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1. Bevezetés

Napjainkban a drogaddikcio, illetve a szorongdsos zavarok igen komoly
egészségiigyi €s tarsadalmi problémat jelentenek. Szamos neuromodulator szerepét
leirtdk mar ezekben a folyamatokban [1, 2], ezek kozé tartozik a neurotenzin (NT)
is [3-8]. A NT szamos mas transzmitter hatasat befolyasolja a kozponti
idegrendszerben, ezek koziil a legfontosabb a dopamin (DA) [4, 9-15], a gamma-
amino-vajsav (GABA) [11, 14-16], a glutamat [14, 15, 17], a szerotonin (ST) [14,
18], valamint az acetil-kolin [14].

A NT a kozponti idegrendszer szerteagazo teriiletein megtalalhato, igy a
motivacios és jutalmazd folyamatokban kozponti szerepet betoltd, a nucleus
accumbensb6él (NAC) a ventralis pallidumba (VP) projicialo ventralis
striatopallidalis palya végzddéseiben is [19, 20].

A VP a magatartas szabalyozasanak egyik fontos integrald kozpontja [21-24].
Részt vesz a motivacids és a jutalomszigndlok hatdsdnak feldolgozasaban és
integralasaban [23], valamint a szorongas szabalyozasaban is [25, 26]. A VP-ban
kimutattak NT-erg axonterminalisokat, valamint NT-receptorokat is [19, 20, 24],
azonban a VP NT-receptorainak magatartasban jatszott szerepérdl jelenleg még
kevés informacio all a rendelkezésiinkre. Jelen kisérleteinkben a VP-ba injektalt
NT magatartas-szabalyozasban, azon beliil is a jutalmazéasban és a megerdsitésben,
valamint a szorongasban betdltott szerepének vizsgalatat tiiztik ki célul. A
megerdsitésre, illetve jutalmazasra gyakorolt hatast kondicionalt helypreferencia
(CPP) teszt segitségével, a szorongast befolydsold hatast emelt keresztpallo teszt
(EPM) segitségével vizsgaltuk meg. A fentiek mellett open field (OPF) tesztben a
NT esetleges lokomotoros aktivitasra gyakorolt hatasat is megvizsgaltuk.

A NT szamos agyteriileten a DA-erg rendszerrel interakcioban fejti ki hatasat
[12, 13]. A DA a VP-ban megtalalhatdo egyik fontos neurotranszmitter [27],
magatartdsi hatdsai is részben ismertek, azonban a DA-erg és NT-erg
transzmisszio egylittes, ill. kdlcsonhatasait még nem vizsgaltak ezen a teriileten.

Kisérleteink masik f6 célja az volt, hogy ha a NT valamelyik paradigméaban



hatasosnak bizonyul, akkor megvizsgaljuk, hogy ezek a hatasok a DA-nal

interakcidban valosulnak-e meg.

1.1. Jutalmazas, drogaddikcid, szorongas

A jutalmat és a pozitiv megerdsitést altalaban olyan eseményként definialjak,
amelynek a hatasara egy adott valasz el6fordulasi gyakorisaga megné [1, 28, 29].
Pszichologiai definicid szerint a jutalom kellemes érzetet és élvezetet kelt az
¢lélényben [30]. A jutalom elérésére valo folyamatos torekvés hozzaszokast,
addikciot hozhat 1étre, a drogaddikcié soran pedig mar destruktiv és maladaptiv
viselkedésformak jonnek 1étre [1, 30]. A drogaddikcié napjaink egyik
legstulyosabb népegészségligyi problémajat jelenti. A félelem és a szorongas a
kornyezet kiilonb6z6 ingereire adott fiziologias valaszreakciok. A szorongas tartos
fennallasa azonban szamos kronikus betegség rizikofaktora is [31].

A jutalmazds ¢és a Szorongds szabalyozasaban kiilonb6zd, a limbikus
rendszerhez kapcsolodo agyteriiletek vesznek részt [1, 29, 30, 32], mint pl. a
praefrontalis kéreg (PFC) [33, 34], az anterior cingularis kéreg [34], az amygdala
[26, 30], a NAC [30, 35], a VTA [30, 36] és a VP [23, 26, 36]. Emellett szamos
neurotranszmitternek és -modulatornak szerepe van a fenti folyamatokban [1, 2],
mint pl. GABA [30, 37], glutamat [38, 39], valamint a kiilonféle monoaminok [6,
35, 40-43]. Utobbiak egyik fontos tagja a DA, amely jelentds részben a
mezolimbikus DA-erg rendszeren Kkeresztiil fejti ki hatasait [35]. Neuropeptidek,
ugy mint a P-anyag [25, 44-46] vagy a NT [3, 5-8] szintén bizonyitottan részt

vesznek a jutalmazas és a szorongas szabalyozasaban.



1.2. Neurotenzin

1.2.1. A neurotenzin kémiai szerkezete

A NT egy 13 aminosavbol allo, Gn. tridekapeptid, amely neurotranszmitter és
neuromodulator funkciot tolt be a kozponti idegrendszerben [15, 47-53]. A
peptidet el6szor Robert Carraway és Susan E. Leeman izolalta hypothalamusbol
1973-ban [54]. Mivel idegszovetbdl izolaltak, perifériasan adva pedig hypotensiot
okozott, ezért a neurotenzin nevet kapta [54]. Pontos szerkezetét 2 évvel késobb
hataroztak meg [55]. A neurotenzin szekvencidja emberben és patkanyban:
pyroGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-lle-Leu-OH  [55]. Mas
fajokban a szerkezete ettdl -eltérhet, viszont a C-terminalis 6 aminosav
szekvenciaja konzervalt [51], és azt is kimutattak, hogy altalaban ez a fragmentum
(NT(8-13)) hordozza a NT biologiai hatasat [56]. Ennek ellenére a NT és a NT(8-
13) hatasa nem mindig azonos: a NT-fragmentumokat a substantia nigraban a NT-
nél nagyobb dozisban sziikséges alkalmazni a tiizelési frekvencia rovid ideig tarto,
azonos mértékii megvaltoztatasahoz [57], tovabba a substantia nigra és a VTA
neuronjai is rovidebb valaszt adnak NT(8-13)-ra és NT(9-13)-ra, mint NT-re [57,
58]. A caudatumba injektalt NT és NT(8-13) hasonlé mértékben fokozza a GABA-
felszabadulast, a DA-felszabadulast viszont ugyanabban a dozisban csak a NT
fokozza, a NT(8-13)-bol tizszeres dozis sziikséges, de a hatas még akkor is
gyengébb [59]. A VTA-ba injektalt NT és érdekes modon a NT(1-11) is
helypreferenciat valt ki, mig a NT(8-13) nem [3].

A C-terminalis szamos mas neuropeptid, pl. a NT-nel kozos génen (NT/NN
gén) kodolt, illetve k6zos prekurzorbol (pro-NT) eredé neuromedin N esetében is
hasonl6 a NT-éhez [60]. Az eloszor kétéltliekbol izolalt [61, 62], de emldsokben
is kimutathato [63] xenopsin, valamint a madarakbol izolalt LANT-6 [64] szintén

strukturalis hasonlosagokat mutat a NT-nel.



1.2.2. A neurotenzin szoveti megoszlasa

A NT az Gn. brain-gut-peptidek kozé tartozik, tehat egyarant kimutathatoé a
kozponti idegrendszerben, valamint a gastrointestinalis rendszerben is [65]. A
kozponti idegrendszerben a NT a szervezet egészében fellelhet teljes
mennyiségének mintegy 10%-a talalhatd meg [65]. A peptidet el6szor a
hypothalamusbdl izoldltdk, de nagy mennyiségben kimutathato a substantia
nigraban, a periaqueductalis sziirkedlloményban, a nucleus accumbensben, az
amygdaldban, a globus pallidusban, a nucleus caudatusban, a putamenben, a
hippocampusban, a nucleus ruberben, a nucleus subthalamicusban, a kisagyban,
valamint az agykéreg szamos teriiletén [4, 48, 51, 65-67]. Emellett nagy
mennyiségben eléfordul a hypophysis eliilsé, illetve hatulsé lebenyében is [65].

