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I. Introduction 

SARS-CoV-2 was first detected in December 2019 in Wuhan, China. The first 

infected patients were hospitalized with a diagnosis of pneumonia of unknown 

origin, with the common link being the livestock and fish market in Wuhan. In the 

timespan of more than 4 years since the emergence of the virus, mortality has shown 

considerable fluctuation both by variant and by country. According to the WHO 

definition of VOC (Variant of Concern), the most prevalent in the European region 

were alpha (B.1.1.7), delta (B.1.617.2), omicron (B.1.1.529) and sublineages of these 

variants. At the time of writing, more than 704 million infections and more than 7 

million deaths have been confirmed worldwide, according to worldometers.info. 

The genome of SARS-CoV-2 is nearly 30 kilobases in size, encoding 29 proteins 

with 4 structural proteins: S (spike), M (membrane), E (envelope), N (nucleocapsid) 

proteins. Non-structural proteins (e.g. RNA-dependent RNA polymerase, RdRp) are 

involved in RNA replication, immune evasion, and additional proteins are involved 

in infection, survival, host-cell communication. 

The gold standard method for the diagnosis of SARS-CoV-2 infection is real-time 

reverse transcription quantitative polymerase chain reaction (RT-qPCR), which has 

an exceptionally high sensitivity and specificity.  

Antigen tests - most of which are based on the lateral flow immunoassay (LFIA) 

technique - also play an important role in diagnostics, with positivity being a reliable 

indicator of current infection (high specificity), while a negative test does not 

exclude infection (lower sensitivity). The majority of SARS-CoV-2 rapid antigen 

tests (RATs) are aimed at detecting SARS-CoV-2 N protein in respiratory tract 

specimens (including the Abbott Panbio RAT examined in this thesis).  

Antibody/serological tests represent the third main group of SARS-CoV-2 

diagnostics, measuring antinucleocapsid IgM and IgG during infection and anti-

spikeRBD-protein IgG humoral immune response to immunization by serological 

methods. 

The clinical spectrum of COVID-19 disease due to infection with the SARS-CoV-2 

virus ranges from asymptomatic to critically severe conditions (respiratory failure, 

septic shock and/or multi-organ failure). Most comorbidities associated with 



COVID-19 are associated with increased hospitalization and mortality risk. Among 

the laboratory and clinical parameters in the intensive care unit (ICU), low 

lymphocyte count, high total white blood cell count, elevated procalcitonin (PCT), 

C-reactive protein (CRP) and ferritin levels, lower PaO2/FiO2 ratio (Horovitz index) 

and higher chest CT severity score (CTSS) were the most important factors which 

influenced the adverse outcome. 

Machine learning (ML) is is a rapidly growing field of science that is useful and 

capable of analyzing large amounts of complex health data and supporting medical 

decision making. In predicting the outcome of infectious diseases, ML models can 

reveal (even hidden) relationships in data that help predict disease severity, outcome, 

and probability of survival. Since the outbreak of COVID-19, several studies have 

investigated the use of ML methods to predict patients' mortality risk. ML methods 

can be divided into two broad categories based on complexity: shallow and deep 

learning methods. The former has a simpler structure, is easier to learn and contains 

fewer layers, which is why a large proportion of research uses these methods. Deep 

learning (e.g. neural networks) requires complex structures and extremely large 

amounts of data and computational resources, which may make it less accessible to 

researchers and separate health care institutions. In the literature on SARS-CoV-2 

ICU research, machine learning methods belonging to the "standalone" group of 

shallow learning methods have been the most commonly used (Viderman et al., 

2023). They are characterized by not being part of a larger algorithm, but operating 

independently of other models and are able to make predictions/classifications 

independently based on inputs. Examples of such methods are random forest (RF), 

logistic regression, decision tree, and support vector machine. RF is one of the most 

widely used ML algorithms, its popularity is due to its less tendency to "over-learn" 

(it also provides reliable performance in predicting new, previously unknown data, 

not only on the learning dataset), and also to consider many parameters 

simultaneously, and the reliance on a combination of multiple decision trees 

(Breiman et al., 2001). RF is also a major focus of research on the SARS-CoV-2 ICU 

patient population. 

  



II. Major aims of the thesis 

II/1. Aims regarding the dynamic, interactive epidemiological map 

Researchers at the prestigious Johns Hopkins University in Baltimore, USA were the 

first to create a dynamic map that could track outbreaks week by week; first in 

different US states, later worldwide. The aim of our workgroup was to create a 

similar digital, dynamic, timeline-like map for the Southern Transdanubia region 

(Baranya, Somogy, Tolna counties), which provides more detailed information and a 

population-based epidemiological overview using color coding. Here we present raw 

and population density stratified data for tests, with a special focus on positive cases, 

as well as other data: average age, presence of symptoms, cycle threshold (Ct) of 

PCR tests, prevalence of viral variants. In this way, regional data and trends can be 

visualized and the basis of the map can be used for other purposes, e.g. in case of the 

emergence of other infectious diseases or even for regional visualization of other 

non-communicable diseases, if sufficient and appropriate data are available. We also 

aimed to analyze the identified virus variants.  

II/2. Aims regarding the analytic performance of Panbio rapid antigen test 

The gold standard for identifying SARS-CoV-2 virus is the RT-qPCR method, but 

various rapid antigen tests have also become increasingly popular. The aim of our 

retrospective study was to evaluate the diagnostic performance of Panbio (Abbott 

Rapid Diagnostics, Jena, Germany) rapid antigen test (which was the only available 

RAT at the University of Pécs Clinical Centre in the timeframe of our study), mainly 

in comparison with RT-qPCR in clinical settings. 

