ARPE19 sejtek dimerizált konstrukcióval történő tranziens transzfekcióját követően bőséges filopódium képződést figyeltünk meg. A GFP-vel jelölt motor a filopódiumok mentén mozgott, és a csúcsokban halmozódott fel. A mozgó molekulákat FiJi segítségével manuálisan nyomon követve meg tudtuk mérni a dimerizált konstrukciók sebességét. A mozgó GFP-miozin-7a-S1SAH-zipper átlagos sebessége (n = 5) 10 nm/s volt.

A rekombináns MyRIP monomer, globuláris fehérje

A teljes hosszúságú miozin-7a-kötő MyRIP fehérjét N-terminális mCherry taggel és C-terminális FLAG tisztító taggel (mCherry-MyRIP) pFastBac vektorba klónoztuk, és bakulovírus/*Sf9* rendszerben expresszáltuk, majd anti-FLAG affinitás kromatográfiával tisztítottuk. A negatív festésű elektronmikroszkópos felvételek alapján MyRIP egy monomer, globuláris fehérje, amit a tömegfotometriás mérések is megerősítettek. A 117 kDa molekulasúlyú csúcs megközelíti az mCherry-vel jelölt MyRIP monomer elméleti molekulasúlyát (~120 kDa).

MyRIP kötődés hatására a miozin-7a képes processzíven mozogni

A miozin-7a processzivitásának mechanikai vizsgálatára egyedi-molekulás *in vitro* motilitási esszét használtunk. A teljes hosszúságú miozin-7a önmagában nem processzív; azonban MyRIP jelenlétében processzívvá válik. mCherry-jelölt MyRIP és miozin-7a kolokalizálódtak és együtt haladtak az aktin filamentum hálózat mentén. A motilitás részletes jellemzése azt mutatja, hogy a motor-kötőpartner komplex lassan, kb. 7,8 nm/s sebességgel mozog az aktinon. A karakterisztikus futási hossz 552 nm, az aktinhoz való karakterisztikus kötési idő pedig kb. 156 s. Nagyobb koncentrációban (~1 μM miozin-7a és ~1 μM MyRIP) megfigyeltük a mozgó molekulák csoportosulását. Számos fluoreszcens molekula képes volt együtt mozogni, ami nagyobb számú komplexek kialakulására utal.

Ezen kölcsönhatás további tanulmányozásához ARPE19 sejteket tranziens módon transzfektáltunk GFP-jelölt teljes hosszúságú miozin 7a-val. A GFP-jel a miozin egész sejten át diffúz lokalizációját mutatta, amely arra utal, hogy a motor auto-inhibíciós állapotban van, ellentétben a mesterségesen dimerizált miozin-7a esetével, amikor a motor a filopódiumok csúcsaiba való mozgását figyelték meg kötőpartner jelenléte nélkül is. A sejteket mCherry-MyRIP konstrukcióval transzfektálva a MyRIP az aktin citoszkeleton mentén lokalizálódik, és vörös fluoreszcens szignált figyeltünk meg mozgó vezikulákon. Amikor mCherry-MyRIP és GFP-jelölt teljes hosszúságú miozin-7a-t együtt transzfektáltuk ARPE19 sejtekben, bőséges filopódium képződést figyeltünk meg, és a motor-kötőpartner komplex a filopódiumok csúcsába vándorolt. A MyBD, MyRIP miozin-kötő egysége viszont önmagában nem képes elősegíteni a miozin-7a processzív mozgását.