Az éltalunk vizsgélt struktirdban, a VP-ban szintén kimutattak NT-erg
axonterminalisokat, azonban a NT-immunoreaktivitas eloszlasa a VP-n belil
egyenl6tlen: a VP ventromedialisan erésen jelolodik, a lateralis része viszont NT-
ben szegény [19]. A NT endogén koncentracidja a VP-ban kb. 74 + 12 * 1078
mol/10 ul [67].

A NT teljes mennyiségének kb. 85%-a a bélben talalhato, emellett kimutathato
még a majban és a gyomorban, de a tiidében, vesében, hugyholyagban, a szivben,

a thymusban, és a mellékvesében is [65, 68].

1.2.3. A neurotenzin receptorai

A NT legalabb harom kiilonb6z6 tipust receptoron (NTS1, NTS2 és NTS3)
fejti ki a hatasait [13, 14, 49-53]. A NT és receptorai a kdzponti idegrendszer
szamos teriiletén kimutathatok: legnagyobb mennyiségben az agykéregben, az
amygdalaban, a NAC-ben, és a VP-ban is [4, 51].

Az 1980-as évek elején 2 kiilonbozo affinitast NT-kotohelyet azonositottak:
magas affinitdsu, levocabastinra nem érzékeny receptorokat, valamint alacsony
affinitasti, levocabastinra érzékeny receptorokat [69, 70]. Ma (klonozasuk
sorrendje alapjan) a nagyobb affinitast (Kq = 0,1-0,3 nmol/l) kotéhelyeket [71, 72]
NTS1-receptoroknak, a kisebb affinitasuakat (Kgq = 3-10 nmol/l) NTS2-



receptoroknak nevezziik [73, 74]. A NTS1- és NTS2-receptorok 7 transzmembran
doménbdl allo, G-protein-kapcsolt receptorok [51, 71, 74, 75].

A kétféle receptor jelatvitele kiilonbozo [13, 14, 49-52]. A NTS1-receptorok
inozitol-foszfaton keresztiil novelik az intracellularis kalciumszintet, emellett
egyes sejtekben gatoljak, masokban stimulaljak az adenil-ciklazt, de Rho-GTP-
azokon és NFkB-dependens utakon is hathatnak [75]. A NTS2-receptorokra
szintén tobb jelatviteli ut is jellemz6 [75]. Kinai horcsdg ovariumsejt-kultiraban
expresszalt NTS2-receptorokon a NTS1-antagonista SR 48692 és SR 142948A
indukal jelatvitelt (Ca*'-bearamlas, illetve mitogénaktivalt proteinkinazok
(MAPK) aktivacioja), mig a NT és a levocabastin ezeket a hatasokat kivédi [76].
Kisagyi szemcsesejteken viszont a NT is képes MAPK-okat aktivalni, Ca?*-
bearamlast viszont ezekben a sejtekben sem indukal [77]. Az adenil-ciklaz gatlasa
szintén egy lehetséges jelatviteli mechanizmus [75].

A NTS3-receptor (sortilin-1) egyetlen transzmembran doménbdl all, és nem
kapcsolodik G-proteinhez [78, 79]. Tovabbi fontos jellemzdje, hogy 90%-ban
intracellularisan (f6leg az endoplazmatikus retikulumban, illetve a Golgi-
apparatusban) lokalizalodik, de kis mennyiségben a sejtfelszinen is kimutathat6 [4,
78-80]. Egy negyedik fehérjérdl, a sortilinLA/LR11-r61 (NTS4) szintén leirtak,
hogy képes NT-t kotni [52, 81].

1.2.4. A neurotenzin funkciéi és klinikai jelentdsége

A NT szerepet jatszik a jutalmazas szabalyozasaban [4, 14, 53], illetve a
fliggdség kialakulasaban [8, 14, 53, 82], hiszen szamos agyteriileten, illetve
szisztémasan adva pszichostimulans hatast [4, 8, 14, 53, 83, 84]. A NT jutalmazd,
illetve pozitiv megerdsitd hatassal rendelkezik a VTA-ban [3, 85-87], a NAC-ben,
a subiculumban [88], valamint az amygdala centralis magjaban [89], de a lateralis
hypothalamusban nem [90].

A VTA-ban fokozza a lokomotoros aktivitast, illetve az agaskodast [91-94].
Intracerebroventricularis injekcioja szenzitizal az amfetamin lokomotoros hatasara
[95]. Szisztémasan adott NTS1-antagonista SR 48692 csokkenti a kokainra adott

lokomotoros valaszt, az agaskodast és a helypreferenciat [96, 97], tovabba



késlelteti vagy csokkenti a kokain-, illetve az amfetaminszenzitizacié kialakulasat
[98-100].

A fentiekkel éles ellentlétben all, hogy egyes hatdsai hasonléak az atipusos
neuroleptikumokéhoz [10, 11, 47, 84, 101-105], igy szerepe Ilehet az
antipszichotikus szerek hatasmechanizmusaban is. A NT-analog NT69L blokkolja
a kokain és amfetamin akut lokomotoros hatasat [106], illetve a lokomotoros
szenzitizaciot [107, 108]. Fontos szerepe van a skizofrénidban is [82, 109],
skizofrénia esetén a liquorban alacsony NT-koncentraciéo mérhetd [105]. Lathatjuk
ez a modulacio viszont agyteriiletenként igen eltérd lehet [4, 9-15].

Szerepét mar az anxietas szabalyozasaban is leirtak. A NAC-be mikroinjektalt
NT a monoaminrendszerek allapotatdl fliggéen anxiolitikus [110], illetve anxiogén
[111] hatast is lehet. NTS1-KO-egerek OPF tesztben tobb idét toltenek az
apparatus fala mellett, amely szorongasra utal [112]. A szelektiv NTS1-agonista
PD 149163 gatolja a félelem altal potencirozott megrezzenési (fear-potentiated
startle) reakciot [5] és a lab elektromos sokkolasa altal kivaltott ultrahangos
vokalizaciot [7]. A NTS2-agonista B-laktotenzin per os adasa és i.p. injekcidja
anxiolitikus hatasu [6].

A NT-nek a tanulasban, illetve a memoriafolyamatokban is szerepe van: az
amygdala centralis magjaban fokozza a térbeli [113], illetve a biintetéses tanulast
[114]. A corpus mamillaréban szintén fokozza a biintetéses tanulast [115], az
NTS1-agonista PD149163 subcutan adasa viszont gatolja azt [116].

A NT a kozponti idegrendszer szdmos teriiletén (a centralis amygdaldban, a
hypothalamusban, a thalamusban, a periaqueductalis sziirkeallomanyban, valamint
a rostralis-ventromedialis medulldban) részt vesz a fajdalom feldolgozasaban [52,
117]: az opioidoktdl fliggetlen antinocicepcioban [118], illetve az opioidokkal
interakcidban egyarant [119, 120].

A NT részt vesz a taplalkozas szabalyozasaban is. Intracerebroventricularisan
[121], a hypothalamus nucleus paraventricularisaba [122] vagy ventromedialis
substantia nigraba [126] injektalva anorexigén hatasu, viszont a lateralis

hypothalamusban nem [123]. A NT anorexigén hatasait DA-agonistak



potencirozzak [123]. Mas hormonok szintén részben a NT-erg rendszeren
keresztiil fejti ki anorexigén hatasukat [127]. A NT-analog NT69L
intraperitonealis adasa csokkenti a testtomeget [128], igy a NT-agonistaknak a
jovoben az elhizas kezelésében is lehet 1étjogosultsaguk.

A peptidnek az alvas-ébrenlét szabalyozasaban is szerepe van [129]. NT adasa
¢ébresztd hatasu, illetve megnytjtja a mély alvas megjelenésének latenciajat [130].