 

II/3. Aims regarding the study of clinical, laboratory and molecular genetic 

parameters associated with adverse outcomes of SARS-CoV-2 infection 

The greatest burden of the COVID-19 outbreak concentrated in ICUs. The aim of our 

study was to compare the three main viral variants (Alpha, Delta, Omicron) based on 

viral genome sequencing results, using a number of different clinical and laboratory 

parameters. The focus was on mortality and comorbidities. In addition, a machine 

learning model, the random forest (RF) algorithm, was used to predict mortality and 

to identify the clinical and laboratory parameters most relevant for prediction. 



III. Materials and methods 

III/1. Materials and methods regarding the dynamic, interactive epidemiological 

map 

A nasopharyngeal swab was taken from patients by trained staff of the National 

Ambulance Service (OMSZ) or by volunteer medical/health science students, or by 

nursing and medical staff in hospitals. Samples were taken from the opposite side of 

the nasal septum, by applying slight pressure to the surface of the nasal mucosa, and 

then the sampling stick was washed into a tube containing virus transport medium 

(VTM).  The sampling swab containing nasopharyngeal and/or oropharyngeal swab 

samples was placed in a VTM tube, tightly capped and transported in a double sealed 

airwrapped package at 4°C to the laboratory where the samples were processed. 

The data collection covers the timespan between 2020.08.19 and 2022.02.13 and 

includes 271,849 COVID-19 test data from Baranya, Somogy and Tolna counties. 

Data was partly recorded manually by the administrators of the Department of 

Laboratory Medicine on the basis of the test questionnaires and partly extracted from 

the local hospital IT system (e-MedSolution, T-Systems, Hungary). The final 

database was stored in an anonymized Excel spreadsheet (Microsoft, Redmond, WA, 

USA) with the following data: date of testing, date of birth, age, sex, postcode, 

county, place of residence (municipality), PCR test result (positive/negative), 

presence of symptoms (yes/no), cycle threshold value of positive PCR test, and type 

of viral variant if viral genome sequencing was performed. The anonymous data was 

processed and visualized on a website in a joint project with PCSUNIQ Kft., final 

results are available at https://covid-pte.vercel.app/dashboard. The incidence of 

positive cases (infection) per municipality is color-coded: all positive cases in a 

municipality are divided by the population per 100,000 inhabitants. Municipalities 

are displayed on a color scale from green to deep red based on 0-20%, 20-40%, 40-

60%, 60-80% and 80-100% of the maximum value. At the bottom of the webpage, 

you can view and search the total number of tests, positive cases, complaints and no 

complaints per municipality. The main viral variants (European, Alpha, Delta, 

Omicron) are also available by municipality and case number at https://covid-19-

spread-map-nuxt.vercel.app/.  

 

https://covid-19-spread-map-nuxt.vercel.app/
https://covid-19-spread-map-nuxt.vercel.app/


III/2. Materials and methods regarding the analytic performance of Panbio 

rapid antigen test 

Our retrospective study analyzed data gathered in the time spanning from 21 January 

2021 through 30 April 2021. A total number of 5,136 parallel Panbio RADT and RT-

qPCR samples were included from all departments of the Clinical Center, University 

of Pécs, Hungary. During the study protocol, all patients tested with Panbio RADT 

were tested in parallel by for SARS-CoV-2 RT-qPCR. Inclusion criteria were the 

presence of a SARS-CoV-2 RAD Panbio test result combined with an RT-qPCR test 

result, both performed within 24 hours. Panbio RAD tests were performed and 

evaluated by trained health care professionals. The diagnostic PCR tests were carried 

out in the Department of Laboratory Medicine in full accordance to a protocol 

accredited by the National Accreditation Authority (NAH-9/0008/2021, L7/6 MLMB 

06 2020.4-1). 

Due to the limited space available in this thesis, a detailed description of the sample 

collection and RT-qPCR assay is given in the full dissertation.  

A total number of 5,136 samples tested parallel for SARS-CoV-2 Panbio RADT and 

SARS-CoV-2 RT-qPCR were collected from 4,440 individuals who were admitted in 

the clinical departments of the University of Pécs, Clinical Center. The test results 

and demographic data were originally documented in the local hospital information 

system (e-MedSolution, T-Systems, Hungary). Our extracted data was registered 

using Excel 2015 (Microsoft, Redmond, WA, USA). The final database includes an 

anonymized ID from both name and insurance number. It also contains information 

referencing gender, age, time and place (department) of test, RAD and PCR test 

result, Ct value, presence of symptoms and number of days until a negative PCR test 

in the event of a previous positive PCR test and mortality. 