Összefoglalás

Kutatásaink során sikeresen tisztítottunk teljes hosszúságú humán miozin-7a-t és vizsgáltuk *in vitro* tulajdonságait:

- kidolgoztunk egy módszert az intakt, teljes hosszúságú miozin-7a expresszálására és tisztítására MultiBac rendszer segítségével
- a miozin-7a túlnyomórészt monomer és fiziológiás körülmények között auto-inhibíciós állapotban van
- o az inaktív miozin-7a kalciummal aktiválható
- kalcium hozzáadásakor a kalmodulin könnyűláncok disszociálnak a miozinról, ami megváltoztatja az erőkar merevségét, ami lassabb aktin motilitási sebességet eredményez
- kimutattuk, hogy a CALML4 könnyűlánc nem kalcium-függő és kritikus a miozin-7a számára
- a kanonikus (hosszú) izoforma nagyobb ATPáz aktivitással és aktin motilitási képességgel rendelkezik, mint a rövid izoforma
- o a miozin N-terminális extenziójának blokkolása csökkent aktivitást eredményezett
- a mesterségesen dimerizált miozin-7a *in vitro* motilitási sebessége lassú, de a motor hosszú ideig kötődött az atkin filamentumokon mikozben nagy távolságot tett meg
- ARPE19 sejtekben a mesterségesen dimerizált miozin-7a jelenléte elősegítette a filamentumok képződését, a dimerizált motor a filopodiák mentén mozgott, a csúcsokban felhalmozódva
- a teljes hosszúságú miozin-7a MyRIP hatására dimerizálódik, az *in vitro* motilitási esszé során processzív mozgást végez, miközben nagy távolságokat tesz meg és hosszú ideig rögzítve marad
- ARPE19 sejtekben a teljes hosszúságú miozin-7a önmagában diffúz eloszlást mutatott, míg a MyRIP az aktin citoszkeleton mentén lokalizálódott; a motor és a kötőpartner együttes transzfektálásával filopódiumok kialakulását figyeltük meg, és a miozin-7a és a MyRIP a filopódiumok mentén haladt a csúcsok irányába
- o a MyBD nem elegendő a miozin-7a processzivitásának elősegítéséhez

Megbeszélés

A motorfehérje hatékony működéséhez többféle szabályozó mechanizmusra van szükség. A humán miozin-7a már évek óta kutatás tárgyát képezi, de számos kérdés megválaszolatlan maradt a funkcionálisan aktív holoenzim előállításának bonyolultsága miatt. Ebben a tanulmányban a humán miozin-7a aktivitását, konformációját, oligomer állapotát, sejten belüli lokalizációját és általános működését szabályozó intramolekuláris és intermolekuláris szabályozások vizsgálatát tűztük ki célul.

A rekombináns humán miozin-7a-t baculovírus/*Sf*9 rendszerben expresszáltuk és FLAG-affinitás kromatográfiával tisztítottuk. A különböző számú IQ-motívumot tartalmazó konstrukciók különböző könnyűláncokkal történő koexpresszálásával sikeresen feltártuk a miozin-7a komplex könnyűlánc-összetételét. *In vitro*, a humán miozin-7a előnyben részesíti a kalmodulint és a kalmodulinszerű fehérje 4-et, miközben a regulatórikus könnyűlánchoz is kötődik.

A miozin szerkezeti elemzése kimutatta, hogy *in vitro* körülmények között túlnyomórészt monomer, és alacsony ionerősség mellett az elektronmikroszkópos felvételeken kompakt szerkezetet mutat. Ezen megfigyeléssel összhangban a tömegfotometriás mérések is azt igazolták, hogy a teljes hosszúságú miozin nehézláncok monomer formában vannak. A molekulasúly eloszlás csúcsa leginkább egy négy könnyűláncot megkötött holoenzimnek felel meg, ami valószínűsíti, hogy az önszabályozott, kompakt konformációban az ötödik IQ-motívum nem képes könnyűláncot kötni. A miozin-7a-S1 103 kDa-nál egy határozott csúcsot mutatott, amely a motor doménből és az első IQ-motívumból, valamint egy regulatórikus könnyűláncból álló molekula súlyát közelíti meg. A Leucin Zipper-motívumot tartalmazó konstrukció a tömegfotometriás mérések során egy dimernek megfelelő molekulasúly csúcsot formált.

