

Evaluation of cardiac involvement in asymptomatic patients with type 1 diabetes mellitus

Máté Hajdu MD

Supervisor: Prof. Réka Faludi MD, PhD, DSc

Clinical medical sciences doctoral school, The clinical and molecular research of the new
mechanisms, diagnostics and therapy of cardiovascular diseases

Head of the Doctoral Program: Prof. István Szokodi MD, PhD, DSc

Pécs

2025

1. Introduction

Type 1 diabetes mellitus (T1DM) is one of the most common chronic disorders affecting young adults. It is associated with serious microvascular and macrovascular complications resulting in at least tenfold increase in cardiovascular diseases as compared with the age matched healthy population. Besides, heart failure develops 10-15 years earlier in T1DM patients than in the general population.

Although in young asymptomatic T1DM patients the standard echocardiographic parameters reflect normal cardiac size and function, tissue Doppler imaging (TDI) and speckle tracking echocardiography seem to be useful techniques for assessing subclinical myocardial involvement in this population. Left ventricular (LV) systolic dysfunction was proved by speckle tracking-derived global longitudinal strain (GLS) data, both in T1DM children and adults, whereas TDI measurements suggested impaired LV diastolic function. Nevertheless, conflicting results were also reported. Less is known about right ventricular (RV) function, or atrial performance in this disease.

Duration of diabetes and quality of the glycemic control have been reported as critical factors contributing toward development of cardiovascular complications. Data about their effect on myocardial mechanics, however, are scarce and controversial.

Cardiac autonomic neuropathy (CAN) is a consequence of the diabetes and is defined as the impairment of the cardiovascular autonomic control. It is one of the most neglected long-term complications of diabetes, remaining subclinical until late stages of the disease. Diabetic patients with CAN have a 3.4 times higher risk of mortality than patients without CAN. It has been proved that, in T1DM, major risk factors for CAN are age, duration of diabetes, glycemic control, systemic hypertension, dyslipidemia, obesity, smoking habits, and the existence of diabetic microvascular complications (nephropathy or microalbuminuria and retinopathy).

Evaluation of heart rate variability (HRV) detects the early subclinical alterations of the autonomic nervous system. Thus, impaired HRV is the earliest subclinical marker of CAN in asymptomatic patients with T1DM. Reduced HRV has already been reported in T1DM patients. In addition, it has been proved that major risk factors for CAN are significant determinants of the reduced HRV in this disease. These data, however, are limited and controversial.

2. Objectives

Our work aimed to provide a comprehensive analysis of the myocardial size and function using standard and novel echocardiographic techniques and to investigate the potential associations between disease duration, glycemic control, and the echocardiographic markers of the myocardial mechanics in asymptomatic T1DM patients. Potential correlations between HRV indices and the established risk factors for CAN and cardiovascular diseases were also investigated.

3. Materials and methods

3.1. Study population

70 T1DM patients (38±12 years, 46 female) and 30 healthy volunteers were investigated. The exclusion criteria were as follows: atrial fibrillation, known diseases of the coronary (Coronary artery disease [CAD]) or peripheral arteries, clinical diabetic nephropathy [macroalbuminuria (≥ 300 mg/day) and/or eGFR (estimated glomerular filtration rate) < 60 ml/min/1.73 m²] or retinopathy, impaired left ventricular systolic function (ejection fraction $< 55\%$), significant valvular heart disease, echocardiographic suspicion of primary cardiomyopathies, abnormal treadmill stress test result indicative of CAD.

3.2. Echocardiography

Besides the conventional and tissue Doppler measurements, left ventricular global longitudinal (GLS) and circumferential (GCS) strain as well as left and right atrial strain parameters were measured with 2D speckle tracking technique. LV hypertrophy, elevated relative wall thickness and enlarged LV chamber size were considered as signs of the hypertensive heart disease.

3.3. Assessment of HRV

Following a 15-min orthostatic adaptation period, beat-to-beat heart rate was recorded for 30 min. The less noisy 5-min segment of the recording was analyzed by Bittium Cardiac Navigator HRV analysis software. Time domain (SDNN – standard deviation of the normal-normal intervals, rMSSD – root mean square differences of successive normal-normal intervals), frequency domain [very low-frequency component or VLF (< 0.04 Hz), low-frequency component or LF (0.04 Hz-0.15 Hz), and high-frequency component or HF (0.15 Hz-0.4 Hz)], and nonlinear indices were calculated. In addition, the Total Power of the spectrum and the ratio of low to high frequency component (LF/HF) were calculated.

3.4. Statistical analysis

The frequencies of categorical variables were compared using chi-square test or Fisher's exact test. The normality of distribution of continuous variables was tested by Shapiro-Wilk test. Means of two continuous normally distributed variables were compared by independent samples Student's t-test. Mann-Whitney U test was used to compare means of two variables not normally distributed. Echocardiographic variables that correlate with current HbA_{1c} or disease duration were determined using bivariate Pearson correlation. In a second step, multiple linear regression analysis (enter method) was used and adjusting for age and hypertension.

Patients were subgrouped according to the median HbA_{1c} level and the presence/absence of the hypertensive heart disease. Four groups were created according to the number of cardiovascular risk factors: normal volunteers (NORM); patients below the median HbA_{1c} and without hypertensive heart disease (T1DM-LOW); patients above the median HbA_{1c} but without hypertensive heart disease (T1DM-MED); patients above the median HbA_{1c} and with hypertensive heart disease (T1DM-HIGH). Comparisons of normally distributed data among multiple groups were performed using one-way ANOVA with LSD post hoc test. Kruskal-Wallis test with Dunn's multiple comparison test was used to compare means of multiple groups of variables not normally distributed.

Since HRV parameters did not display normal distribution, logarithmic transformation (ln) was implemented. Univariate predictors of the HRV parameters were determined by linear regression analysis. In a second step, multiple stepwise linear regression analysis was used. Variables with $p < 0.1$ on univariate analysis were incorporated into the multiple models.

4. Results

Median HbA_{1c} level was 7.4 (1.8)%. Echocardiographic signs of hypertensive heart disease was found in 27 patients. Detailed clinical data of the T1DM patients and the healthy volunteers are reported in Table 1, echocardiographic parameters are reported in Table 2. Averaged mitral annular S and e' values were significantly lower, whereas LV E/e' ratio was significantly higher in T1DM patients, but typically within the normal range. In the right heart, tricuspid S was significantly reduced in the T1DM population. HRV parameters of the T1DM patients and their comparison with those in healthy persons are displayed in Figure 1. Regarding LF/HF ratio, no differences were found between the two populations. Further time domain, frequency-domain, and nonlinear parameters of the HRV, however, were significantly lower in T1DM patients.

Table 1. Clinical data of the T1DM population and comparison with healthy subjects. Statistically significant p-values ($p < 0.05$) are formatted in bold. *Median (IQR).