III/3. Materials and methods regarding the study of clinical, laboratory and 

molecular genetic parameters associated with adverse outcomes of SARS-CoV-2 

infection 

Our retrospective study consists of a collection of 503 clinical isolates of SARS-

CoV-2 with clinical parameters and laboratory biomarkers plus diagnostic values 

collected from 503 ICU patients in a timeframe between January 2021 through 

November 2022 when Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) 



and their sub-lineages were circulating SARS-CoV-2 lineages in the Southern 

Transdanubian region, Hungary. ICU patients were included who had positive 

SARS-CoV-2 RT-qPCR test results and were admitted due to COVID-19. Exclusion 

criteria were SARS-CoV-2 positive patients who were admitted to the ICU mainly 

due to other reasons than complications associated with COVID-19 (polytrauma, 

traumatic brain injury, diabetic ketoacidosis, etc.), patients with hematologic 

malignancies and other SARS-CoV-2 isolates such as B.1.160 (20A.EU2). 201 

clinical isolates produced results of viral WGS, and the remaining 302 clinical 

isolates were included by generating a 95% range estimation based on the regional 

sequencing database, which was made for the dynamic, interactive epidemiological 

map mentioned in the first part of my thesis. Originally, we began with 510 ICU 

patients, however, seven patients were excluded in the transition phase of Delta to 

Omicron, since the range estimation was not possible due to the overlap between the 

two variants in the last week of December 2022 and the first week of January 2023.  

Patient clinical and demographic data were originally documented in the local 

hospital information systems (e-MedSolution {T-Systems, Hungary}, IntelliSpace 

Critical Care and Anesthesia [ICCA] {Philips Medical Systems, USA}). The viral 

genomic results were originally stored in the Genomics and Bioinformatics Core 

Facility, Szentágothai Research Centre. Our extracted data was registered using 

Excel 2015 (Microsoft, Redmond WA, USA). The final manual database includes an 

anonymized ID from name and insurance number. The database also contained 

information regarding the following: gender, age, date of testing, RT-qPCR test 

results with the cycle threshold values, viral WGS results, days spent in ICU, chest 

CTSS which is calculated based on the percentage of lung lobe involvement [1–5 

severity score added up per lung lobe, maximum score is 25], mortality, vaccination 

history, P/F ratio with two columns, one with the first value following ICU 

admission, and one with the lowest value during the first 24 h of ICU stay, follow-up 

of the ICU survivors for 28 days following ICU discharge, laboratory parameters in 

the first 24 h of ICU stay such as CRP, PCT, ferritin, IL-6, lymphocyte-, leukocyte-, 

neutrophil-, and granulocyte count, D-dimer, history of the comorbidities like HT, 

DM, COPD [with differentiating those who used inhalational corticosteroids prior to 

ICU admission], chronic kidney disease (CKD). An upper limit was applied for CRP, 

PCT, ferritin, IL-6 and D-dimer based on the first limit of laboratory measurements. 



These interventions did not cause any differences in any of the statistical 

significances, however, created an opportunity to design clearer figures and tables 

with less distortion by outlier values. The database from the University of Debrecen 

included the following data: gender, age, date of testing, days spent in ICu, chest 

CTSS, P/F ratio, laboratory parameters and comorbidities.  

The latter half of our study included a ML algorithm-based analysis called RF.  The 

primary analysis of 503 patients in Pécs proved to be a small number of cases and 

low reliability values were obtained when using complex statistical methods, 

therefore we decided to collaborate. From the ICUs of the University of Debrecen, 

we managed to enroll an additional 124 patients. For these patients, no viral 

sequencing data were available, so in addition to the three main variants (Alpha, 

Delta, Omicron), we included 22 patients with B.1.160 variants from our database 

from patients in Pécs, resulting in a total of 649 patients. A graph showing the steps 

of the analysis is shown in Figure 1. 

 

Figure 1: Workflow chart of the RF analysis 



In our RF model, we used nine parameters: Age, P/F ratio, chest CTSS, Days at ICU, 

D-dimer, PCT, CRP, Leukocyte count, Lymphocyte count as predictive features and 

ICU mortality as a binary outcome (Deceased, Survivor). We selected predictors based 

on their potential importance and to account for multicollinearity, excluding those 

which are highly correlated with one another. Since several parameters experienced 

numbers of missing data points, for example, up to 16% in the case of the Horowitz 

index, we used data imputation prior to model fitting. RF approximation matrices 

(which measures the similarity of data points) are used to fill in missing data. Given 

that the mortality outcome was not balanced (59% died - 41% survived), a balancing 

step had to be performed. The balancing, i.e. the oversampling of the minority class 

(survivors), was necessary to achieve a ratio of 0.5 (50% survived, 50% deceased), as 

this allows efficient learning and more accurate estimation of the model. Without 

oversampling, the model would be dominated by deceased cases, if the model learns 

from this, a bias would be introduced, and the model would subsequently tend to 

overestimate the probability of mortality on a new (previously not seen) unknown 

group by the model. More details on imputation and balancing are available in the 

dissertation. After oversampling, we acquired 760 data points. Then the data were 

partitioned randomly to a training and testing set in 0.85/0.15 ratio (training data, 

N = 647, testing data, N = 113). The training dataset was used to fit the RF model. After 

model fitting, we investigated the RF model performance on the test dataset, defining 

the most widely used metrics: accuracy with 95% confidence intervals (CI), sensitivity, 

specificity, and area under the curve (AUC). To calculate these values, we used the 

model predictions to predict new data of the training and testing datasets. We 

investigated how well the model performed on supplied training data, and also how it 

performed regarding previously unseen data. Furthermore, we calculated 95% 

confidence intervals with an exact method for the AUC and accuracy metrics, 

therefore, we have far more than merely a point estimate. Based on the mean decrease 

in the Gini score and upon model accuracy, we determined the order of variable 

importance as well. 

The technical details of whole genome sequencing (WGS) and the ethical implications 

are described in the dissertation. 