A NT a testhomérséklet szabalyozéasaban is fontos, mivel hypothermiat valt ki
[131]. Ennek klinikai jelentdsége az, hogy javithatja a kozponti idegrendszeri
keringészavarok prognozisat [132].

A NT ugyancsak részt vesz a hypothalamo-hypophysealis-rendszer
hormon (CRH), és ezéltal a stresszvalasz, a novekedési hormon releasing hormon
(GHRH), valamint a prolaktin felszabadulasanak szabalyozasaban [4, 53, 133].

Neuroprotektiv hatasat is leirtdk: ischaemiamodellekben a NT csokkenti az
elhalas mértékét, valamint csokkenti a neuroldgiai tiineteket, ez a hypothermias
hatassal lehet 6sszefliggésben [132, 134, 135]. A NT-nek szerepe van a Parkinson-
kor patomechanizmusaban is [14, 82, 109]: Parkinson-kor esetén csokken az
agyban a NTS1-receptor mMRNS-ének mennyisége [136], tovabba patkanyokban 6-
hidroxi-dopaminos (6-OH-DA) laesio utan a NT-analog NT69L antiparkinsonos
hatassal rendelkezik [137]. Mas neurodegenerativ betegségekkel szintén
Osszefiiggésbe hozhaté a NT: Alzheimer-kor esetén csokken a NT-t tartalmazo
neuronok szama a nucleus suprachiasmaticusban, ennek szerepe lehet a cirkadian
ritmus szabalyozasanak zavaraiban [138]. Oregedés soran szintén csdkken a NT-
erg szignalizacio, ennek szerepe lehet az 6regedés soran jelentkezd kognitiv deficit
kialakulasaban [139].

A NT a sziv-érrendszerben is nagy jelentdségii: noveli a sziv frekvencidjat,
kontraktilitasat, altalaban csokkenti a vérnyomast [140]. A beadas helyétdl, illetve
az ¢élolény éberségétdl fiiggden [141, 142] kiilonbozd  érteriileteken

vazokonstrikciot, illetve —dilataciot okozhat, hatasai altaldban mas

crer

crer
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motilitast a felsd, viszont fokozza az alsé szakaszokon [144, 145]. Emellett
gliikkozkoncentraciotol fiiggéen szabalyozza az endokrin pancreas inzulin-,
esetén noveli, magas glilkdozkoncentracid esetén csokkenti [146]. A legujabb
kutatasok alapjan a NT a vizeletiirités szabalyozasaban is szerepet jatszik [147].

Részt vesz tovabba gyulladasos folyamatok szabalyozasaban is: befolyasolja az
immunrendszer sejtjeinek miikodését [148, 149], ezaltal nagy jelentéségii pl. a bél
[144, 145], illetve a bor gyulladasos folyamataiban [150].

A NT szerepét tumorokban is leirtak: kissejtes tiidorak, pancreas-,
vastagbéldaganatok, valamint prosztata- és eml6tumorok esetében [151, 152]. A

NT el6anyaga, a pro-NT tumormarkerként is funkcionalhat [153].

1.2.5. A neurotenzin hatasai a kiilonb6z6 neurotranszmitterekre

A NT szamos agyteriileten modulalja a DA-erg [4, 9-15], a GABA-erg [11, 14-
16], a glutamaterg [14, 15, 17], a ST-erg [14, 18], valamint a kolinerg [14]
neurotranszmissziot. A NT hatasa ezen rendszerekre agyteriilettdl és dozistol
fiiggden eltérd lehet [53, 154].

A NT és DA kolokalizaciojat kimutattak mar a PFC-ben [10, 155], valamint a
VTA-ban [10, 156] is. A PFC-be injektalt NT lokalisan fokozza a DA
felszabadulasat [157], tovabba a VTA DA-erg sejtjeinek aktivitasat is noveli [158,
159], a nem DA-erg sejtek tobbségének tlizelését viszont csokkenti [159]. A PFC-
be, valamint szisztémasan egyszeri alkalommal adott SR 48692 érdekes modon
szintén noveli, 5 héten keresztiili i.p. alkalamzasa viszont csokkenti a VTA DA-
erg neuronjainak aktivitasat [160]. A VTA-ban a NT preszinaptikus D2 DA-
receptorok gatlasan keresztiil fokozza a DA-erg neuronok aktivitasat, valamint a
spontan motoros aktivitast [161, 162]. A VTA DA-t, NT-t és CCK-t is termeld
neuronjai féleg a NAC-be, az amygdalaba valamint a PFC-be vetiilnek [163]. A
VTA-ba injektalt NT a fokozza a DA-felszabadulast a PFC-ben [164], tovabba a
NAC-ben a NT nagy dozisban preszinaptikus D2 DA-receptorok gatlasan
keresztiil fokozza [11, 166, 167], kis dozisban viszont GABA-fiiggd
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mechanizmussal csokkenti a DA-szintet [11]. A NT-receptor-antagonista SR
48692 szisztémas adasa szintén csokkenti a DA-szintet a NAC-ben, mig a PFC-
ben nem befolyasolja azt [168]. A nucleus caudatusban a NT lokalis alkalmazasa
mar alacsony koncentracioban is noveli a DA-felszabadulast és az extracellularis
GABA-szintet, mig a NT(8-13) csak magas koncentracioban emeli a DA-szintet
[59]. A striatumban szintén megné a DA-felszabadulas NT hatasara [169, 170]. A
substantia nigra pars compactajaba injektalt NT noveli a DA, valamint a DA
[171].

A NT GABA-erg neurotranszmissziora gyakorolt hatasa szintén agyteriilettol
fiiggben eltérd lehet. A NT noveli a GABA-szintet a PFC-ben [172, 173], a NAC-
ben [11] és a nucleus caudatusban [59]. A NT(8-13) a VP-ban szintén noveli az
extracellularis GABA-szintet [16]. Ezzel szemben a substantia nigraba injektalt
NT mind a lokalis, mind a ventralis thalamikus GABA-szintet csokkenti [174].

A NT a glutamaterg transzmissziora is hatast gyakorol [17, 175]. A striatumban
[176], a substantia nigraban [174], valamint a VTA-ban [177] ndveli a
glutamatszintet, viszont a PFC-ben nem hat ra [173].

A NT néhany agyteriileten a ST-erg rendszer miikodését is modulalja: fokozza
a raphemagok ST-erg neuronjainak aktivitasat [178, 179], a NAC-ben noveli, mig
a VTA-ban csokkenti az 5-hidroxi-indolecetsav/ST-aranyt [18]. Szisztémasan
adott NTS1-agonista PD149163 blokkolja a prepulse-gatlas ST-agonistaval valo
megszakitasat (diszrupciojat) [180].

Az acetil-kolint szintén modulalhatja a NT [14]: a PFC-ben a NT noveli az
extracellularis acetil-kolin-szintet [173], a bazalis el6agy kolinerg neuronjain
burstaktivitast [129, 181, 182], a diagonalis kétegben [183] depolarizaciot okoz.

Ujabban a NT és az opioidok interakcioit is leirtak, foleg a fajdalomérzés
feldolgozasa kapcsan [119, 120], ugyanakkor a NT fontos szerepét szintén
tisztaztak az opioidoktol fliggetlen antinocicepcioban is [118]. A NT a morfin

lokomociot indukald hatasat is befolyasolhatja [184].
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1.3. A ventralis pallidum

A VP a bazalis eléagy teriiletén talalhato, Heimer és Wilson altal 1975-ben
leirt, a commissura anterior alatt ventralisan ¢és rostralisan elhelyezkedd struktura
[185], amelyre jellemz6 az enkefalin-immunoreaktivitas, illetve a P-anyagot

tartalmazo6 Gn. gyapjas (woolly) rostok sajatos mintazata [186].

1.3.1. A ventralis pallidum funkciéi

A VP részt vesz a motivacios és a jutalomszignalok feldolgozasaban, illetve
ezek motoros kimenetté vald Aatalakitasaban (ez a folyamat az un. limbikus-
motoros integracio), a szorongas, valamint a taplalkozas szabalyozasaban [21-24,
187].