Clinical characteristics	Healthy volunteers (n = 30)	T1DM patients (n = 70)	p
Age (years)	34 (14.25)*	38 (20)*	0.709
Female gender n (%)	17 (57)	46 (66)	0.39
Body surface area (m²)	1.88 ± 0.2	1.84 ± 0.2	0.408
Body mass index (kg/m²)	24.8 ± 4.2	23.5 ± 3.6	0.152
Resting heart rate (beat/min)	68.9 ± 7.5	73.7 ± 12.0	0.019
Office systolic blood pressure (mmHg)	134.0 ± 14.7	135.8 ± 18.1	0.63
Office diastolic blood pressure (mmHg)	78.7 ± 8.8	79.8 ± 9.8	0.538
Disease duration (years)		21.0 ± 10.3	
Daily dose of insulin (U/kg)		0.64 ± 0.22	
On insulin pump therapy n (%)		47 (67)	
Polyneuropathy n (%)		21 (30)	
Smoking			
Never n (%)	22 (73.3)	43 (61.4)	0.505
Previously n (%)	3 (10)	13 (18.6)	
Currently n (%)	5 (16.7)	14 (20)	

Table 1. – *continue*

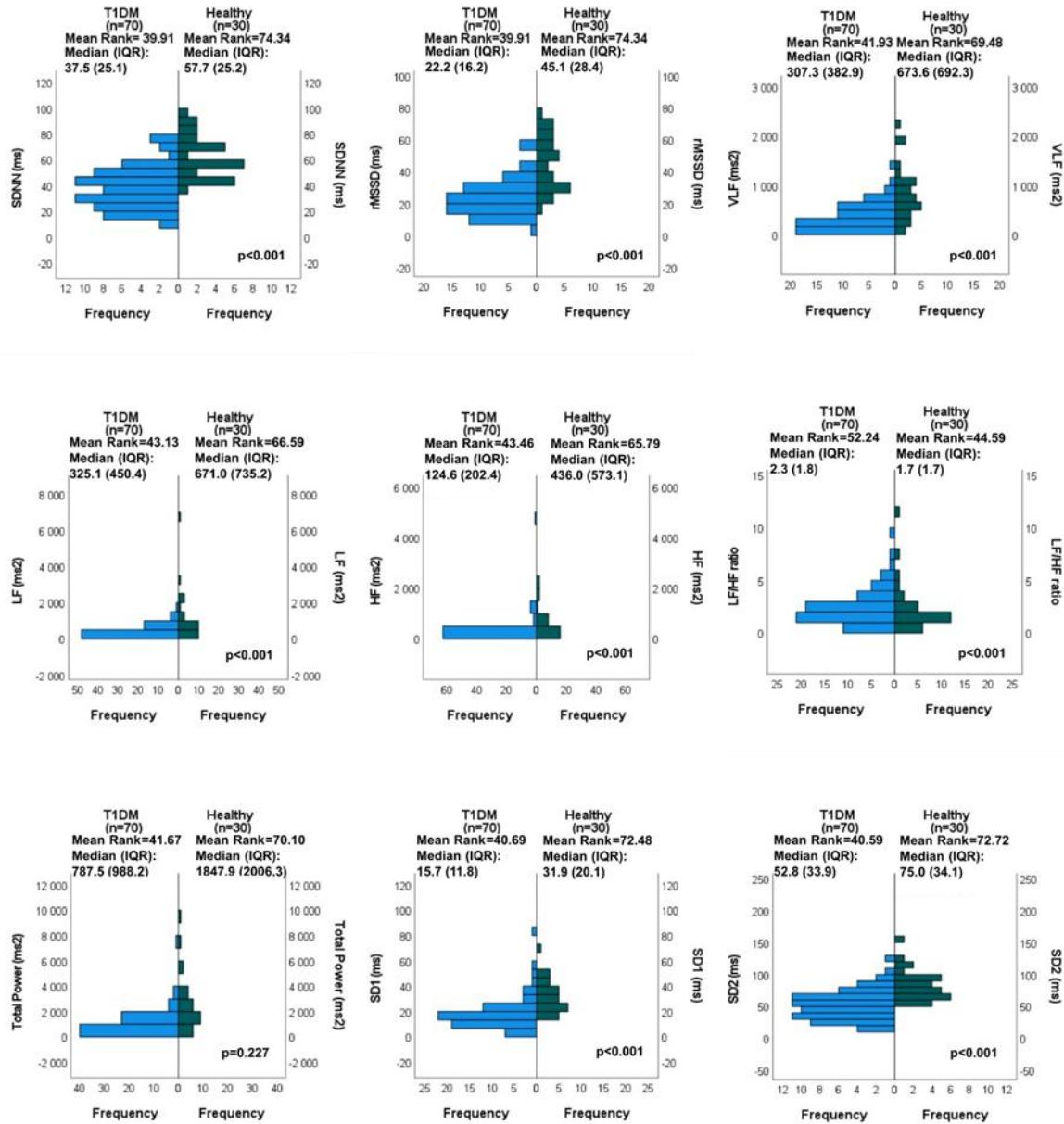

	Healthy volunteers (n = 30)	T1DM patients (n = 70)	p
Laboratory data			
Current HbA _{1c} (%)		7.6 ± 1.3	
Fasting glucose (mmol/l)		8.4 ± 4.6	
Fructosamine (μmol/l)		387.7 ± 65.3	
Creatinine (μmol/l)		73.6 ± 11.7	
eGFR (ml/min/1.73 m ²)		95.9 ± 19.5	
Hemoglobin (g/l)		138.7 ± 15.2	
Total cholesterol (mmol/l)		4.7 ± 1.2	
Triglyceride (mmol/l)		1.0 ± 0.6	
Erythrocyte sedimentation rate (mm/h)		7.9 ± 7.4	
C-reactive protein (mg/l)		3.1 ± 4.1	
Medication			
ACE inhibitors/ARBs n (%)		17 (24)	
Calcium channel blocker n (%)		4 (6)	
Beta receptor antagonists n (%)		12 (17)	

Table 2. *Echocardiographic data of the T1DM population and comparison with healthy subjects. Statistically significant p-values (p<0.05) are formatted in bold.*

Echocardiographic characteristics (LV and LA)	Healthy volunteers (n = 30)	T1DM patients (n = 70)	p
LV EF (%)	61.1 ± 4.0	62.8 ± 3.2	0.033
LV GLS (%)	-19.9 ± 2.4	-19.0 ± 1.9	0.054
LV GCS (%)	-25.9 ± 3.6	-28.1 ± 4.7	0.023
LVM index (g/m ²)	80.2 ± 14.4	78.4 ± 16.4	0.611
Relative wall thickness	0.37 (0.04)	0.40 (0.06)	0.003
Enddiastolic diameter/height (cm/m)	2.7 (0.3)	2.7 (0.3)	0.117
Mitral E (cm/s)	81.0 ± 11.3	82.5 ± 14.5	0.617
Mitral A (cm/s)	53.8 (13.2)	64.0 (23.4)	0.008
Mitral E/A	1.5 ± 0.3	1.4 ± 0.5	0.123