All statistical calculations were performed in R Statistics version 4.3.2 (R Foundation 

for Statistical Computing, Vienna, Austria). A p-value < 0.05 was defined as a two-

tailed level of significance. 

IV. Results 

IV/1. Dynamic, interactive epidemiological map 

The data collection covers the timespan between 2020.08.19 and 2022.02.13 and 

includes 271,849 COVID-19 RT-qPCR test related data. Broken down by 

individuals, this is 158,036 persons belonging to Baranya, Somogy and Tolna 

counties. The overall median age was 44 years (IQR 27-61), with a male-female split 

of 43.3% / 56.7%. The percentage breakdown of tested individuals by county was as 

follows: Baranya - 55.26%, Somogy - 22.05%, Tolna - 22.69%. The highest 

percentage of positive PCR tests was found in Somogy (26.1%), Tolna (23.3%), 

while the lowest percentage was found in Baranya County (16.8%). The distribution 

of symptomatic individuals was also highest in Somogy County (72.2%), followed 

by Tolna County (62.9%) and lowest in Baranya County (47.3%). The total number 

of tests, positive test results, asymptomatic and symptomatic cases per 656 

municipalities in the three counties can be found on covid-pte.vercel.app/dashboard. 

Two data to highlight: the average age of the tested individuals in Pécs was 26.3 

years until 31 August 2020. The average age in Cserénfa until 31 December 2020 

was 80.1 years, and the average cycle threshold was 24.54.   

 

Sequencing results 

During the time interval studied, 77 different SARS-CoV-2 lineages were identified 

from 2,975 individuals, the vast majority of which can be classified as European, 

Alpha, Delta and Omicron variants. The exact lineages by time interval are reported in 

the dissertation. If the sequenced lineages are grouped according to the main viral 

variants, four groups are obtained: European, Alpha, Delta, and Omicron groups. There 

was a significant difference (p<0.001) in median age between groups: European - 65 

years, Alpha - 54 years, Delta - 46 years, Omicron - 40 years. When age was divided 

into 5 different subgroups, a significant difference (p<0.001) was also observed among 

the groups. There was no significant difference (p=0.249) in the sex distribution. There 



was also a significant difference (p<0.001) in the presence of symptoms between the 

four groups of viral variants. For the median cycle threshold values, a significant 

difference (p=0.003) was also observed between groups: lowest for Delta (25.3), Alpha 

(25.5), followed by European (26.0) and Omicron (26.2). 

 

IV/2. Diagnostic performance of Panbio RAT 

A total number of 5,136 samples tested parallel for SARS-CoV-2 Panbio RADT and 

SARS-CoV-2 RT-qPCR were collected from 4,440 individuals who were admitted in 

the clinical departments of the University of Pécs, Clinical Center. The tested 

individuals were between 0 and 101 years old (median age: 53 years, IQR 30–72 

years). The female/male ratio was 57.2%/42.8%. The median Ct values were 

significantly lower in the symptomatic group when compared with the asymptomatic 

group (28.2 vs. 35.0, respectively p < 0.001). To perform a stratified statistical 

analysis, 696 parallel samples were excluded to avoid distortion, which were repetitive 

tests of patients who were aligned to the follow-up of the SARS-CoV-2 RT-qPCR 

positive cases. Out of 4,440 paired tests, 609 samples tested positive using RT-qPCR, 

resulting in a prevalence of 13.7%. Panbio detected 251 (5.7%) positive tested 

samples. In this calculation method, overall sensitivity was 41.2%, overall specificity 

was 99.7%. Positive predictive value (PPV) was 95.1%, negative predictive value 

(NPV) was 91.4%. 

 Panbio positive Panbio negative  

PCR positive 251 (5.7%) 358 (8.1%) Sensitivity: 41.2% 

(95% CI 37.4-

45.2%) 

PCR negative 13 (0.3%) 3,818 (86.0%) Specificity: 99,7% 

(95% CI 99.4-

99.8%) 

 PPV: 95.1% (95% 

CI 91.8-97.1%) 

NPV: 91.4% 

(95% CI 90.5-

92.2%) 

 

Table 1: Analytic performance of Panbio, repetitive tests (696) excluded 

 



When we examined the Panbio RAT sensitivity among Cycle threshold subgroups, it 

was 91.2%, in the group of Ct values ≤ 20, 68.6% within the Ct range of 20–25, 47.9% 

in the group of Ct values between 25 and 30, and 12.6% in the group of Ct values 

between 30 and 35.  

We compiled demographic and clinical data from 80 individuals who succumbed due 

to complications related to SARS-CoV-2 and compared it with the generally tested 

population. There was a remarkable difference in gender distribution of the tested cases 

among the general population who were SARS-CoV-2 suspected, in favor of females: 

42.5 vs. 57.5% (male:female ratio). The median age difference was also significant 

(p < 0.001): 52 (IQR 30–71) in the general population vs. 78 (IQR 70–87) among the 

fatal cases. 

 

IV/3. Study of clinical, laboratory and molecular genetic parameters associated 

with adverse outcomes of SARS-CoV-2 infection 

317 out of 503 ICU patients succumbed while in the ICU. Mortality was 65.5% in the 

Alpha group (127/194 patients), 66.1% in the Delta group (152/230 patients) and 

48.1% in the Omicron group (38/79 patients). Kaplan–Meier survival curve is one of 

the best options to measure the fraction of subjects living for a certain amount of time 

following treatment, which in our case, begins with ICU admission.  