Mar régota ismert, hogy a VP-nak szerepe van a jutalmazasban [23]. A VP-ban
elektromos Oningerlés épithetd ki [188]. Emellett fontos a kokain-onadagolas
szabalyozasaban [189-191], a kondicionalt helypreferencia kialakulasaban [192-
196], a drogkeresé magatartasban [16, 36, 197, 198], valamint a morfin indukalta
szenzitizacidban [199].

A taplalkozas szabalyozasaban is kiemelt fontossagu [200], igy részt vesz pl. a
taplalék jutalmazo hatasdnak kozvetitésében, tovabba a tanult izaverzidban is
[201-204].
van a megrezzenési reakcidban, tigyszintén a prepulse-inhibicioban [206-208].

A VP fontos a tanulasban [209, 210], a munkamemoria kialakitasaban [211],

illetve a memoriakonszolidacidban is [212, 213].

13



1.3.2. A ventralis pallidum alrégioi és kapcsolataik

A VP négy alrégiora oszthatd: ventromedialis (VPvm), ventrolateralis (VPVI),
dorsolateralis (\VPdl), és rostralis (VPr) teriiletekre [24, 214]. Az egyes alrégiok
afferens és efferens kapcsolatai, receptorprofilja, valamint funkcioja is eltéro.

A NT VP-n beliili megoszlasara jellemz6, hogy féleg a VPvm-ban (a VP
[19]. Ezzel szemben calbindin-immunoreaktivitds nem mutathaté ki a VPvm-ban
[24, 214]. A VPvm afferens rostjait féleg a NAC-bdl (azon beliil is f6leg a shell
régié medialis részébol) [24, 215, 216], a ventralis tegmentalis areabol (VTA)
[217], a basolateralis amygdalabol [218], a tuberculum olfactoriumbol [219],
valamint a dorsalis raphemagbol [220] kapja. A fenticken kiviil a NAC core
régidjabol induld és féleg a VPdI-t beidegzo rostok egy része kollateralisokat ad a
VPvm-ba is [24, 221]. A VPvm miikodését a NAC-en keresztiil a hippocampus is
befolyasolja [21, 222, 223]. A NT-erg rostok féleg a NAC-b6l kiindulo ventralis
striatopallidalis palyan érkeznek, illetve kisebb mértékben a Kkiterjesztett
(extended) amygdalabol [19, 20, 224]. A VPvm efferens rostjai a lateralis
hypothalamusba, a VTA-ba, a rostromedialis és pedunculopontin tegmentalis
magokba, a retrorubralis teriiletekre, a NAC-be, a tuberculum olfactorium medialis
részébe (amelyekkel a VPvm kétiranyl kapcsolatban van), tovabba a thalamus
mediodorsalis magjaba, illetve a substantia nigraba projicialnak [20, 24, 214, 225-
228]. Kimutattak, hogy a VP GABA-erg neuronjai gatoljak a VTA neuronjainak
tiizelését [229], ezaltal a VP befolyasolja a VTA DA-erg neuronjainak populacios
aktivitasat [26, 230]. Ez a palya részt vehet a VP jutalmazast, illetve szorongast
befolyasold hatasaiban is [229-232].

A VPvl-ban nem mutathaté ki calbindin- és NT-immunoreaktivitas [24].
olfactoriumbol kapja [24, 219, 233]. Efferens rostjai a VPvm-mal megegyez6
agyteriiletekre vetiilnek, de a VTA-ba nem [227]. Ujabb adatok tantsaga szerint a
VPvl-nak szerepe lehet a kokain-6nadagolas szabalyozasaban [24].

A VPdl NT-immunoreaktivitdist nem mutat [19], viszont erésen jelolodik

calbindinre [24, 214]. Afferens beidegzését féleg a NAC core régidjabol [215],
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kisebb részben a VTA DA-erg palyaibol [217], valamint a a nucleus
subthalamicusboél [234] kapja. Efferens palyai pedig a lateralis hypothalamusba, a
nucleus subthalamicus dorsomedialis részébe, a VTA-ba, a substantia nigra pars
reticulataba, a retrorubralis teriiletekre, valamint a NAC-be projicialnak [214, 225,
227, 235]. A VPvm-mal ellentétben a VPdI-ban alig mutathat6 ki a NT [19]. A két
alrégié funkcidja is kiilonbozd, akar ellentétes is lehet: human fMRI vizsgalatok
alapjan a VPdI étvagygerjeszté ételek képeinek nézésekor aktivalodik, mig a
gusztustalan, illetve a romlott ételek latvanya inkabb a VPvm-t aktivalja [236].

A rostralis VP (VPr) a VP rostralis ujjszeri kiterjedéseit jelenti a tuberculum
olfactorium ¢és a ventralis NAC iranyaba, NT-t ¢és calbindint nem tartalmaz [24,
214]. Afferens beidegzését nagyrészt a tuberculum olfactoriumbdl, kisebb részt a
NAC-bsl kapja [219, 221]. Efferens rostjai foként a thalamus mediodorsalis
magjanak centralis részébe vetiilnek, de a PFC-be, NAC-be, habenulaba, a
Kiterjesztett (extended) amygdalaba, valamint a substantia nigraba is mennek
rostok [214, 227].

A fenticket Osszefoglalva elmondhatd, hogy a NT a VP-on beliil szinte
kizarolag a VPvm-ban mutathat6 ki [19, 20, 24], igy lokalis NT mikroinjekciok

alkalmazésaval a VPvm-ra irdnyulo, alrégiospecifikus vizsgalatokra van lehetdség.

1.3.3. A ventralis pallidumban talalhat6 neurontipusok

A VP neuronjainak 70-80%-a GABA-erg [237], ezek kozott talalhatok
interneuronok, illetve kimeneti neuronok is [238]. A GABA-erg neuronok
morfologiaialag, illetve elektrofiziologiailag is tobb tipusba sorolhatok [238, 239].
A VP eliils6 részén foleg a kornyezd teriiletek kozepes tliskés (medium spiny)
neuronjaival rokon, tiiskés dendritekkel rendelkezd sejtek talalhatok, melyek
membranpotencialja hiperpolarizalt, spontan tiizelést alig mutatnak, bemenetiik
glutamat- és GABA-erg [239]. A medialis VP hats6, valamint a VP lateralis részén
hosszu, tiiske nélkiili dendritekkel rendelkezd, depolarizalt membranpotenciala,
spontan tiizelést mutatd, foleg GABA-erg bemenetii sejtek helyezkednek el [239].
Ezen sejtek eloszlasa nem koveti a VP hisztokémiai markerekkel elkiilonitett

alrégidinak hatarait [239].
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A tobbi sejt kolinerg kimeneti neuron [240, 241]. Ezek tipusosan nagy sejtek,
hiperpolarizalt membranpotenciallal rendelkeznek, €s spontan tiizelést altalaban
nem mutatnak [241]. Ezen feliil kimutattak, hogy a VP egyes kolinerg neuronjai
vezikularis glutamat-transzportereket is expresszalnak [242, 243], és glutamaterg
projekciokat kiildenek a PFC-be [242], a basolateralis amygdalaba (BLA) [243],
valamint a VTA-ba, ezaltal a VTA glutamaterg afferenseinek mintegy 7%-at
teszik ki [244].

Bar a VP-ban NT-erg neuronvégzdédéseket [19] és NT-receptorokat [51, 245,
246] egyarant kimutattak, az sajnos nem ismert, hogy ezek a receptorok pontosan

melyik sejteken taldlhatdk.

1.3.4. A ventralis pallidum neurotranszmitterei és -modulatorai

A VP magatartasi funkcidiban szamos neurotranszmitter és neuromodulator
részt vesz, igy pl. GABA, glutamat, DA, opioidok, illetve kiilonbdzd
neuropeptidek [16, 23, 24, 44, 194, 247, 248]. Utobbiak koziil a legfontosabbak a
NT és a P-anyag [16, 23, 44].