Table 2. – *continue*

Echocardiographic characteristics (LV and LA)	Healthy volunteers (n = 30)	T1DM patients (n = 70)	p
Averaged mitral annular S (cm/s)	10.8 ± 1.4	10.0 ± 1.6	0.015
Averaged mitral annular e' (cm/s)	12.9 ± 1.4	11.1 ± 2.4	<0.001
Averaged mitral annular a' (cm/s)	9.2 ± 1.9	9.5 ± 1.7	0.525
Mitral E/e'	6.3 ± 0.9	7.8 ± 2.0	<0.001
LA Vmax index (ml/m²)	24.6 ± 6.2	25.9 ± 7.8	0.421
LA Vmin index (ml/m²)	8.4 (3.3)	8.2 (4.3)	0.513
LA Vp index (ml/m²)	13.6 (6.1)	15.0 (6.5)	0.204
LA reservoir strain (%)	35.0 ± 9.5	32.9 ± 7.9	0.272
LA contractile strain (%)	13.8 ± 4.0	13.8 ± 3.9	0.985
LA conduit strain (%)	21.1 ± 7.5	19.1 ± 7.0	0.2
Echocardiographic characteristics (RV and RA)			
RVFAC (%)	48.2 ± 8.5	51.2 ± 7.7	0.107
TAPSE (mm)	22.7 ± 2.9	21.7 ± 2.7	0.114
RV wall thickness (mm)	4.5 (1.0)	4.0 (0.5)	0.915
RV basal diameter index (mm/m²)	15.0 ± 3.1	15.2 ± 1.6	0.586
PASP (mmHg)	22.9 ± 3.9	23.8 ± 3.8	0.582
Tricuspid E (cm/s)	61.3 ± 10.3	60.8 ± 11.0	0.847
Tricuspid A (cm/s)	40.4 ± 7.1	40.8 ± 9.3	0.836
Tricuspid E/A	1.5 ± 0.3	1.6 ± 0.4	0.138
Tricuspid annular S (cm/s)	13.7 ± 1.7	12.8 ± 2.0	0.035
Tricuspid annular e' (cm/s)	12.6 ± 2.7	11.7 ± 2.8	0.199
Tricuspid annular a' (cm/s)	11.2 ± 2.7	11.4 ± 3.7	0.747
Tricuspid E/e'	5.1 (1.2)	5.2 (1.6)	0.061
RA Vmax index (ml/m²)	21.1 ± 7.4	19.5 ± 5.8	0.298
RA Vmin index (ml/m²)	7.8 ± 3.8	7.6 ± 3.2	0.718
RA Vp index (ml/m²)	12.8 ± 5.0	12.7 ± 4.5	0.918
RA reservoir strain (%)	50.4 ± 13.9	47.8 ± 12.0	0.356
RA contractile strain (%)	20.5 ± 7.0	20.6 ± 5.7	0.893
RA conduit strain (%)	29.9 ± 11.4	27.2 ± 10.3	0.243

Figure 1. HRV parameters in the T1DM population and comparison with healthy subjects: Independent samples Mann-Whitney U test results.

Both HbA_{1c} and disease duration showed significant correlations with various echocardiographic parameters (Table 3). Even when added age and hypertension to the model, current HbA_{1c} level remained independent predictor of LV GLS, LV GCS, mitral and tricuspid e' and LA and RA conduit strain in multiple linear regression models (Table 4) whereas disease duration lost its significance in similar multiple regression analyses. Partial regression plots demonstrate that HbA_{1c} level correlates significantly with various echocardiographic variables even in age and hypertension adjusted analyses (Figure 2).

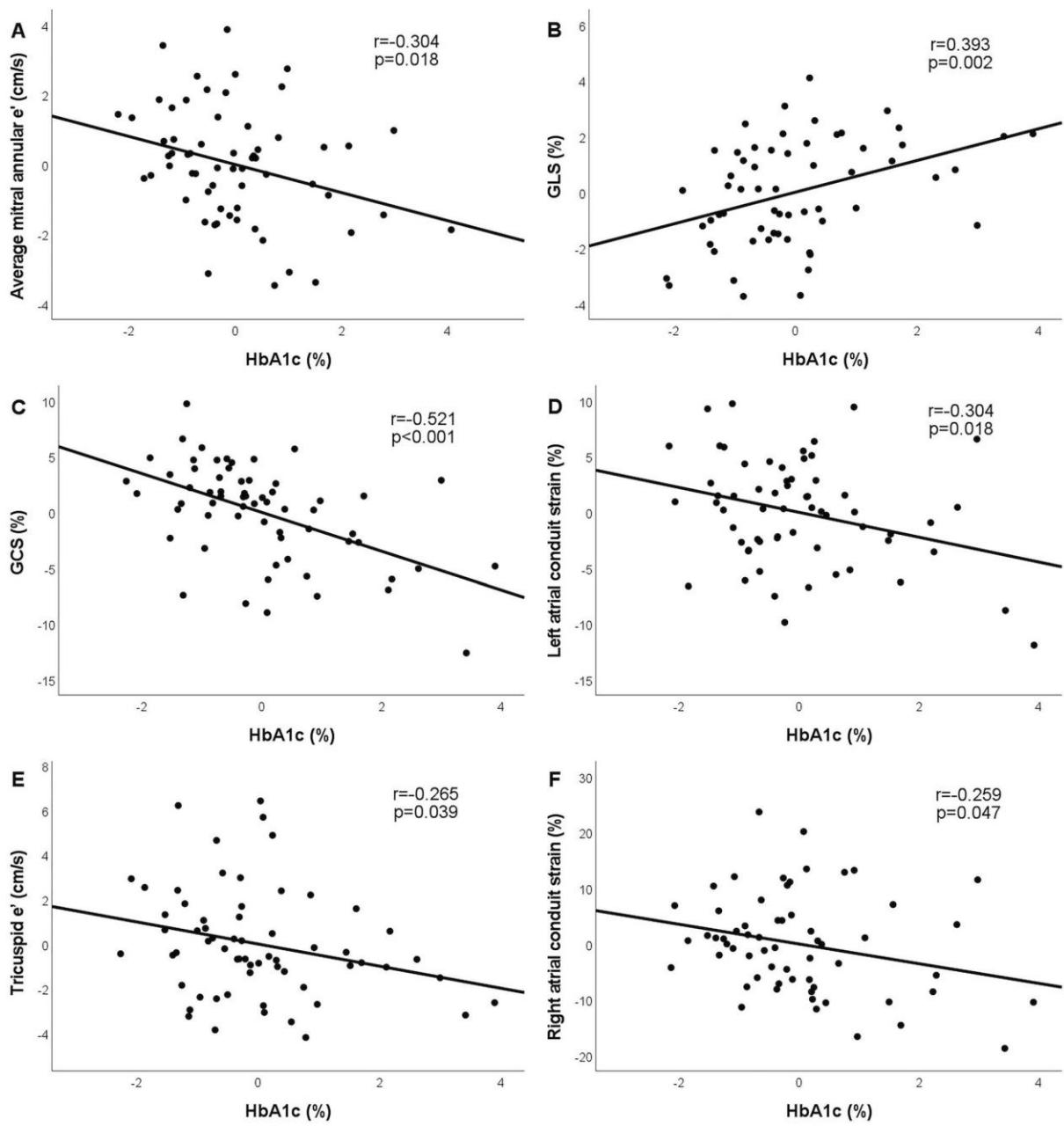

In patients with a combination of HbA_{1c} ≤ 7.4% and no hypertension, echocardiographic findings did not differ from those in healthy volunteers. Patients with HbA_{1c} > 7.4% and no hypertension and especially patients with coexisting hypertension and HbA_{1c} > 7.4%, exhibited significantly impaired myocardial mechanics (Figure 3). Comparison of echocardiographic variables among the study subgroups are reported in Table 5.

Table 3. *Significant univariate predictors of the echocardiographic variables in the T1DM population: correlations of current HbA1c and disease duration. Statistically significant p-values (p<0.05) are formatted in bold.*