A kalmodulin egy jól ismert kalciumkötő fehérje. A miozin-7a holoenzim részeként a kalmodulin lehetővé teszi a kalcium általi szabályozást. Kalcium jelenlétében végzett steadystate ATPáz vizsgálat a miozin megnövekedett ATPáz aktivitását mutatta ki, viszont csökkent a motor aktin motilitási képességét. A kalcium megkötése konformációs változást okoz a humán kalmodulinban, ami a látszólagos molekulatömeget 17 kDa-ról 14 kDa-ra változtatja. A tisztított CALML4 minták esetében ez a mobilitási eltolódás nem volt megfigyelhető. A kalmodulin disszociációja magas kalcium koncentráció esetén megváltoztathatja a kar flexibilitását és ezáltal a miozin motoros tulajdonságait, lehetővé téve a kalcium-érzékeny szabályozást.

A csigában a miozin-7a több izoformája expresszálódik alternatív transzkripciós és transzlációs kezdőhelyek által. A szőrsejtek eltérő expressziós mintázatot mutatnak a két izoformára nézve. Az külső szőrsejtekben a két izoforma expressziós mintázata fordítottan korrelál, a kanonikus hosszú N-terminális miozin-7a főként a csúcsban, míg a rövid N-terminális miozin-7a a csiga alapjában expresszálódik. A belső szőrsejtekben feltehetően csak a kanonikus hosszú N-terminális izoforma expresszálódik [21]. A két izoforma csak az N-terminális doménjükben különbözik, a kanonikus izoforma rendelkezik egy 11 aminosav hosszú extenzióval a motor domén előtt. In vitro aktin motilitási kísérletekben az aktin filamentumok ~2-szer gyorsabban mozogtak a hosszú N-terminális izoformán mint a rövid izoformán. Figyelemre méltó, hogy a GFP-jelölt hosszú izoforma, ahol a GFP-tag a miozin-7a N-terminálisán található, a rövid izoformához hasonló motilitási tulajdonságokat mutatott. A miozin-7a izoformák aktin aktivált ATPáz-aktivitásának értékelésére során megfigyeltük, hogy a kanonikus hosszú izoforma nagyobb ATPáz-aktivitást mutat a rövid izoformához képest. A motilitási próbához hasonlóan a GFP-vel jelölt hosszú izoforma alacsonyabb ATPáz-aktivitást mutatott, amely szorosan megegyezett a rövid izoforma aktivitásával. A szerkezeti előrejelzések szerint a miozin-7a N-terminális extenziója szorosan a motor domén nukleotid kötő zsebének közelében helyezkedik el [22].

Megfigyeléseink arra utalnak, hogy az extenzió szerepet játszhat az ATP-hidrolízis allosztérikus szabályozásában, valószínűleg az ADP vagy a foszfát felszabadításában. A miozin-7a feltehetően közvetlenül szabályozza a sztereocíliumok közötti tip-link nyugalmi feszültségét, és ezáltal szabályozza az ioncsatorna nyitását a mechano-elektromos transzdukció során [21]. Érdekes módon a sztereocílium kötegek mechanikájával kapcsolatos legújabb tanulmányok a külső szőrsejtek tip-link feszültségének tonotopikus változását mutatták ki, ahol a feszültség fokozatosan növekszik az alap felé [36]. A rövid N-terminális izoforma, amelynek koncentrációja hasonlóan növekszik a bázis felé, alacsonyabb ATPáz aktivitást mutat, azonban nagyobb affinitással kötődik az aktinhoz, mint a hosszú N-terminális izoforma. Ezek a megfigyelések együttesen arra utalnak, hogy a két miozin-7a izoforma eltérő mechanokémiával rendelkezhet, amely hozzájárul a tip-link feszültség tonotópikus gradienséhez. Az egyedi expressziós mintázat és az eltérő enzimatikus aktivitás alapján azt feltételezzük, hogy a szőrsejtek mechanoszenzitivitását a két miozin-7a izoforma expressziós szintjének beállításával szabályozza. Ennek az N-terminális extenziónak a süketséggel kapcsolatos jelentősége még nem ismert.