A GABA a VP egyik legfontosabb gatldo neurotranszmittere, amely féleg a
NAC-bél kiinduld ventralis striatopallidalis palyan érkezik [215, 249, 250]. A
palya legaldbbis részben a NAC-ben felszabadulé DA hatasat kozvetiti, mivel a
NAC-be injektalt DA a gatlast megsziinteti [222, 251]. Emellett az amygdala
szomatosztatint tartalmazd6 GABA-erg neuronajibdl is érkeznek afferensek a VP-
ba [252]. A VP-ban féleg ionotrop GABAa- [253], kisebb mennyiségben
metabotrop GABAg-receptorokat [254] azonositottak.

A VP GABA-erg receptorainak hatasairol rendelkezésre all6 informacidink
nagy része sajnos nem alrégiospecifikus, pedig a VPvm és a VPdI aktivacioja és
inaktivacioja gyakran ellentétes hatast [36, 236]. A VP-ban a GABAA-receptorok
gatlasa noveli a lokomotoros aktivitast [247, 248], csokkenti a prepulse-gatlast
[255], taplalkozast valt ki még jollakott allatban is [256], viszont a
helypreferenciat nem befolyasolja [247]. Ismert, hogy amfetamin [257], illetve
heroin [258] szisztémas adasa soran a VP-ban csokken a GABA-szint. A VP

GABA-receptorainak inaktivacioja gatolja a kokain- [197], illetve a stressz-alapu
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drogkeresé magatartast [259]. A VP GABA-receptorainak emellett szerepiik lehet
az alkoholfiiggéségben is [260]: a VP GABAAa- vagy GABAg-receptorainak
aktivacioja csokkenti, a GABAa-receptorok gatlasa noveli, a GABAg-receptorok
inaktivaci6ja nem befolyasolja az alkohol-Gnadagolast [261]. A VP
megnovekedett GABA-szintjének szerepe van a kellemetlen ingerek
megjegyzésében is [262]. A latens gatlasra nincs hatassal sem a GABAA-
receptorok stimulacidja, sem pedig gatlasa [263].

A VP glutamaterg rostokat is kap az amygdalabol, a NAC-bél, a tuberculum
olfactoriumbol, a thalamus kdzépvonali magjaibol, a hypothalamusbdl, a VTA-bol
[264], a PFC-b6l [265], valamint a nucleus subthalamicusbol [266, 267]. A VP-
ban AMPA-receptorokat, valamint metabotrép glutamatreceptorokat is
azonositottak [268, 269]. AMPA VP-ba torténé mikroinjekcioja jelentdsen noveli
a lokomotoros aktivitast, de nincs hatassal a helypreferenciara [247]. Heroin
szisztémas adéasa soran a VP-ban emelkedik a glutamat koncentracioja [258].

A VP DA-erg beidegzését foleg a VT A-bol kapja, de a substantia nigrabdl is
érkeznek DA-erg rostok [217]. A VP teriiletén a D1 és a D2 DA-receptor-
csaladhoz tartozo receptorok is kimutathatok [270]. A D2 DA-receptorok féleg
preszinaptikusan, a NAC-bdl érkez6 ventralis striatopallidalis palya GABA-erg
rostjain, valamint autoreceptorként igen kis mennyiségben a VTA-bol érkezé DA-
erg axontermindlisokon talalhatok, de a VP kimeneti sejtjein, valamint az
interneuronokon is kimutathatok [271]. A D1 DA-receptorok pontos
elhelyezkedésér6l nem 4allnak rendelkezésre adatok, de valdsziniileg pre- és
posztszinaptikusan is megtalalhatoak [27]. A VP neuronjainak D1 DA-receptorok
altal medialt tiizelését az amygdalabol jovo afferensek is befolyasoljak [272]. A
VP DA-receptorainak szerepe van a motoros aktivitas szabalyozasaban [273, 274],
az oningerlésben, illetve a jutalmazo, pozitiv megerdsitési folyamatokban [195,
275], a térbeli- [212] ¢és a biintetéses tanulasban [210], valamint a
memoriakonszolidacioban [212, 213]. Emellett a DA a VP-ban modulalja a GABA
¢s a glutamat hatasat is [276].

A VP monoaminerg beidegzésében a DA mellett a ST is részt vesz, a ST-erg
afferensek a raphemagokbol érkeznek [220, 277]. A VP-ban a ST bomlastermékei
nagy koncentracioban kimutathatok [278]. A ST hiperpolarizaciot okoz a VP nem-
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kolinerg neuronjain és depolarizaciot a kolinerg sejteken [279], habar a ST-erg
afferensek nem képeznek szinapszisokat a kolinerg neuronokkal [24, 280]. A VP-
ban tobbféle ST-receptor is megtalalhaté [281-284]. 5-HT2a-receptor-agonista
VP-ba val6 injekcidja megsziinteti a prepulse-gatlast [285].

Az endogén opioidok a VP fontos neurotranszmitterei, illetve —modulatorai
[286, 287]. A VP teriiletén p-, 8- és k- opioidreceptorokat is azonositottak [288,
289]. A VP az enkefalin-pozitiv afferenseket a NAC-bdl kapja [250, 286]. A VP
opioidreceptorai modulaljak a VP VTA-t beidegz6 efferenseinek aktivitasat, [229],
valamint preszinaptikusan a DA-felszabadulast a VTA VP-t beidegz6
axonterminalisain is [290]. A VP opioidreceptorainak blokadja (naloxonnal)
kondicionalt helyaverziot okoz, valamint gyengiti a helypreferencia kokainnal valo
kivalthatosagat [196]. A VPdI-ban a p-opioidreceptor-agonista DAMGO pozitiv
izreaktivitasi mintazatokat (hedonikus komponens, ,,liking”) valtott ki, és fokozta
a taplalkozas idGtartamat (motivacios komponens: ,,wanting”) [23, 201]. A VPvm-
ban ellentétes hatds volt észlelhetd: a DAMGO a likinget és a wantingot is
csokkentette [23, 201]. A DAMGO a VPvm-ban csokkenti az allatok kémiai
Oningerlési frekvenciajat, a VPdl-ban viszont kémiai oningerlés épitheté ki vele
[287]. Bar a VP teriiletén a legtobb adattal a p-opioidreceptorok funkcidirol
rendelkeziink, a - illetve a  «-receptorokrol szintén kimutattak, hogy
befolyasoljak a VP neuronjainak tiizelését [288], magatartasi hatasaik viszont
kevésbé ismertek.

A VP-ban a neuropeptidek koziil a NT, illetve a P-anyag kiilondsen fontos [19].
A VP foleg a NAC-b6l eredd ventralis striatopallidalis palyan, a kozepes tiiskés
(medium spiny) neuronok axonjaibol kapja NT-erg afferenseit, amelyeken a NT
GABA-val kolokalizalodik [11, 19]. Arrol, hogy a VTA dopaminerg neuronjaibol
érkezik-e NT a VP-ba, nem allnak rendelkezésre irodalmi adatok, az viszont
ismert, hogy a VTA-bol mas agyteriiletekre mend efferenseken a DA gyakran
kolokalizaloédik NT-nel [13, 291, 292].

A NT-en kiviil a P-anyag is nagy mennyiségben kimutathaté a VP-ban, amely
szintén foleg a NAC-bOl érkezik [293], receptorai féleg a kolinerg neuronok
dendritjein talalhatok [294], és a VP-ban moduldlja az amygdalabdl érkezo

glutamaterg neurotranszmissziot [295]. A vazopresszin és az oxitocin szintén a
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ventralis striatopallidalis palya neuromodulatorai: fontos szerepet jatszanak a
szocialis kotédésben [296, 297], emellett a vazopresszin la receptor emelkedett

aktivitasa fokozott szorongassal is jar [205].