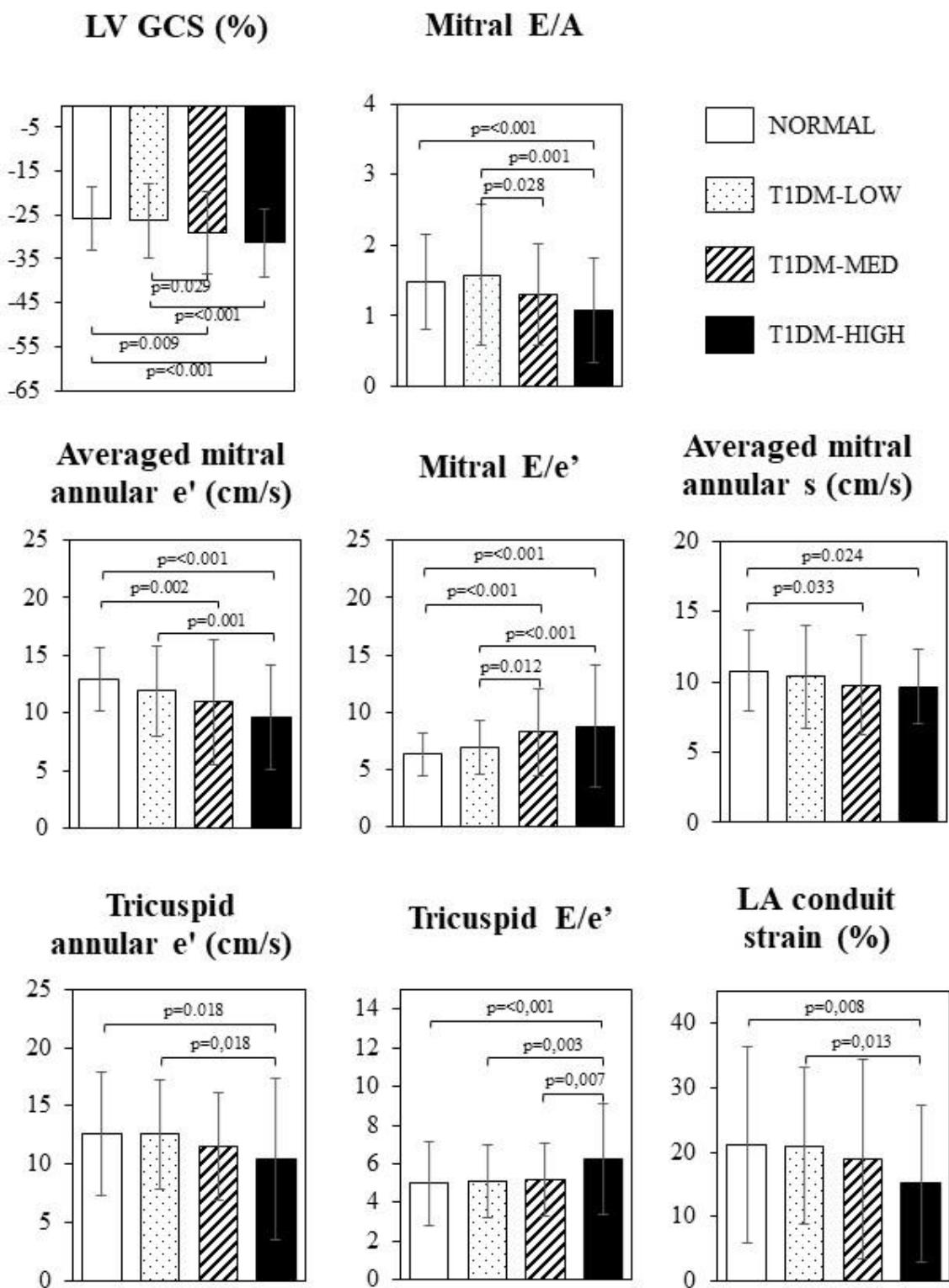

	Correlations of current HbA _{1c} (%)		Correlations of disease duration (years)	
	r	p	r	p
Age (years)	0.186	0.144	0.469	<0.001
LV GLS (%)	0.385	0.002	0.076	0.552
LV GCS (%)	-0.531	<0.001	-0.127	0.300
Mitral A (cm/s)	0.288	0.024	0.087	0.486
Averaged mitral annular S (cm/s)	-0.221	0.082	-0.304	0.012
Averaged mitral annular e' (cm/s)	-0.390	0.002	-0.293	0.016
Mitral E/e'	0.329	0.010	0.304	0.014
LA reservoir strain (%)	-0.256	0.045	-0.264	0.031
LA conduit strain (%)	-0.353	0.005	-0.312	0.010
Tricuspid annular e' (cm/s)	-0.330	0.008	-0.227	0.066
RA conduit strain (%)	-0.326	0.010	-0.212	0.089

Table 4. Predictors of the echocardiographic variables in T1DM population: multivariate regression analyses. Unstandardized (B) and standardized (β) regression coefficients. Statistically significant p-values ($p < 0.05$) are formatted in bold.

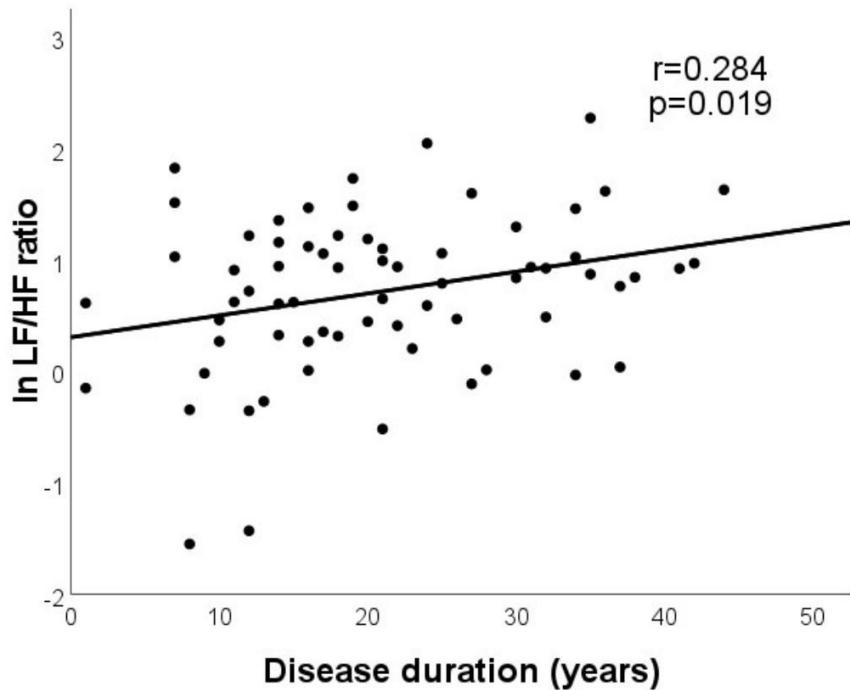
Variables	B	β	p	F	adj. R ²	p
LV GLS (%)				3.654	0.119	0.018
Age (years)	-0.002	-0.014	0.910			
Hypertension (0/1)	-0.486	-0.124	0.318			
HbA_{1c} (%)	0.568	0.399	0.002			
LV GCS (%)				22.502	0.268	<0.001
Age (years)	0.025	0.064	0.568			
Hypertension (0/1)	-1.260	-0.138	0.216			
HbA_{1c} (%)	-1.740	-0.523	<0.001			
Averaged mitral annular e' (cm/s)				22.502	0.514	<0.001
Age (years)	-0.130	-0.639	<0.001			
Hypertension (0/1)	-0.148	-0.032	0.729			
HbA_{1c} (%)	-0.403	-0.227	0.018			
LA conduit strain (%)				23.224	0.522	<0.001
Age (years)	-0.392	-0.664	<0.001			
Hypertension (0/1)	0.308	0.022	0.805			
HbA_{1c} (%)	-1.115	221	0.018			
Tricuspid annular e' (cm/s)				9.035	0.280	<0.001
Age (years)	-0.112	-0.448	<0.001			
Hypertension (0/1)	-0.504	-0.086	0.431			
HbA_{1c} (%)	-0.496	-0.234	0.039			
RA conduit strain (%)				9.003	0.286	<0.001
Age (years)	-0.404	-0.444	<0.001			
Hypertension (0/1)	-2.869	-0.132	0.233			
HbA_{1c} (%)	-1.765	-0.226	0.047			

Figure 2. Partial regression plots demonstrate that in age and hypertension adjusted analyses $HbA1c$ (%) correlates with average mitral annular e' (A); LV GLS (B); LV GCS (C); LA conduit strain (D); tricuspid annular e' (E) and with RA conduit strain (F). Partial correlation coefficients are reported.

Figure 3. Comparison of echocardiographic variables among healthy subjects and T1DM subgroups.