Figure 1, panel (a) shows the survival curves by lineage. A 50% survival probability 

was reached on Day 15 in the case of Alpha-, Day 14 by Delta-, and Day 13 by 

Omicron patients. There was no significant difference among the lineages (p = 0.95). 

We also used Kaplan–Meier to compare survival probability among the three age 

groups (< 50, 50–65, > 65, see Fig. 1, panel (b). The youngest group of ICU patients 

aged < 50 years old reached a 50% survival probability on Day 22, while the middle 

group of patients aged between 50 and 65 years old reached a 50% survival probability 

on Day 16. The oldest group with age > 65 reached a 50% survival probability on Day 

12. There was a very highly significant difference (p < 0.0001) among the age groups. 



Figure 2: Kaplan-Meier survival probability curve 

a) Survival probability among Alpha, Delta and Omicron VOCs 

b) Survival probability among the age groups < 50, 50-65 and > 65 years old 

 

Vaccination data 

In regard to vaccination, 339 out of 503 patients had no vaccination history, and among 

these unvaccinated patients, 222 patients (65.5%) succumbed. 35 patients received 

only one vaccination dose, in which 24 (68.6%) patients in this group soon after they 

expired. Patients with two vaccination doses following 14 days from the second 

vaccination dose were considered fully vaccinated; 82 patients were fully vaccinated, 

and 53 (64.6%) patients in this group expired. In reference to those patients who 

received a booster dose, 47 patients received 3 doses of vaccination, in which only 18 

(38.3%) patients expired in this group. Patients were considered fully vaccinated 

14 days following the second dose of vaccination, whereas fully vaccinated patients 

who received at least two doses of vaccination and/or at least one booster dose within 

a six-month window post-vaccination from the first booster dose were considered 

protected patients. Out of 503 patients, only 55 were deemed protected, in which 27 

(49.1%) patients expired in this group. In consideration of the 437 non-protected 

patients, 281 (64.3%) patients succumbed. It is noteworthy in highlighting, the 

remaining 11 Delta-infected patients were fully vaccinated, however, sufficient data in 



terms of vaccination dates were missing; 9 of these 11 patients were deceased. When 

we performed Pearson’s Chi-squared test, it revealed the protective effect of 

vaccination significantly reduces mortality among protected patients with a p-value of 

0.028, see Table 2.  

Variables 

Vaccinated 

Total 
p-

value 

Protected 

Total 
p-

value Not (0) 
Partially 

(1) 

Fully 

(2) 

Booster 

(3) 
No Yes 

Mortality      0.0031    0.0281 

Survived 
117 

(35%) 
11 (31%) 

29 

(35%) 

29 

(62%) 

186 

(37%) 
 

156 

(36%) 

28 

(51%) 

184 

(37%) 
 

Deceased 
222 

(65%) 

24 

(69%) 

53 

(65%) 

18 

(38%) 

317 

(63%) 
 

281 

(64%) 

27 

(49%) 

308 

(63%) 
 

Total, n 

(%) 

339 

(100%) 

35 

(100%) 

82 

(100%) 

47 

(100%) 

503 

(100%) 
 

437 

(100%) 

55 

(100%) 

492 

(100%) 
 

1 Pearson’s Chi-squared test 

Table 2: Mortality data among non-vaccinated and vaccinated ICU patients 

 

Random forest 

The RF analysis contains 649 ICU patients’ data: 503 from the original database, 22 

patients infected with the lineage B.1.160, and 124 patients from the University of 

Debrecen. Following imputation and balancing, the model tallies 760 patients. The test 

model performance had an accuracy of 0.814 (95% CI 0.73–0.881), with a p-value 

of < 0.0001. Sensitivity was 0.825, specificity was 0.804. Additional performance data 

and the Receiver Operation Characteristics (ROC) curve are illustrated in Figure 3.  



 

Figure 3: Test model performance metrics with the ROC curve 

 

MeanDecreaseAccuracy (MDA) and MeanDecreaseGini (MDG) values of the key 

parameters are shown on Figure 4. 
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Figure 4: MeanDecreaseAccuracy (MDA) and MeanDecreaseGini (MDG) values of 

the key parameters 

Detailed statistics on clinical and laboratory parameters, broken down into variants 

and survivor/death groups, are available in the dissertation. 

 

 

V. Discussion 

V/1. Dynamic, interactive epidemiological map 

If we look at the data for Pécs before 2020.09.02., the average age in the first two 

weeks of the period under review was only 25.9 years. The reason is that the very first 

tests came from different freshman camps of PTE, where we detected the first positive 

cases. Thereafter, the average age increased gradually (peak 50.9 years), and with the 

appearance of the Omicron variant with higher contagiosity, the average age of 

infected started to decrease again, reaching 48.4 years at the end of our study. Another 

noteworthy phenomenon is the identification of epidemiological clusters with specific 

demographic data on our map, e.g. according to the nursing homes in each 

municipality. Cserénfa is a tiny settlement with only 217 inhabitants in Somogy 

County, where we identified an outstanding number of positive cases. The first tests 



were received in November 2020: 26 positive tests were identified in one month, with 

an average age of 80.1 years and an average cycle threshold of 24.54, indicating a 

considerably high viral load. Following the emergence of SARS-CoV-2 in Hungary, 

nursing homes and chronic care facilities were well identified as epidemiological 

hotspots during the short upsurge phase of the wild-type dominated epidemic period. 