1.3.5. A neurotenzin szerepe a ventralis pallidumban

A VP-ban NT-erg neuronvégzdédések és NT-receptorok egyarant kimutathatok:
a NT jelenléte egyediil a VPvm-ra jellemzd, igy a VPdI-ban vagy mas alrégiokban
alig detektalhato [19, 20, 24]. A NT-immunoreaktivitas féleg a striatopallidalis
axonterminalisokon mutathatd ki, viszont a perikaryonokon nem vagy csak
minimalisan [19]. A NT receptorai koziil a VPvm teriiletén a NTS1-receptorok
fordulnak el6 a legnagyobb siirliségben [51, 245], amelyek tipusosan a
dendriteken, illetve az idegsejtek perikaryonjain helyezkednek el [245]. A NTS2-
receptorok csak nagyon alacsony koncentracioban vannak jelen [51, 246]. A
NTS3-receptorok jelenlétét a VP-ban eddig nem igazoltak.

A NT vagy NT-antagonistak elektrofiziologiai hatasait eddig még nem
vizsgaltak a VP-ba torténd direkt mikroinjekcidt kovetden, viszont kimutattak,
hogy NTS1-antagonistak i.p. injekcidja csokkenti a VPvm neuronjainak tiizelési
frekvenciajat, mikozben a VPdI-ra nincsenek hatassal [298].

A NT a VP-ban megnoveli az extracellularis GABA-szintet [16]. Ismert
tovabba, hogy a VPvm gatlasanak kovetkeztében GABA-erg efferens palyak is
gatlodnak, a VTA pedig felszabadul a gatlas alol [36]. A fentiek alapjan a VP-ba
injektalt NT a VT A DA-erg neuronjainak aktivitasat befolyasolva szerepet jatszhat
a pozitiv megerdsitd és jutalmazd folyamatokban.

A VP-ba injektalt NT esetleges magatartasi hatasairol szintén keveset tudunk,
de annyi bizonyos, hogy szerepet jatszik a  drogaddikcidban:
kokainadminisztraciot, majd extinkciot kovetéen a NT(8-13) a VP-ban
potencirozza a kokainalapu, de gatolja a cue-alapu drogkeresé magatartast, mig a

lokomociora nincs hatassal [16].
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2. Célkitiizések

A fentiek alapjan lathatjuk, hogy a NT, illetve a NTS1-receptorok szerepet
jatszhatnak a jutalom, valamint a megerdsités szabalyozasaban fontos ventralis
striatopallidalis projekciok modulacidjaban [15, 19, 215]. Mindazonaltal a NT
direkt hatasait a VP-ban eddig még nem vizsgaltdk sem a pozitiv megerdsitésre,

s€ém a szorongésra.

1. A NT, illetve a NTS1-receptor-antagonista SR 48692 lokomotoros aktivitasra
gyakorolt esetleges akut hatdsainak vizsgalata céljabol open field tesztet (OPF)

végeztiink.

2. Jelen kisérleteink masik célja a ventralis pallidumba injektalt NT esetleges
jutalmazé hatasanak vizsgalata volt. Erre a célra az uUn. kondicionalt

helypreferencia-tesztet (CPP) alkalmaztuk.

3. Amennyiben a NT jutalmazénak bizonyul, tovabbi céljaink kdzott szerepelt
annak igazolasa, hogy a NT ezt a hatast a VP-ban nagy koncentracioban

eléforduldo NTS1-receptorokon fejti-e ki.

4. Kisérleteink masik vonulata a ventralis pallidumba injektalt NT esetleges

anxiolitikus hatasanak vizsgalata volt. Erre a célra az un. emelt keresztpallo tesztet
(EPM) alkalmaztuk.

5. Kivancsiak voltunk arra is, hogy amennyiben a NT befolyasolja az anxietast, ezt

a hatast NTS1-receptorokon fejti-e ki.
6. Célunk volt még, hogy ha a NT a fenti paradigmak valamelyikében hatasosnak

bizonyul, akkor megvizsgaljuk, hogy ez(eke)t a hatids(oka)t a VP D2 DA-

receptorainak gatlasa hogyan modositja.
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3. Kisérleti modszertan

3.1. Kisérleti allatok

Kisérleteink soran 279 him Wistar-patkdnyt hasznaltunk (LATI, G6dollo),
melyek atlagos teststlya a kisérletek kezdetekor 280 - 320 g volt. Az allatok a
mitétek el6tt 1 héttel keriiltek at a tenyészetbdl klimatizalt allathazunkba (ahol a
hémérséklet 22 = 1 °C, a paratartalom: 55 + 10%). Ott egyenként, kiilonalld
ketrecekben, de ugyanazon helyiségben helyeztiik el éket. Erre azért volt sziikség,
mert az allatok fején 1évé korona megsériilhetne a mas allatokkal valo taldlkozas
soran, illetve a tobbi allatnak is sériilést okozhatna. A természetes napszaknak
megfeleld mesterséges megvilagitast alkalmaztunk, 12 6ra sotét és 12 ora vilagos
periddust biztositva. A ketrecek tisztitasat szakképzett személyek végezték napi
rendszerességgel. A vilagos periodus reggel 7 orakor, a sotét este 19 orakor
kezd6dott. Az allatok standard laboratoriumi ragcesaldtdpot (Charles River
Magyarorszag Kft., Budapest) és csapvizet fogyaszthattak ad libitum. A
patkanyokat a miitéteket megel6z6en a kisérletet végzdk kezéhez szoktattuk (un.
»handling”). Erre azért volt sziikség, mert a mikroinjekcidkat kézben tartott éber
allatoknak adtuk be. Az allatok tartasa soran az egyetemi (BA02/2000-8/2012),
hazai (40/2013. (II. 14.) szamG Magyar Kormanyrendelet) és nemzetkozi
(European Community Council Directive, 86/609/EEC, 1986, 2010) allatkisérletes

etikai iranyelveknek megfelelden jartunk el.

3.2. Sztereotaxikus miitét

A mitéteket altalanos anesztéziaban végeztiikk, melyet ketamin (Calypsol,
Richter Gedeon Zrt., 80 mg/ttkg) és diazepam (Seduxen, Richter Gedeon Zrt., 20
mg/ttkg) 4:1 aranyt keverékének intraperitonealis injekcidjaval (2 ml/ttkg)
idéztiink elé. Sztereotaxikus miitéti technika segitségével 22 gauge (0,64 mm)
atmérdji  rozsdamentes acél vezetOkaniiloket implantaltunk Dbilateralisan a

célteriilet f61¢ 0,5 mm-rel. A célteriilet (1. abra) koordinatait Paxinos és Watson
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sztereotaxikus agyatlasza [299] alapjan hataroztuk meg. Az alkalmazott
koordinatak a bregmahoz viszonyitva a kovetkezok voltak: anteroposterior (AP):
-0,26 mm (a bregmatdl posterior iranyban), lateralisan (ML): 2,2 mm (a
kozépvonaltol), dorsoventralisan (DV): 7,1 mm (a dura felszinétél mérve). A
kantiloket a koponyacsonthoz és a koponyacsontba furt 3 rozsdamentes acél
csavarhoz rogzitettiik fogaszati akrilat segitségével (Duracryl). A vezetékaniiloket
27 gauge (0,36 mm) atmérdju steril dugokkal zartuk le, amelyeket az anyagbeadas
soran eltavolitottunk. Az allatok a miitétek soran antibiotikum-profilaxisban
részesiiltek (G-penicillin). A posztoperativ idészakban az allatoknak legalabb 6
napot hagytunk a felépiilésre a kisérletek megkezdése el6tt. Minden 4allatot
neuroldgiai vizsgalatnak vetettiink ald, hogy meggydzddhessiink a szenzoros ¢€s a
motoros funkcidik intakt voltarol.