Table 5. Comparison of echocardiographic variables among healthy subjects and T1DM subgroups. Statistically significant *p*-values (*p* < 0.05) are formatted in bold. **p* < 0.05 vs. NORM; #*p* < 0.01 vs. NORM; †*p* < 0.05 vs. T1DM-LOW; §*p* < 0.01 vs. T1DM-LOW; ¶*p* < 0.05 vs. T1DM-MED; \$*p* < 0.01 vs. T1DM-MED

	Healthy volunteers (NORM) (n=30)	T1DM-LOW HbA _{1c} ≤ 7.4% and NO hypertension (n=24)	T1DM-MED HbA _{1c} > 7.4% and NO hypertension (n=19)	T1DM-HIGH HbA _{1c} > 7.4% AND hypertension (n=16)	<i>p</i>
Age (years)	34 (14.25)	32.5 (17.25)	43 (24)	40.5 (13.75)*†	0.097
Female gender n (%)	17 (57)	16 (67)	12 (63)	11 (69)	0.830
Body surface area (m²)	1.9 ± 0.2	1.9 ± 0.2	1.8 ± 0.2	1.9 ± 0.2	0.668
Body mass index (kg/m²)	23.5 ± 3.6	24.7 ± 3.0	23.9 ± 3.9	27.2 ± 6.1*¶	0.029
Systolic blood pressure (mmHg)	134.6 ± 14.6	132.5 ± 17.9	129.6 ± 13.4	142.1 ± 15.2*¶	0.114
Diastolic blood pressure (mmHg)	79.1 ± 8.6	79.3 ± 8.1	77.2 ± 9.8	81.5 ± 10.7	0.582
HbA_{1c} (%)		6.6 ± 0.6§	8.7 ± 1.2§	8.6 ± 0.8§	<0.001
On insulin pump therapy n (%)		19(79)	12 (63)	9 (56)	0.275
LV EF (%)	61.1 ± 4.0	62.5 ± 3.2	61.7 ± 3.4	63.9 ± 2.8*	0.088
LV GLS (%)	-19.9 ± 2.5	-19.0 ± 1.7	-18.7 ± 2.0	-18.4 ± 2.0*	0.126
LV GCS (%)	-25.9 ± 3.6§	-26.3 ± 4.2*¶	-29.1 ± 4.7*†	-31.3 ± 3.9*§	<0.001
LVM index (g/m²)	80.2 ± 14.4*†	71.2 ± 10.3*	75.8 ± 13.0	87.5 ± 20.1*¶	0.005
Relative wall thickness	0.38 (0.4)	0.38 (0.4)	0.39 (0.4)	0.45 (0.7)*§§	<0.001
Enddiastolic diameter/ height (cm/m)	2.7 (0.3)	2.7 (0.2)	2.7 (0.3)	2.6 (0.4)	0.157
Mitral E (cm/s)	81.0 ± 11.3	82.1 ± 14.4	87.1 ± 17.1	79.0 ± 11.9	0.332
Mitral A (cm/s)	53.8 (13.2)§	53.0 (26.1)§	66.9 (19.0)*§	74.4 (22.8)*§	<0.001
Mitral E/A	1.5 ± 0.3	1.6 ± 0.5§	1.3 ± 0.4*†	1.1 ± 0.4*§	<0.001
Averaged mitral annular S (cm/s)	10.8 ± 1.4*¶	10.4 ± 1.8	9.8 ± 1.8*	9.7 ± 1.3*	0.067
Averaged mitral annular e' (cm/s)	12.9 ± 1.4§	11.9 ± 2.0	11.0 ± 2.7*	9.7 ± 2.3*§	<0.001
Averaged mitral annular a' (cm/s)	9.2 ± 1.9	9.1 ± 1.9	9.4 ± 1.2	10.1 ± 1.6	0.378
Mitral E/e'	6.3 ± 0.9§	7.0 ± 1.2*¶	8.3 ± 1.9*†	8.8 ± 2.7*§	<0.001
LA Vmax index (ml/m²)	24.6 ± 6.2	25.8 ± 8.2	27.5 ± 8.2	25.8 ± 8.0	0.644


Table 5. – *continue*

	Healthy volunteers (NORM) (n=30)	T1DM-LOW $HbA_{1c} \leq 7.4\%$ and NO hypertension (n=24)	T1DM-MED $HbA_{1c} > 7.4\%$ and NO hypertension (n=19)	T1DM-HIGH $HbA_{1c} > 7.4\%$ AND hypertension (n=16)	p
LA Vmin index (ml/m²)	8.4 (3.3)	8.1 (4.7)	8.8 (4.8)	8.0 (3.0)	0.560
LA Vp index (ml/m²)	13.6 (6.1)	15.0 (6.1)	16.7 (7.4)	15.0 (7.2)	0.453
LA reservoir strain (%)	35.0 ± 9.5	33.9 ± 7.5	32.6 ± 9.5	30.9 ± 5.5	0.468
LA contractile strain (%)	13.8 ± 4.0	12.9 ± 4.0	13.7 ± 3.8	15.8 ± 3.6 [†]	0.156
LA conduit strain (%)	21.1 ± 7.5	21.0 ± 6.1	18.9 ± 7.8	15.1 ± 6.1 ^{#†}	0.039
RVFAC (%)	48.2 ± 8.5	50.6 ± 9.8	51.8 ± 6.9	51.7 ± 6.6	0.449
TAPSE (mm)	22.7 ± 2.9 [†]	21.0 ± 2.0*	22.6 ± 3.0	21.4 ± 2.6	0.075
RV wall thickness (mm)	4.5 (0.8)	4.5 (0.5)	4.0 (0.8)	4.8 (2.0)	0.242
RV basal diameter index (mm/m²)	15.0 ± 3.1	15.1 ± 1.5	15.8 ± 1.3	14.4 ± 1.4	0.284
PASP (mmHg)	22.9 ± 3.9	24.2 ± 4.3	25.7 ± 4.6	21.5 ± 2.4	0.360
Tricuspid E (cm/s)	61.3 ± 10.3	62.6 ± 9.4	59.5 ± 13.7	59.3 ± 11.0	0.742
Tricuspid A (cm/s)	40.4 ± 7.1	37.8 ± 7.8	42.0 ± 9.4	45.3 ± 10.1 [§]	0.060
Tricuspid E/A	1.5 ± 0.3	1.7 ± 0.4 [¶]	1.5 ± 0.4 [†]	1.4 ± 0.4 [§]	0.050
Tricuspid annular S (cm/s)	13.7 ± 1.7	12.9 ± 1.8	13.3 ± 2.2	12.6 ± 2.2	0.255
Tricuspid annular e' (cm/s)	12.6 ± 2.7	12.6 ± 2.3	11.5 ± 2.3	10.4 ± 3.5 ^{#†}	0.057
Tricuspid annular a' (cm/s)	11.2 ± 2.7	10.2 ± 3.3 [§]	13.1 ± 4.8 [§]	12.1 ± 2.5	0.057
Tricuspid E/e'	5.0 (1.2)	5.1 (1.4)	5.1 (1.4)	6.2 (1.8) ^{###}	0.005
RA Vmax index (ml/m²)	21.1 ± 7.4	20.0 ± 5.8	19.9 ± 6.9	18.0 ± 5.1	0.563
RA Vmin index (ml/m²)	7.8 ± 3.8	7.3 ± 2.6	8.2 ± 4.4	7.2 ± 2.8	0.807
RA Vp index (ml/m²)	12.8 ± 5.0	12.2 ± 4.1	13.5 ± 5.6	12.6 ± 4.0	0.856
RA reservoir strain (%)	50.4 ± 13.9	49.5 ± 8.9	46.9 ± 15.4	45.4 ± 14.4	0.629
RA contractile strain (%)	20.5 ± 7.0	17.9 ± 4.7 [¶]	21.6 ± 4.7 [†]	23.0 ± 5.2 [†]	0.051
RA conduit strain (%)	29.9 ± 11.4	31.6 ± 8.3	25.3 ± 12.8	22.4 ± 10.3 ^{#†}	0.048

4.1. Correlations between HRV parameters and the major risk factors for CAN

In univariate analyses, age, BMI, disease duration, systolic blood pressure, smoking, current HbA_{1c}, eGFR, use of ACE inhibitors/ARBs, and use of beta receptor antagonists showed significant correlations with various HRV parameters (Table 6).