A miozin-7a motilitási tulajdonságainak tanulmányozására és a hatékony transzporthoz szükséges processzivitás megfigyelésére *in vitro* és ARPE19 sejtkultúrákban alkalmazott

egyedi-molekulás motilitási vizsgálati módszereket alkalmaztunk. A processzivitás általában megköveteli, hogy a motorfehérje dimerizálódjon vagy több miozin motor összehangoltan működjön. A rövid alfa-hélix motívum önmagában nem képes dimerizálni a miozin-7a-t. A monomer motorfehérjék dimerizációja partnerfehérjék kötődésével is lehetséges. Annak érdekében, hogy a miozin intrinszik motilitását tanulmányozzuk, egy GFP-jelölt, farokcsonkolt Leucin-zipzárral dimerizált konstrukciót hoztunk létre. A dimerizált miozin kinetikai tulajdonságainak tanulmányozására egyedi-molekulás *in vitro* motilitási esszéket végeztünk TIRF-mikroszkópia segítségével. A mesterséges dimerizált motor lassan (~ 4,4 nm/s) mozgott az egyes aktin filamentumok mentén, nagy távolságot megtéve, miközben hosszabb ideig kötődve maradt. Az ARPE19 sejtek dimerizált konstrukcióval történő tranziens transzfekcióját követően bőséges filopódiumképződést figyeltünk meg, a GFP-vel jelölt motor a filopódiumok mentén mozgott és a csúcsokban halmozódott fel. Tekintettel a nyúlványok nagyfokú rugalmasságára és mobilitására, csak kevés motorfehérje sebességét tudtuk megfigyelni és mérni. Számításaink (~10 nm/s) azonban jó összhangban vannak a korábbi megfigyelésekkel.

Mivel a miozin-7a C-terminális FERM-doménje visszahajlik a motorra, az ezt a területet célzó molekulák várhatóan képesek lesznek feloldani az inhibíciót. MyRIP, a miozin-7a és a Rab27a ismert kötőpartnere *in vivo* adatok alapján képes aktiválni a miozint [37]. A miozin-7a önmagában nem mutatott processzivitást az egy-molekulás *in vitro* motilitási vizsgálatokban. A MyRIP hozzáadásával azonban a miozin-7a processzív viselkedést mutatott. A teljes hosszúságú miozin-7a és a MyRIP motilitási vizsgálatának elemzése azt mutatja, hogy a motor és a kötőpartner a rögzített mozgás teljes időtartama alatt alacsony sebességgel (~7,8nm/s) mozgott együtt. Nagyobb koncentrációknál nagyobb fluoreszcens komplexeket figyeltünk meg. Érdekes módon a komplex más motor-kötőpartner klaszterek részévé vált, ahogy az aktin filamentumok mentén haladt, amíg el nem érte az adott filamentum végét. Ez a megfigyelés a miozin-7a oligomerizációjának lehetőségére utal, bár nem találtunk további bizonyítékot nagyobb miozin komplexek kialakulásának megerősítésére. Eredményeink azt is jelzik, hogy a teljes hosszúságú miozin-7a nem mozog processzíven a MyBD jelenlétében.

Az ARPE19 sejtek teljes hosszúságú miozin 7a-val történő tranziens transzfekcióját követően megfigyeltük a GFP-jelölt motorfehérje diffúz lokalizációját. A filopódium képződés hiánya és a megfigyelt motilitás hiánya arra utal, hogy a miozin auto-inhibált konformációban van. A MyRIP tranziens transzfektálása után az mCherry-taggal jelölt fehérje a citoszkeleton mentén lokalizálódott és vörös fluoreszcens jelet figyeltünk meg mozgó vezikulákon is. Az mCherry-MyRIP és a GFP-jelölt teljes hosszúságú miozin-7a együttes transzfektálásakor ARPE19 sejtekben filopódiumok bőséges képződését és ezt követően a motor-kötőfehérje

komplex transzlokációját figyeltük meg a filopódiumok csúcsaiba.