Baranya County had a significantly lower prevalence of symptomatic patients (47.3%) 

than Somogy (72.2%) or Tolna (62.9%) counties. The proportion of positive cases also 

shows a similar trend: 16.8% in Baranya County, compared to 26.1% and 23.3% in 

Somogy and Tolna counties respectively. The reason for these differences is most 

likely due to the higher screening capacity of Baranya County (and mainly of the PTE 

KK), which included health professionals and students, while in the other two counties 

testing was more symptom oriented. Regarding the incidence of cases, the timeline-

like fluctuation of cases observed in our region during our study period perfectly 

matched the data set representing the whole of Hungary, and some trends, such as the 

drastic decrease in the number of cases in summer, which was previously suggested 

by several studies (Aboubakr et al., 2021)(Chen et al., 2021), were also observed. 

Reflecting on molecular epidemiology, the 77 sublineages detected by us are not 

surprising, a Slovenian study (Janezic et al., 2023), which genomically analyzed the 

first 9 months of 2021, identified 64 sublineages, and the variations and trends 

(including the low number of cases in summer) that appeared in the study in a timeline 

are similar to the changes observed in our study. 

V/2. Diagnostic performance of Panbio RAT 

Panbio RAT was reported to maintain a high specificity (between 94.9 and 100%) in 

preliminary clinical studies (Fenollar et al., 2021)(Gremmels et al., 2021). A study 

from Heidelberg, Germany demonstrated a sensitivity of 95.8% in Ct values <25 and 

within seven days from symptom onset (Krüger et al., 2021). In larger study 

populations, Panbio sensitivity was between 33.3% (Masiá et al., 2021) and 55.3% 

(Landaas et al., 2021) in asymptomatic patients. A German study with more than 1,000 

participants described an overall sensitivity of 46.7% (Wagenhäuser et al., 2021), while 

an Italian study with 4,167 participants reported a sensitivity of 66.8% (Treggiari et 

al., 2022). Our study began with a review of 5,136 cases in which we found SARS-

CoV-2 Panbio RADT overall sensitivity to be low, at 36.1%. Test sensitivity improved 



to 41.2%, when repetitive follow-up tests were excluded from the analysis, which is 

primarily due to the exclusion of samples with low viral load close to the maintained 

cut-off level and the lowest detection limit of the qPCR.  

According to a study from Cologne, Germany (Platten et al., 2021), 52.6% of positive 

cases with Ct values > 28 were undetected by RAD tests. Our findings are consistent 

with the above-mentioned study: the 80 patients who succumbed due to complications 

of SARS-CoV-2 had a median Ct value of 27.0, with a Panbio sensitivity of 

47.5%. Results of our clinical study highlight the universal observation associated with 

SARS-CoV-2 RT-qPCR: it is the most reliable tool in the detection of active SARS-

CoV-2 infection. Although SARS-CoV-2 RADT offers several advantages over SARS-

CoV-2 RT-qPCR, even in clinical settings due to its point-of-care testing (POCT) 

administration and rapid turnaround time, these tests are less sensitive or at critically 

low prevalence rate of the infection and can be considered unsatisfactory regarding 

accurate testing and consequential diagnosis.  

In the combined SARS-CoV-2 Panbio RADT and RT-qPCR tested population, 80 fatal 

cases were observed during our study period. Statistical evaluation of the deceased 

population group identified significant differences compared to the later recovering 

general population according to gender, age and presence of the symptoms during the 

first testing and PCR Ct stratification distribution. Older age, male sex, clinically 

symptomatic status and lower Ct range are all significantly correlated to disease 

fatality. However, we emphasize, six of the patients (7.5%) had no clinical symptoms 

during the first test and SARS-CoV-2 Panbio RADT was negative in 38 individuals, 

47.5% of the fatal cases. These numbers suggest rapid antigen testing should not be 

the sole test administered to populations at high risk of developing severe disease. 

We had no information regarding the onset of symptoms, which should be taken into 

consideration when comparing it with diagnostic performance. There was no 

possibility to repeat the RAD or RT-qPCR tests from the same samples due to 

continuous high daily activity, which leaves open the possibility of human error (e.g., 

RAD test evaluation beyond the recommended timeframe), despite being performed 

and evaluated strictly by healthcare professionals.  

 

 



V/3. Study of clinical, laboratory and molecular genetic parameters associated 

with adverse outcomes of SARS-CoV-2 infection 

Age is found to be the highest risk factor in COVID-19 infection, likely influencing 

all molecular mechanisms from immune responses, mitochondrial functions, 

endoplasmic reticulum transport mechanisms and protein folding, oxidative stress 

disruption, receptor activation of the ACE II and Toll-like receptors, transcription 

factors and cell signaling pathways (Chatterjee et al., 2023). 

ICU mortality spanned a vast frontier (28.8-75.9%) among studies examined in the 

literature. Our findings reveal an ICU hard mortality of 63.0%, which aligns with the 

only Hungarian COVID-19 ICU study published to this point (Nagy et al., 2023). 