In multiple linear model, disease duration remained the only independent predictor of LF/HF ratio (Figure 4). HbA_{1c}, on the other hand, was proved to be the significant independent predictor of all the further time domain, frequency domain, and nonlinear indices, alone, or in combination with other factors, such as age or BMI (Table 7). Partial regression plots indicate that HbA_{1c} level correlates significantly with various HRV parameters in multiple models (Figure 5).

Figure 4. Disease duration was found to be the only independent predictor of LF/HF ratio in multiple model. Partial correlation coefficients are reported.

Table 6. Univariate predictors of the HRV parameters in the T1DM population. Statistically significant p-values ($p<0.05$) are formatted in bold, $0.05\leq p<0.1$ values are formatted in italics.

		Age (years)	Gender (male/ female)	BMI (kg/m ²)	Disease duration (years)	Office blood pressure, systolic (mmHg)	Office blood pressure, diastolic (mmHg)	Smoking (never/ previously/ currently)	Current HbA _{1c} (%)	eGFR (ml/min/ 1.73 m ²)	Total cholesterol (mmol/l)	Triglyce- ride (mmol/l)	Use of ACE inhibitors/ ARBs (yes/no)	Use of beta receptor antagonists (yes/no)	Use of calcium channel blockers (yes/no)
ln SDNN	r	-0.365	-0.145	-0.356	-0.205	-0.240	-0.069	-0.260	-0.448	0.335	-0.088	-0.048	-0.230	-0.222	0.039
	p	0.002	0.231	0.002	<i>0.094</i>	0.045	0.572	0.030	<0.001	0.007	0.526	0.729	<i>0.056</i>	<i>0.065</i>	0.746
ln rMSSD	r	-0.321	-0.101	-0.319	-0.218	-0.210	-0.135	-0.173	-0.409	0.345	-0.097	-0.015	-0.241	-0.185	0.002
	p	0.007	0.407	0.007	<i>0.074</i>	<i>0.081</i>	0.265	0.152	<0.001	0.005	0.486	0.914	0.044	0.126	0.986
ln VLF	r	-0.318	-0.175	-0.250	-0.124	-0.229	-0.101	-0.198	-0.425	0.229	-0.063	-0.103	-0.220	-0.176	0.021
	p	0.012	0.175	<i>0.050</i>	<i>0.338</i>	<i>0.074</i>	0.407	0.123	<0.001	<i>0.073</i>	0.650	0.460	<i>0.067</i>	0.144	0.866
ln LF	r	-0.438	-0.224	-0.380	-0.225	-0.272	-0.135	-0.222	-0.396	0.279	-0.129	-0.111	-0.333	-0.308	-0.103
	p	<0.001	0.062	0.001	<i>0.065</i>	0.023	0.264	0.065	<0.001	0.025	0.353	0.424	0.005	0.009	0.396
ln HF	r	-0.411	-0.086	-0.260	-0.330	-0.208	-0.094	-0.199	-0.387	0.301	-0.130	0.012	-0.234	-0.160	-0.047
	p	<0.001	0.478	0.030	0.006	<i>0.083</i>	0.440	<i>0.098</i>	0.001	0.015	0.349	0.933	<i>0.051</i>	0.185	0.702
ln LF/HF ratio	r	0.088	-0.201	-0.114	0.284	-0.039	-0.039	0.027	0.109	-0.141	0.048	-0.199	-0.047	-0.193	-0.079
	p	0.469	<i>0.096</i>	0.347	0.019	0.751	0.751	0.823	0.371	0.268	0.730	0.149	0.702	0.109	0.518
ln Total Power	r	-0.405	-0.159	-0.300	-0.217	-0.275	-0.120	-0.249	-0.388	0.274	-0.122	-0.084	-0.263	-0.212	-0.041
	p	<0.001	0.189	0.012	<i>0.076</i>	0.021	0.321	0.038	<0.001	0.028	0.379	0.544	0.028	<i>0.078</i>	0.734
ln SD1	r	-0.352	-0.074	-0.307	-0.217	-0.216	-0.150	-0.172	-0.385	0.334	-0.123	-0.020	-0.250	-0.193	-0.013
	p	0.003	0.544	0.010	<i>0.075</i>	<i>0.072</i>	0.214	0.154	0.001	0.007	0.375	0.886	0.037	0.110	0.916
ln SD2	r	-0.385	-0.164	-0.369	-0.207	-0.234	-0.071	-0.288	-0.393	0.331	-0.106	-0.055	-0.240	-0.233	0.037
	p	0.001	0.175	0.002	<i>0.091</i>	<i>0.051</i>	0.560	0.016	<0.001	0.007	0.447	0.693	0.045	<i>0.052</i>	0.761

Table 7. Significant independent predictors of the HRV parameters in T1DM population: multivariate regression analyses. Unstandardized (B) and standardized (β) regression coefficients. Statistically significant p-values ($p < 0.05$) are formatted in bold.