A miozin-7a számos funkcióban vesz részt a belső fülben és a neuroretinában. Egy általánosan elfogadott elmélet alapján a miozin motor a két sztereocílium közötti tip-linken keresztül a feszültség beállításában vesz részt. Egy lassú miozin, mint például a miozin-7a kiváló jelölt erre a feladatra, mivel képes erőt kifejteni a sztereocíliákat összekötő tip-linkeken, miközben az aktin filamentumok mentén transzlokálódik. Ráadásul a miozin-7a izoformák tonotópikus eloszlása a csigában segít fenntartani a változó feszültséget. A melanoszómák fontos védelmi szerepet játszanak a retinában. A melanoszómák eloszlása a RPE-ben a világossötét fényciklus során változik, ezért a melanoszómák megfelelő mozgása szükséges az élettani működéshez. A melanoszómák transzportjához egy háromrészes komplexre van szükség, amely a Rab27a és a MyRIP kötőfehérje által összekapcsolt miozin-7a komplexből áll.

A mérések többségét in vitro, illetve kisebb mértékben modellsejteken végeztük. A kinetikai mérések célja a belső fül szőrsejtjeiben lejátszódó folyamatok szimulálása volt, míg a processzivitási vizsgálatok elsősorban a retinális melanoszómák transzportjának modellezésére irányultak. Természetesen a vizsgált rendszerek nem feleltethetők meg a humán sejtek komplexitásának, ahol a miozin-7a működését más tényezők is befolyásolhatják. Vizsgáltuk a könnyű láncok, a Ca²⁺-szabályozás, az izoformákból adódó különbségek és a MyRIP kötődés szerepét, azonban az Usher-komplex számos más fehérjéje is társulhat a miozin-7a-hoz, és valószínűleg szabályozza azt. Eredményeink azt mutatják, hogy a szabályozási mechanizmusok komplex hálózata szinkronban működik, hogy finomhangolja a miozin-7a aktivitását, szerkezetét, lokalizációját, oligomer állapotát és funkcióját. Némi betekintést nyertünk ezekbe a mechanizmusokba, azonban sok kérdés megválaszoltalan maradt. Az intakt és funkcionális teljes hosszúságú humán miozin-7a sikeres előállítása lehetővé teszi, hogy a jövőbeni vizsgálatok során megismerjük a miozin-7a mutációi által okozott látás- és halláskárosodás molekuláris részleteit. Eredményeink hozzájárulnak a retinasejtek és a belső szőrsejtek működésének molekuláris szintű megértéséhez is, ami megkönnyítheti a további sejtes vagy in vivo vizsgálatokat.

Közlemények jegyzéke

Az értekezés alapjául szolgáló közlemények

Holló A, Billington N, Takagi Y, Kengyel A, Sellers JR, Liu R. Molecular regulatory mechanism of human myosin-7a. *J Biol Chem*. 2023 Oct;299(10):105243. doi: 10.1016/j.jbc.2023.105243. Epub 2023 Sep 9. PMID: 37690683; PMCID: PMC10579538.

Impact Factor: 5.4

Az értekezés eredményeit bemutató előadások és poszterek

1. **Holló, A.,** Billington N., Kengyel, A., Sellers, JR, Liu, R. (2021): Molecular Regulatory Mechanisms of Human Myosin-7a. *ASCB Cell Bio Virtual*. Virtual, USA, December 2021, Mol. Biol. Cell 28, page 546 (Abstract #P908)

2. **Holló, A.,** Billington N., Kengyel, A., Sellers, JR, Liu, R. (2022): Molecular Regulatory Mechanisms of Human Myosin-7a. *66th Annual Meeting of the Biophysical Society*, San Francisco, CA, USA, February 2022, 1406-Plat

3. **Holló, A.,** Billington N., Kengyel, A., Sellers, JR, Liu, R. (2022): Molecular Regulatory Mechanisms of Human Myosin-7a. Cytoskeletal Motors Gordon Research Seminar and Conference, Dover, VT, USA, July 2022.