Based on our timeline and lineage distribution, Omicron sublineages had 

approximately as much time (January 2022 to November 2022) when compared to 

Alpha and Delta combined (January 2021 to December 2021). Nevertheless, patients 

admitted to the ICU because of Omicron only represent 15.7% of total cases, which 

implies ICU admission was significantly lower in the case of Omicron. This can 

potentially be explained by the effects of protection due to vaccination and milder 

lineage combined. The Omicron variant is less severe; however, once admitted to the 

ICU, Omicron still seemingly proves to be a potentially deadly variant since there is 

no significant difference among the lineages in terms of survival rate, see Kaplan–

Meier survival curves by lineage in Fig. 1, panel a).  

In regard to the Hungarian population, vaccination strategies were initially introduced 

in December 2020. Vaccine uptake of the primary course counts up to 63.2% of the 

total population, with 39.8% taking up the first booster, and 4.3% in the second booster 

up through 4 April 2023, in the general population. Among the population admitted to 

the ICU in the time period of our study, 35% were unvaccinated and of those who later 

survived when compared to the 65% of unvaccinated patients who succumbed in 

COVID-19. In calculating only the full primary course, meaning the vaccinated and 

boosted individuals within the protective time period, vaccines are considered to have 

effective protection (minimum 14 days—maximum 6 months), in which we observed 

a significant mortality-reducing effect of the vaccination. Based on our results, we 

recommend those individuals over age 65 and comorbid populations will benefit from 

vaccination on a priority basis when compared to individuals without these conditions. 



Based on the random forest analysis, we were able to demonstrate the predictive 

capacity regarding the machine-learning approach in assessing ICU patient lethality 

due to COVID-19. The analysis - incorporating data from 649 ICU patients - achieved 

an accuracy of 86.24% in training and 81.4% in testing phases, underscoring its 

robustness. Key predictors included the P/F ratio, lymphocyte count, and chest CTSS, 

among others, indicating the relevance of respiratory status, immune response and lung 

involvement in determining patient outcomes. Another key predictor of our model was 

the age of ICU patients, which was also highlighted in an Italian study (Lorenzoni et 

al., 2021) as the leading predictor in their models.  

In recent years, various MDL methods have been implemented to predict COVID-19 

mortality, even in ICU settings. According to Shen (et al., 2023), the RF model has the 

best performance in predicting the risk of death in hospitalized patients with COVID-

19. From a technical point-of-view, the most commonly used MDL methods were 

random forest, logistic regression, and decision tree (commonly gradient boosted, such 

as XGBoost)(Viderman et al., 2024). Several studies focused on comparing the 

performance of multiple MDL methods, while others focused more on the clinical 

point-of-view, exploring different demographic- and/or clinical- and laboratory 

parameters, and comorbidities in their models (Elhazmi et al., 2022)(D. Li et al., 2020). 

Shi (et al., 2020) revealed that RF showed the best performance out of three machine 

learning models to predict COVID-19 mortality, with the top three important variables 

being mean arterial pressure, age and PCT. Sakagianni (et al., 2023) also found the RF 

as the best outcome predictor in COVID-19 ICU patients, with urea, age, hemoglobin, 

CRP, platelet count and lymphocyte count as the top six important variables. Jamshidi 

(et al., 2022)  compared several machine learning algorithms to predict mortality in 

day 0 ICU patients, with 15 factors, mostly laboratory parameters. Random forest 

outperformed other models and had a superior efficiency, parameters giving the most 

information on the probability of each patient’s death were albumin, urea, red blood 

cell distribution width and age. Another Iranian study (Najafi-Vosough et al., 2023) 

found age as the most important variable for predicting mortality in their RF analysis. 

Unlike many conventional models, which may rely on a narrower set of variables, the 

RF approach allows for the integration of a wide range of clinical parameters, 

enhancing its predictive capability (Ovcharenko et al., 2023), (C. Zhan et al., 2021), 

(Zhao et al., 2022). The practical significance of the recent study lies in its potential to 



support clinical decision-making by offering a model that combines high predictive 

accuracy with practical applicability, in which the effects of vaccination and newer 

VOCs are taken into consideration in a well-defined ICU population with clear 

exclusion criteria. In providing an accurate prediction of patient outcomes, ICU 

specialists can customize interventions more effectively and improve patient care and 

resource allocation. To cite an example, patients identified as high-risk can be 

prioritized for more aggressive treatment or monitoring. A further advantage regarding 

the RF is the model can manage non-linear relationships and interactions between 

variables, enhancing its predictive capability across diverse clinical scenarios. 

Moreover, RF is known for its resistance to overfitting, specifically with the use of 

multiple trees, assuring its reliability for practical applications.  

Since we only had Hungarian patients’ data for model training and did not validate our 

result on a dataset from a different origin, it is unknown whether it is generalizable to 

other countries or could be only applied to the Hungarian patient population. However, 

we chose widely used clinical parameters (such as age, P/F ratio, and lymphocyte 

count). Therefore, we believe that our predictions could be useful for other researchers 

and clinicians as well. Another limiting factor is the model’s interpretability. While RF 

offers high accuracy, it is inherently more complex and less interpretable than simpler 

models, which may pose challenges for clinical communication, even though we tried 

to enhance its transparency by utilizing feature importance. The model’s performance 

heavily relies on the quality and completeness of input data, making it sensitive to any 

biases or inaccuracies present, which could be affected by the retrospective nature of 

the study. These strengths and limitations may underscore the potential of the random 

forest analysis in clinical applications while highlighting areas for improvement and 

careful consideration in future research and implementation. 