A magatartasi teszteket a nappali periodusban végeztiik, 08.00 és 18.00 ora kozott.

e

mie

i ikt MPA Y AVRe
/_/__ Q’v‘j‘"' —_—

MCTO A
HO# y

= :_i /

Interaural 8.74 mm Bregma -0.26 mm

0 3 2 1 ] 1 2 3 [

1. dabra: A vezeto- és a beadokaniilok elhelyezkedése, illetve a mikroinjekcio
mérete a ventralis pallidumban Paxinos és Watson sztereotaxikus agyatlasza
[299] alapjan.
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3.3. Az alkalmazott kisérleti anyagok és azok mikroinjekcioja

A NT-t (Sigma-Aldrich Co., N6383, molaris tomeg: 1672,92 g/mol) 0,15 M-0s
steril sboldatban oldottuk fel, amely 0,01 M Na-acetatot és 0,01 M foszfat-pufferes
sooldatot tartalmazott (PBS, pH 7,4). A NT mikroinjekciokat két kiilonb6zo
dozisban alkalmaztuk: 100 ng (59,8 pmol/0,4 ul; 149,4 umol/l) vagy 250 ng
(149,4 pmol/0,4 ul; 373,6 umol/l). A NTS1-antagonista SR 48692-t (Tocris Co.,
Cat. No. 3721, molaris tomeg: 587,07 g/mol) 2% dimetil-szulfoxidot és 0,01M
PBS-t tartalmazo6 0,15 M-os steril sdéoldatban oldottuk fel. Az SR 48692-t 35 ng-
0s (59,6 pmol/0,4 ul; 149,0 umol/l) dézisban mikroinjektaltuk. A D2 DA receptor
antagonista (S)-(-)-sulpiridet (Sigma-Aldrich Co., S7771, molaris tomeg: 341,43
g/mol) fiziologias sdoldatban oldottuk fel, a sulpirid 4 pg-os (11,715 nmol/0,4 ul;
29,29 mmol/l) dozisat alkalmaztuk. A dozisok oldalanként értendok.

A NT [89, 113-115], illetve a sulpirid [213] dozisait pilot kisérletek alapjan,
illetve a mas agyteriileteken alkalmazott intracerebralis mikroinjekcioknal
korabban hatdsos dozistartomanyok alapjan valasztottuk meg. Az SR 48692
dozisat gy valasztottuk meg, hogy a NT hat4sos dozisaval ekvimolaris legyen, az
antagonista dozisa igy joval meghaladja az 50%-0s inhibitoros koncentraciot
[300].

A mikroinjekcio elézdleg kézhez szoktatott, kézben tartott, éber allatokon
tortént. Az 0sszes anyagot 27 gauge atmérdjlii rozsdamentes acél beaddkaniilokon
keresztiil juttattuk be, amelyek 0,5 mm-rel hosszabbak voltak az implantalt
vezetOkaniiloknél. A beaddkaniilok polietilén csoveken keresztiil (PE-10) 10 pl-es
Hamilton-fecskendékhoz csatlakoztak (Hamilton Co., Bonaduz, Svajc). Az egyes
mikroinjekciok 0,4 pl térfogatban torténtek, Cole-Parmer-féle infuziés pumpa
hasznalataval (Cole-Parmer, IITC, Life Sci. Instruments, Kalifornia, USA), 60 sec
id6tartam alatt. A beadott mennyiségeket a Hamilton-fecskendd skaldjan is
ellendriztiik. A mikroinjekciokat kdvetéen a beaddkaniiloket tovabbi 60 sec-ig az
allatok fejében hagytuk, igy gatolva az oldatok visszafolydsat és biztositva az

crer

hogy a beaddkaniil nem tomddott el.
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Az OPF tesztben a NT 100 ng-jat (n=8) vagy 250 ng-jat (n=6) mikroinjektaltuk
az allatoknak. Az antagonistaval kezelt csoport (n=6) 35 ng SR 48692-t, majd 15
perc mulva a NT vivéanyagat (vehl), az antagonista el6kezelést kovetéen NT-nel
kezelt csoport (n=6) 35 ng SR 48692-t, majd 15 perc mulva 100 ng NT-t kapott. A
kontrollcsoport allatai (n=8) az SR 48692 vivOoanyagat (veh2), majd 15 perc mulva
vehl-et kaptak.

Az els6 CPP kisérlet soran a NT 100 ng-os (n= 12) vagy 250 ng-os (n=13)
dozisat mikroinjektaltuk bilateralisan az allatoknak, a kontrollcsoport (n=11) vehl-
et kapott az NT-mikroinjekciokkal azonos térfogatban. A masodik (az
antagonistaval végzett) CPP kisérlet soran a NT-nel kezelt csoport (n=13) allatai
veh2-t, és ezt kovetden 100 ng NT-t kaptak (azt a dozist, amely az elsé kisérlet
soran hatasosnak bizonyult, 1d. az eredményeknél). Az antagonistaval kezelt (n=7)
csoport 35 ng SR 48692-t, majd vehl-et kapott. Az antagonista el6kezelést
kovetéen NT-nel kezelt csoport (n=12) 35 ng SR 48692-t, majd 15 perc mulva
100 ng NT-t kapott. A kontrollcsoport (n=10) allatai két alkalommal kaptak
vivOanyagot (veh2 + vehl). Az antagonistat vagy a veh2-t mindig 15 perccel a NT
vagy a vehl el6tt adtuk be. A harmadik (sulpiriddel végzett) CPP kisérlet soran a
NT-nel kezelt csoport (n=6) allatai a sulpirid vivoanyagat (veh3), és ezt kdveten
100 ng NT-t kaptak (azt a dozist, amely az elsd kisérlet soran hatdsosnak
bizonyult, 1d. az eredményeknél). A sulpiriddel kezelt csoport (n=8) 4 png
sulpiridet, majd vehl-et kapott. A sulpirid el6kezelést kovetéen NT-nel kezelt
csoport (n=11) 4 ng sulpiridet, majd 15 perc malva 100 ng NT-t kapott. A
kontrollcsoport (n=11) allatai két alkalommal kaptak vivéanyagot (veh3 + vehl).
A sulpiridet vagy a veh3-t mindig 15 perccel a NT vagy a vehl el6tt adtuk be. A
masodik és harmadik CPP kisérlet soran antagonista vagy sulpirid eldkezelést
kovetden alkalmazott NT 15 perc alatt 2 mikroinjekciot jelent az allat szamara,
ezért a tobbi csoport allatai szintén 2-2 mikroinjekciot kaptak 15 perc
kiilonbséggel, hogy az egyes csoportok eredményei 6sszehasonlithatok legyenek.

Az els6 EPM kisérlet soran az allatok 100 ng (n= 8) vagy 250 ng (n=8) NT-t
kaptak bilateralisan, a kontrollcsoport (n=9) vehl-et kapott az NT-
mikroinjekciokkal azonos térfogatban. A masodik EPM kisérletben a NT-nel
kezelt csoport (n=8) veh2-t, majd 100 ng NT-t kapott. Az antagonistaval kezelt
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csoport (n=9) SR 48692-t, majd vehl-et kapott. Az antagonista elOkezelést
kovetden NT-nel kezelt csoport (n=8) 35 ng SR 48692-t, majd 100 ng NT-t kapott.
A kontrollcsoport (n=9) két alkalommal kapott vivoanyagot (veh2 + vehl). Az
antagonistat vagy a veh2-t a CPP teszthez hasonléan mindig 15 perccel a NT vagy
a vehl el6tt adtuk be. A harmadik EPM kisérletben a NT-nel kezelt csoport (n=6)
veh3-t, majd 100 ng NT-t kapott. A sulpiriddel kezelt csoport (n=9) 4 png
sulpiridet, majd vehl-et kapott. A sulpirid el6kezelést kovetéen NT-nel kezelt
csoport (n=10) 4 pg sulpiridet, majd 100 ng NT-t kapott. A kontrollcsoport (n=11)
két alkalommal kapott vivéanyagot (veh3 + vehl). A sulpiridet vagy a veh3-t a

CPP teszthez hasonléan mindig 15 perccel a NT vagy a vehl1 eldtt adtuk be.