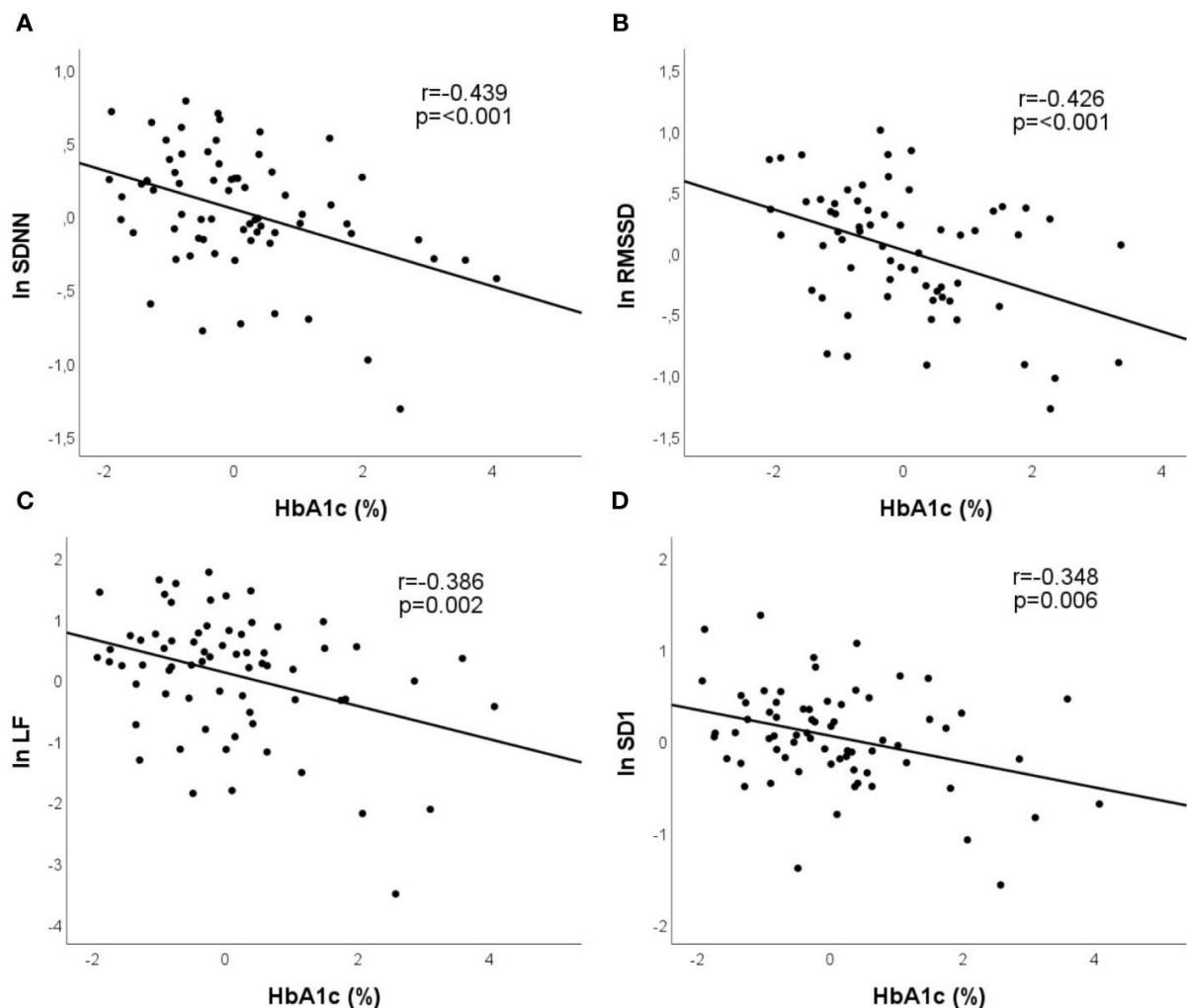

	B	β	p	F	adj. R ²	p
ln SDNN				12.719	0.366	<0.001
HbA _{1c} (%)	-0.142	0.395	<0.001			
BMI (kg/m ²)	-0.027	-0.259	0.016			
Age (years)	-0.011	-0.257	0.019			
Disease duration (years)		-0.17	0.889			
Office blood pressure, systolic (mmHg)		-0.19	0.862			
Smoking (n/p/c)		-0.180	0.083			
eGFR (ml/min/1.73 m ²)		0.119	0.308			
Use of ACE inhibitors/ARBs (y/n)		0.113	0.365			
Use of beta receptor antagonists (y/n)		0.085	0.472			
ln rMSSD				11.436	0.255	<0.001
HbA _{1c} (%)	-0.167	-0.405	<0.001			
eGFR (ml/min/1.73 m ²)	0.008	0.280	0.015			
Age (years)		-0.154	0.222			
BMI (kg/m ²)		-0.215	0.060			
Disease duration (years)		-0.097	0.409			
Office blood pressure, systolic (mmHg)		-0.065	0.563			
Use of ACE inhibitors/ARBs (y/n)		-0.081	0.498			
ln VLF				14.108	0.172	<0.001
HbA _{1c} (%)	-0.321	-0.431	<0.001			
Age (years)		-0.231	0.051			
BMI (kg/m ²)		-0.185	0.112			
Office blood pressure, systolic (mmHg)		-0.216	0.061			
eGFR (ml/min/1.73 m ²)		0.170	0.145			
Use of ACE inhibitors/ARBs (y/n)		-0.106	0.385			

Table 7. – *continue*

	B	β	p	F	adj. R ²	p
ln LF				13.207	0.375	<0.001
HbA_{1c} (%)	-0.311	-0.336	0.002			
Age (years)	-0.034	-0.325	0.003			
BMI (kg/m²)	-0.072	-0.270	0.012			
Gender (male/female)		-0.185	0.071			
Disease duration (years)		-0.033	0.781			
Office blood pressure, systolic (mmHg)		-0.057	0.592			
Smoking (n/p/c)		-0.113	0.278			
eGFR (ml/min/1.73 m²)		0.012	0.917			
Use of ACE inhibitors/ARBs (y/n)		0.010	0.938			
Use of beta receptor antagonists (y/n)		0.011	0.927			
ln HF				11.975	0.265	<0.001
Age (years)	-0.045	-0.353	0.003			
HbA_{1c} (%)	-0.363	-0.326	0.006			
BMI (kg/m²)		-0.173	0.125			
Disease duration (years)		-0.111	0.388			
Office blood pressure, systolic (mmHg)		-0.088	0.434			
Smoking (n/p/c)		-0.102	0.364			
eGFR (ml/min/1.73 m²)		0.118	0.337			
Use of ACE inhibitors/ARBs (y/n)		-0.036	0.765			
ln LF/HF ratio				5.787	0.067	0.019
Disease duration (years)	0.020	0.284	0.019			
Gender (male/female)		-0.213	0.072			

Table 7. – *continue*

	B	β	p	F	adj. R ²	p
ln Total Power				12.346	0.271	<0.001
HbA_{1c} (%)	-0.295	-0.357	0.002			
Age (years)	-0.031	-0.329	0.005			
BMI (kg/m²)		-0.196	0.079			
Disease duration (years)		0.004	0.978			
Office blood pressure, systolic (mmHg)		-0.133	0.232			
Smoking (n/p/c)		-0.122	0.271			
eGFR (ml/min/1.73 m²)		0.081	0.507			
Use of ACE inhibitors/ARBs (y/n)		-0.046	0.703			
Use of beta receptor antagonists (y/n)		0.023	0.852			
ln SD1				8.413	0.267	<0.001
HbA_{1c} (%)	-0.148	-0.323	0.006			
Age (years)	-0.013	-0.246	0.035			
BMI (kg/m²)	-0.031	-0.233	0.042			
Disease duration (years)		-0.036	0.781			
Office blood pressure, systolic (mmHg)		-0.022	0.851			
eGFR (ml/min/1.73 m²)		0.150	0.231			
Use of ACE inhibitors/ARBs (y/n)		0.042	0.752			
ln SD2				10.016	0.372	<0.001
HbA_{1c} (%)	-0.111	-0.296	0.007			
Age (years)	-0.011	-0.269	0.014			
BMI (kg/m²)	-0.033	-0.302	0.005			
Smoking (n/p/c)	-0.128	-0.219	0.038			
Disease duration (years)		0.008	0.949			
Office blood pressure, systolic (mmHg)		0.016	0.885			
eGFR (ml/min/1.73 m²)		0.100	0.388			
Use of ACE inhibitors/ARBs (y/n)		0.062	0.618			
Use of beta receptor antagonists (y/n)		0.054	0.650			

Figure 5. Partial regression plots demonstrate that in multiple models $\text{HbA1c} (\%)$ shows significant correlation with SDNN (A), rMSSD (B), LF (C) and with SD1 (D). Partial correlation coefficients are reported.

5. Conclusions

Our data suggest that quality of the glycemic control has a significant impact on the subclinical myocardial involvement in T1DM patients. Regarding disease duration, we could not prove this relationship.

Asymptomatic T1DM patients have significantly reduced overall HRV as compared with healthy subjects, indicating early, subclinical CAN. Quality of the glycemic control is an important determinant of HRV among T1DM patients. This relationship is independent of other risk factors for CAN or traditional cardiovascular risk factors.

Thus, tight glycemic control must be a high-priority therapeutic aim for diabetic patients to minimize the risk of myocardial damage and consequential heart failure or development of CAN.