In conclusion, when considering the application of a machine learning algorithm, our 

study promoted a comprehension of the mechanisms and hierarchically estimated the 

risk-modifying effects of demographical factors and pathophysiological and 

pathobiochemical parameters among patients coping with the severe course of SARS-

CoV-2 infection. Advanced bioinformatical analysis regarding clinical data can 

potentially enable clinicians to customize guidelines and to develop care strategies and 

treatment alternatives, suited for the most vulnerable populations in intensive care and 

potentially guiding more personalized, timely interventions. Future studies can explore 



the integration of additional variables, such as genetic markers or detailed clinical 

history, in larger, externally validated, multi-center studies with patients from diverse 

nations and races to refine the model’s predictive accuracy. Moreover, the application 

of the model in prospective clinical trials will provide valuable insights into its real-

world effectiveness and impact upon patient outcomes. 

 

VI. Conclusion 

The results obtained from the epidemiological map analysis and the Panbio rapid 

antigen test study provide a comprehensive picture of the epidemiological and 

diagnostic challenges during the COVID-19 outbreak, as well as the effectiveness and 

limitations of the methods used. The timely identification of epidemiological clusters, 

the settlements with high infection rates and the underlying institutional infrastructure 

underlines the importance of both regional and institutional level epidemiological 

control in a flexible and managed way. In Baranya County, where Pécs is the main city, 

the specialized molecular diagnostic units of the University of Pécs Clinical Centre 

allowed for a higher screening capacity, resulting in an overall lower rate of positive 

cases and symptomatic cases. Increasing screening capacity proved effective in 

reducing the spread of the epidemic and enhancing the efficiency of epidemic 

management. Our data show that the fluctuation in positive case rates in the South 

Transdanubia region was in line with national trends, confirming that the local 

epidemiological situation is closely linked to national trends.  

The diagnostic performance of the rapid antigen test for mass screening was found to 

be low due to the low sensitivity of the test. This indicates that the use of the test may 

be limited in cases with low population prevalence of infection, early stages of 

infection and detection of cases with low viral shedding. However, it is an appropriate 

and rapid alternative for samples with high virus concentrations and high prevalence 

of infection in the community phase of the epidemic. Genetic material of SARS-CoV-

2 was detectable for up to 35 days, which was not strongly correlated with patient 

infectivity. This suggests that PCR positivity does not always indicate infectivity, and 

diagnostic strategies should take this factor into account. 

Older age, male sex, clinical symptoms and high viral shedding were significantly 

correlated with mortality. This highlights the importance of special surveillance of 



older populations with chronic disease during the epidemic. Our results also confirm 

that vaccination significantly reduced mortality, especially among older patients with 

co-morbidities. This supports the importance of vaccination in preventing severe 

disease outcomes. Results of RF analysis showed that machine learning methods are 

effective tools for predicting severe cases of COVID-19. This approach has the 

potential to support clinical decision making, particularly in the identification and 

management of high-risk patients. 

Based on the above, a number of guidelines and suggestions for the development of 

future epidemiological and diagnostic strategies can be formulated: epidemiological 

data clearly show that increasing screening capacity is key to effectively managing the 

epidemic. A high screening capacity can help to identify asymptomatic cases and 

control the spread of the epidemic. It is reasonable to design epidemiological measures 

taking regional differences into account. In counties with lower screening capacity, 

increased attention should be paid to expanding screening and strengthening 

prevention measures. Refinement of testing protocols and the use of combined 

diagnostic approaches can help to achieve more accurate results. The integrated use of 

machine learning methods in the analysis of epidemiological data and the prediction 

of serious cases is a promising trend. Future research and development should also 

focus on further refining these models and incorporating them into clinical practice. 

Overall, the experience and research findings from the management of the COVID-19 

epidemic highlight the importance of an adaptive and dynamic approach in the 

development of epidemiological strategies, diagnostic methods and predictive decision 

support tools. Building on our current experience, there is potential to develop even 

more effective tools and strategies for controlling epidemic processes in the future.  

 

 

 

 

 

 



VII. New results 

Dynamic, interactive epidemiologic map 

a) Representation of a specific map for the Southern Transdanubia region, based 

on diagnostic and demographic data, which, if sufficiently detailed data are 

available, can be used in the future to represent other epidemiological/other public 

health updates. 

b) Timeline presentation of daily epidemiological data (positive case counts, cycle 

threshold values, total test count, average age) per population. 

c) Presentation of regional virus variants over the study period, broken down by 

municipality and displayed on a map. 

Diagnostic performance of Panbio RAT 

a) Evaluation of the diagnostic performance of Panbio RAT in clinical settings for 

5,136 cases enrolled, which at the time of publication was the largest clinical 

setting of the COVID-19 Panbio RAT study internationally. 

b) To make recommendations for combined (RAT + PCR) testing based on the 

performance evaluation of the Panbio test. 

Study of clinical, laboratory and molecular genetic parameters associated 

with adverse outcomes of SARS-CoV-2 infection 

a) Comparison of the first laboratory parameters within 24 hours of ICU admission 

among the 3 COVID-19 viral variants (Alpha, Delta, Omicron), which is a novelty 

in international comparison. 

b) An analysis of the association between COVID-19 vaccination status and 

mortality in a Hungarian intensive care unit population. 

c) Identification of the most important factors associated with lethality in ICUs. 

d) Development of a Random Forest algorithm based on laboratory and clinical 

parameters most strongly correlated with lethality, aimed at supporting clinical 

decision-making. 
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