4. **Holló, A.,** Billington N., Kengyel, A., Sellers, JR, Liu, R. (2022): Mechanistic Insight into the Regulation of Human Myosin 7a. ASCB Cell Bio. Washington DC, USA, December 2022, Mol. Biol. Cell 33, page 485 (Abstract #P1801)

5. **Holló, A.,** Billington N., Kengyel, A., Sellers, JR, Liu, R. (2023): Mechanistic Insight into the Regulation of Human Myosin 7a. *67th Annual Meeting of the Biophysical Society*, San Diego, CA, USA, February 2023, 1258-Pos

6. **Holló, A.,** Billington N., Kengyel, A., Sellers, JR, Liu, R. (2023): Human myosin-7a has multiple distinct regulatory mechanisms that makes it an excellent candidate as tension adaptation motor. ASCB Cell Bio. Boston, MA, USA, December 2023, Mol. Biol. Cell 35, page 518 (Abstract # P1833)

Referenciák

- 1. Sebe-Pedros, A., et al., *Evolution and classification of myosins, a paneukaryotic wholegenome approach.* Genome Biol Evol, 2014. **6**(2): p. 290-305.
- 2. Berg, J.S., B.C. Powell, and R.E. Cheney, *A Millennial Myosin Census*. Molecular Biology of the Cell, 2001. **12**(4): p. 780-794.
- 3. Peckham, M. and P.J. Knight, *When a predicted coiled coil is really a single* α *-helix, in myosins and other proteins.* Soft Matter, 2009.
- 4. Odronitz, F. and M. Kollmar, *Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species.* Genome Biol, 2007. **8**(9): p. R196.
- 5. Heissler, S.M. and J.R. Sellers, *Various Themes of Myosin Regulation*. J Mol Biol, 2016. **428**(9 Pt B): p. 1927-46.
- 6. Heissler, S.M. and J.R. Sellers, *Myosin light chains: Teaching old dogs new tricks*. Bioarchitecture, 2014. **4**(6): p. 169-88.
- 7. Mermall, V., P.L. Post, and M.S. Mooseker, *Unconventional myosins in cell movement, membrane traffic, and signal transduction.* Science, 1998. **279**(5350): p. 527-33.
- 8. O'Connell, C.B., M.J. Tyska, and M.S. Mooseker, *Myosin at work: motor adaptations for a variety of cellular functions*. Biochim Biophys Acta, 2007. **1773**(5): p. 615-30.
- 9. De La Cruz, E.M. and E.M. Ostap, *Relating biochemistry and function in the myosin superfamily*. Current Opinion in Cell Biology, 2004. **16**(1): p. 61-67.
- 10. Uzman, A., *Molecular Cell Biology, Sixth Edition.* Biochemistry and Molecular Biology Education, 2010. **38**(1): p. 60-61.
- 11. Maffei, M., et al., *Actomyosin interaction at low ATP concentrations*. European Biophysics Journal, 2017. **46**(2): p. 195-202.
- 12. Fili, N. and C.P. Toseland, *Unconventional Myosins: How Regulation Meets Function*. Int J Mol Sci, 2019. **21**(1).
- 13. Hasson, T. and *Molecular motors: Sensing a function for myosin-VIIa*. 1999.
- 14. Wolfrum, U., et al., *Myosin VIIa as a Common Component of Cilia and Microvilli*.
- 15. Mathur, P. and J. Yang, *Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities.* Biochim Biophys Acta, 2015. **1852**(3): p. 406-20.
- 16. Chen, Z.-Y., et al., *Myosin-VIIb, a Novel Unconventional Myosin, Is a Constituent of Microvilli in Transporting Epithelia.* Genomics, 2001. **72**(3): p. 285-296.
- 17. Sahly, I., et al., *Expression of myosin VIIA during mouse embryogenesis*. Anatomy and Embryology, 1997. **196**(2): p. 159-170.
- 18. Chen, Z.-Y., et al., *Molecular Cloning and Domain Structure of Human Myosin-VIIa, the Gene Product Defective in Usher Syndrome 1B.* 1996. **36**: p. 440-448.
- 19. Liu, R., et al., *A binding protein regulates myosin-7a dimerization and actin bundle assembly.* Nature Communications, 2021. **12**(1): p. 563.
- 20. Watanabe, S., R. Ikebe, and M. Ikebe, *Drosophila myosin VIIA is a high duty ratio motor with a unique kinetic mechanism.* J Biol Chem, 2006. **281**(11): p. 7151-60.
- 21. Li, S., et al., *Myosin-VIIa is expressed in multiple isoforms and essential for tensioning the hair cell mechanotransduction complex.* Nat Commun, 2020. **11**(1): p. 2066.
- 22. Moreland, Z.G. and J.E. Bird, *Myosin motors in sensory hair bundle assembly*. Curr Opin Cell Biol, 2022. **79**: p. 102132.
- 23. Sakai, T., et al., *Structure and Regulation of the Movement of Human Myosin VIIA*. J Biol Chem, 2015. **290**(28): p. 17587-98.
- 24. Choi, M.S., et al., *The small EF-hand protein CALML4 functions as a critical myosin light chain within the intermicrovillar adhesion complex.* J Biol Chem, 2020. **295**(28): p. 9281-9296.