6. Novel findings

- A more comprehensive analysis of myocardial mechanics was performed than previously reported, encompassing all four chambers in asymptomatic patients with T1DM.
- HbA_{1c} was confirmed as a significant determinant of myocardial mechanics in all four chambers, even after adjustment for age and the presence of hypertension.
- Disease duration was not identified as an independent determinant of myocardial mechanics.
- A more comprehensive analysis of HRV was conducted in asymptomatic T1DM patients than previously reported, evaluating time domain, frequency domain and nonlinear parameters.
- HbA_{1c} emerged as a significant determinant of multiple HRV parameters in T1DM patients. This correlation is independent of other CAN risk factors and traditional cardiovascular risk factors.
- Disease duration proved to be an independent predictor of the LF/HF ratio.

7. Publications

7.1. Publications related to the subject of the thesis

Hajdu M. Garmpis K. Vértes V. Varga N. Molnár GA. Hejjel L. Wittmann I. Faludi R: Determinants of the heart rate variability in type 1 diabetes mellitus. *Frontiers in Endocrinology*. 2023;14:1247054 (IF: 3.9; Q1)

Hajdu M. Knutsen MO. Vértes V. Varga N. Molnár G. Wittmann I. Faludi R: Quality of glycemic control has significant impact on myocardial mechanics in type 1 diabetes mellitus. *Scientific Reports* 2022;12:20180 (IF: 4.6; Q1)

Hajdu M. Knutsen MO. Faludi R: Echocardiographic assessment of the myocardial dysfunction in diabetes. *Cardiologia Hungarica* 2021;51:33-38.

7.2. Other publications

Nógrádi Á. Varga Z. **Hajdu M.** Czirják L. Komócsi A. Faludi R: Prognostic value of right atrial stiffness in systemic sclerosis. *Clinical And Experimental Rheumatology* 2022;40:1977-1985 (IF: 3.7; Q2)

Vértes V. Porpácz A. Nógrádi Á. Tőkés-Füzesi M. **Hajdu M.** Czirják L. Komócsi A. Faludi R: Galectin-3 and sST2: associations to the echocardiographic markers of the myocardial mechanics in systemic sclerosis – a pilot study. *Cardiovascular Ultrasound*. 2022;20:1. (IF: 1.9; Q2)

Hajdu M. Krämer K. Vértes V. Nógrádi Á. Varga N. Illés M B. Sárosi V. Faludi R: Left ventricular diastolic dysfunction is common in patients with chronic obstructive pulmonary disease and is associated with worse prognosis. *Cardiologia Hungarica* 2020;50:410-416.

Hajdu M: Nyitott kérdések a szívelégtelenség és a krónikus obstruktív tüdőbetegség együttes kezelésében. *Kardio-Vaszkuláris Iránytű* 2019;4:55-61.

Hajdu M. Vértes V. Meiszterics Zs. Szabados S. Faludi R. Simor T: Correlations between echocardiographic and CMR-derived parameters of right ventricular function in COPD. *Cardiologia Hungarica* 2017;47:18-24.

Faludi R. **Hajdu M.** Vértes V. NÓgrádi Á. Varga N. Illés MB. Sárosi V. Alexy G. Komócsi A: Diastolic dysfunction is a contributing factor to exercise intolerance in COPD. *COPD: Journal of Chronic Obstructive Pulmonary Disease*. 2016;13:345-51 (IF: 2.576; Q1)

7.3. Citable abstracts related to the subject of the thesis

Hajdu M. Garmpis K. Pontyos KS. Varga N. Hejjel L. Molnár G. Wittmann I. Faludi R: Associations between blood count-derived biomarkers of systemic inflammation and cardiac status of patients with type 1 diabetes mellitus. *Cardiologia Hungarica* 2025;55(Suppl A):A222.

Hajdu M. Garmpis K. Vértes V. Varga N. Hejjel L. Molnár G. Wittmann I. Faludi R: Heart rate variability shows significant correlation with the echocardiographic markers of the myocardial involvement in type 1 diabetes mellitus. *Cardiologia Hungarica* 2024;54(Suppl C):C414.

Hajdu M. Knutsen MO. Vértes V. Varga N. Molnár G. Wittmann I. Faludi R: Quality of glycemic control has significant impact on myocardial mechanics in type 1 diabetes mellitus. *European Journal Of Heart Failure* 2023;25(Suppl S2):398.

Hajdu M. Garmpis K. Vértes V. Varga N. Hejjel L. Molnár G. Wittmann I. Faludi R: Quality of glycaemic control has significant impact on heart rate variability in type 1 diabetes mellitus. *Cardiologia Hungarica* 2022;52(Suppl C):335.

Hajdu M. Vértes V. Szébényi D. Varga N. Molnár G. Wittmann I. Faludi R: Quality of glycaemic control has significant impact on myocardial mechanics in type 1 diabetes mellitus. *Cardiologia Hungarica* 2021;51(Suppl B):B221-B223.

Hajdu M. Szébényi D. Vértes V. Varga N. Molnár G. Wittmann I. Faludi R: Assessment of myocardial involvement in type 1 diabetes mellitus: relation with disease duration and glycaemic control. *Cardiologia Hungarica* 2020;50(Suppl D):212.

7.4. Other citable abstracts

Hajdu M. Porpáczky A. Kis E. Tornóczky T. Komócsi A. Simor T. Szabados S. Cziráki A. Faludi R: Post-irradiation constrictive pericarditis or something else? European Heart Journal-Cardiovascular Imaging 2019;20(Suppl 1):P1271

Hajdu M. Porpáczky A. Kumánovics G. Egyed M. Hussain A. Czirják L. Komócsi A. Faludi R: Multiple myeloma-associated precapillary pulmonary hypertension. Cardiologia Hungarica 2019;49(Suppl B):B53

Hajdu M. Porpáczky A. Kis E. Simor T. Szabados S. Cziráki A. Faludi R: Post-irradiation constrictive pericarditis or something else? Cardiologia Hungarica 2018;48(Suppl C):C69

Hajdu M. Vértes V. Meiszterics Zs. Szabados S. Simor T. Faludi R: Correlations between echocardiographic and CMR-derived parameters of right ventricular function in COPD. Cardiologia Hungarica 2016;46(Suppl F):82-83.

Hajdu M. Vértes V. Meiszterics Zs. Szabados S. Simor T. Faludi R: (P166) Correlations between echocardiographic and CMR-derived parameters of right ventricular size and function in patients with COPD. European Heart Journal-Cardiovascular Imaging 2016;17(Suppl 2):ii15

Hajdu M. Vértes V. Varga N. Illés MB. Sárosi V. Alexy Gy. Faludi R: Determinants of the elevated natriuretic peptide level in COPD. Cardiologia Hungarica 2015;45(Suppl D):D95

8. Acknowledgments

I would like to express my gratitude to Prof. Sándor Szabados and Prof. Attila Cziráki for providing me the opportunity to conduct my work and research at the Heart Institute.

I am indebted to many of my colleagues who supported my work generously, without sparing their own resources.

I thank the dedicated nursing staff of the Heart Institute for their devoted work on the wards and in the outpatient clinic, and for welcoming me from the very beginning and accompanying me with their continuous support.

I am grateful to Prof. Gergő Molnár and Prof. Tamás Wittmann for our past and future collaborations.

My thanks go to Prof. László Hejjel for his guidance in navigating the complex field of HRV analysis.

I owe special thanks to several colleagues and friends – Vivien Vértes, Dóra Székely, Konstandina Garmpis and Adél Porpácz – for their invaluable help and for brightening everyday life with their cheerfulness, enthusiasm and talent.

I am deeply grateful to my supervisor, Prof. Réka Faludi, for her continuous trust and the opportunities without this and many other works could not have been accomplished; for introducing me to the world of echocardiography, and for being a role model through her inspiring professionalism and humanity for the past eleven years.

Finally, and most importantly, I would like to thank my family – my wife Viktória, my two children Zóra and Zádor and my parents – for the endless love, patience and support they have given me throughout my life.