- 25. Kapustina, M. and R.E. Cheney, *A new light chain for myosin-7*. J Biol Chem, 2020. **295**(28): p. 9297-9298.
- Yu, I.M., et al., *Myosin 7 and its adaptors link cadherins to actin.* Nat Commun, 2017.8: p. 15864.
- 27. Kuroda, T.S. and M. Fukuda, *Identification and Biochemical Analysis of Slac2c/MyRIP as a Rab27A-, Myosin Va/VIIa-, and Actin-Binding Protein*, in *Methods in Enzymology*. 2005, Academic Press. p. 431-444.
- 28. Whatley, M., et al., *Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy.* Front Genet, 2020. **11**: p. 565216.
- 29. Stauffer, E.A., A. Lelli, and J.R. Holt, *Hair Cell Transduction and Adaptation: Physiology and Molecular Mechanisms*, in *The Senses: A Comprehensive Reference*, R.H. Masland, et al., Editors. 2008, Academic Press: New York. p. 263-292.
- 30. Grati, M. and B. Kachar, *Myosin VIIa and sans localization at stereocilia upper tiplink density implicates these Usher syndrome proteins in mechanotransduction.* Proc Natl Acad Sci U S A, 2011. **108**(28): p. 11476-81.
- 31. Sari, D., et al., *The MultiBac Baculovirus/Insect Cell Expression Vector System for Producing Complex Protein Biologics.* Adv Exp Med Biol, 2016. **896**: p. 199-215.
- 32. Pardee, J.D. and J.A. Spudich, *Purification of Muscle Actin*, in *Methods in Cell Biology*, L. Wilson, Editor. 1982, Academic Press. p. 271-289.
- 33. Guzik-Lendrum, S., et al., *Mammalian Myosin-18A, a Highly Divergent Myosin.* Journal of Biological Chemistry, 2013. **288**(13): p. 9532-9548.
- 34. Wu, D. and G. Piszczek, *Standard protocol for mass photometry experiments*. European Biophysics Journal, 2021. **50**(3): p. 403-409.
- 35. Sato, O., et al., *Human myosin VIIa is a very slow processive motor protein on various cellular actin structures.* J Biol Chem, 2017. **292**(26): p. 10950-10960.
- 36. Tobin, M., et al., *Stiffness and tension gradients of the hair cell's tip-link complex in the mammalian cochlea.* Elife, 2019. **8**.
- 37. Sakai, T., et al., *Cargo binding activates myosin VIIA motor function in cells*. Proc Natl Acad Sci U S A, 2011. **108**(17): p. 7028-33.