3.4. Magatartasi vizsgalatok

A kiilonb6zé magatartasi tesztjeinket az adott célra szolgald apparatusokban
végeztik. Az éllatok mozgésat az apparatus folé elhelyezett kamera segitségével
rogzitettiik, az adatokat a Noldus EthoVision Basic software (Noldus Information

Technology b.v., Wageningen, Hollandia) segitségével taroltuk €s elemeztiik.

3.4.1. Open field (OPF) teszt

Az OPF teszt apparatusa egy 50 x 50 cm alapteriiletti, 50 cm falmagassagu,
sziirke szinti, fabol késziilt dobozbdl 4ll. A doboz alja 16 azonos méretli négyzetre
van osztva. A kisérlet soran mértilk az allatok altal megtett utat, illetve a
keresztezések szamat. Minden {ilés 5 percig tartott. A kisérlet 4 napig tartott (2.
abra). Az elsO napon tortént a habituacio, a 2. és a 3. napon mértiik az allatok
bazalis aktivitasat (mikroinjekcio nélkiil). A 2. és 3-napon mért adatok atlagat
tekintettliik az allatok motoros alapaktivitasanak (bazalis aktivitas). A 4. napon
(teszt) az allatokat az anyagok bilateralis mikroinjekciojat kovetéen a dobozba

helyeztiik.
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mikroinjekcio

1. nap : 2. nap : 3. nap l 4. nap
|

habituacio bazdlis aktivitds teszt

2. abra: Az OPF teszt idobeosztasa.

3.4.2. Kondicionalt helypreferencia- (conditioned place preference, CPP) teszt

A CPP teszt anyagok jutalmazo, pozitiv meger6sitd, illetve averziv hatasanak
mérésére hasznalhato [301-304]. A CPP teszt apparatusa (3. abra) egy kor alaku,
85 cm atmérdji és 40 cm magas doboz. Az apparatus falai és padloja miianyagbol
készilt, szlirke szini. A padlot vékony fekete vonalak segitségével 4 kvadransra
osztjuk, melyek a kondicionalasok soran kivehetd, atlatszo plexi lapokkal
fizikailag is elvalaszthatok egymadstol. A kornyezetben talalhato kiils6 jeleket, Un.
vizualis cue-kat helyeztiink el, hogy segits¢k az egyes kvadransok
megkiilonboztetését, illetve az allatok tajékozodasat az apparatusban [303]. A
kisérletet egy hangszigetelt, klimatizalt helyiségben végeztiik el, a megvilagitashoz

szlikséges szort fényt 40 W-os 1zz6 segitségével biztositottuk.

3. dbra: A CPP teszt elvégzésére szolgalo kisérleti apparatus
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A CPP paradigma (4. abra) egy habituaciobol (1. nap), harom kondicionalasbol
(2-4. nap) és egy tesztbdl (5. nap) all. Az iilések mindegyike 900 sec (15 min)
hosszasagu. Az apparatust minden allat utan gondosan Kitisztitottuk. A habituacio
(1. nap) soran az allatokat az apparatus kozepére helyeztiik, ezutan 900 sec-ig
szabadon hozzaférhettek mind a négy kvadranshoz. Mértik az egyes
kvadransokban elt6ltott idot, és azt a kvadranst valasztottuk ki kezel6kvadransnak,
ahol az allat a habituacidé sordn nem a legtobb, de nem is a legkevesebb 1d6t
toltotte. A kondicionalasok (2-4. nap) soran a plexilapok behelyezésével a
kvadransokat fizikailag elvalasztottuk egymastol. Az 4llatokat kozvetlenill a
bilateralis mikroinjekcio(ka)t kovetden a kezel6kvadransba helyeztiik. Ezutan a
patkdnyok 15 percet tartdzkodtak a kezel6kvadransban. Az 5. napon (teszt) az
elvalasztd lapokat eltavolitottuk, igy az allatok \ijra az apparatus teljes teriiletén
mozoghattak. Mértiik az egyes kvadransokban toltott idot, valamint az allatok altal

megtett utat.

mikroinj.  mikroinj. mikroin;.
1. nap J' 2. nap Il 3. nap ﬂ 4. nap : 5. nap
|

habitudcio kondicionalasok ‘ teszt
4. abra: A CPP teszt idobeosztasa.

3.4.3. Emelt keresztpallé (elevated plus maze, EPM) teszt

A szorongast az EPM teszt segitségével mértiik [305-307]. Az apparatus (5.
abra) sziirke szinli, kereszt alaku pallokbol, azaz két, egymdssal szemben
elhelyezkedd nyitott karbol és két, ezekre merdlegesen elhelyezkedd zart karbol
all. A karok alapteriilete egyenként 50 cm x 10 cm, a kozépen 1évd centralis
platform 10 cm x 10 cm teriiletli. A zart karokat 40 cm magas, sziirke szint fal
veszi kortil, a teteje nyitott. A pallok 100 cm-rel a talaj szintje f61¢ vannak emelve.

Az anyagok mikroinjekciojat kovetéen az allatokat az appardtus kozepére
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(centralis platform) helyeztiik, ugy, hogy orruk valamelyik zart kar felé nézzen.
Minden allaton egy alkalommal végeztiik el a tesztet, amely 5 percig tartott. Az
apparatus egyes részein (zart karok, nyitott karok, illetve azok végei) toltott 1dot,

valamint a megtett utat mértiik.

BT —\

Zartkar
]

Centrdlis

|

= Nyitott kar
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|

5. dbra: Az EPM teszt elvégzésére szolgadlo kisérleti apparatus

3.5. Az eredmények értékelése

3.5.1. Szovettan

A kisérletek végeztével a patkanyokat uretan segitségével talaltattuk (20%-0s
uretanoldat i. p. injekcidja, 1,4 g /ttkg) és izotonias sooldattal transcardialisan
perfundaltuk (lasst infuzids rata: 500 ml / 20 min), ezt 10%-o0s formaldehid-oldat
infuzidja kovette (lassu infazios rata: 500 ml / 20 min). Ezutan az allatok agyat
eltavolitottuk.

Egy héttel a fixaci6 utan az agyakat lefagyasztottuk, 40 pm-es szeleteket
készitettiink, amelyeket krezil-ibolyaval megfestettiink. A mikroinjekciok helyét
Paxinos és Watson sztereotaxikus atlasza alapjan rekonstrualtuk [299]. Az
elemzésnél csak azon allatok adatait vettiik figyelembe, amelyeknél a beaddsok a

megfeleld agyteriiletre torténtek.
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3.5.2. Statisztikai modszerek

Shapiro-Wilk-teszt ~ segitségével meggy6z6dtink az adatok normalis
eloszlasar6l, majd az adatokat egy és két szempontos varianciaanalizissel
(ANOVA) értékeltiik ,,SPSS 20.0 for Windows” programcsomag segitségével. A
mintdk homogenitasanak vizsgalatdra F-tesztet alkalmaztunk. A csoportonkénti
Osszehasonlitast Tukey-féle post hoc teszttel végeztiik el. A szignifikanciaszintet
minden esetben p < 0,05-nek tekintettiik, a szignifikans értékeket a grafikonokon
csillaggal jeloltiik. A grafikonokon, illetve a tablazatokban a paraméterek atlagat +
a standard hibédkat (SEM) tiintettiik fel.
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4. Eredmények

4.1. Szovettani leletek

A kaniilcsatornak és a kaniilvégek elhelyezkedését Paxinos ¢és Watson
sztereotaxikus agyatlasza alapjan hataroztuk meg [299]. A Kkaniilvégek
elhelyezkedésének sematikus abrazolasa a 6. abran lathatd. A szovettani vizsgalat
azt mutatta, hogy a kaniilvégek szimmetrikusan a célteriileten helyezkedtek el a
279 allat koziil 243 esetben. A megfeleld helyen elhelyezkedé kaniilvégek
mikroinjekciok a megfelelé helyre keriiltek. Négy patkanyt kizartunk, mert az
akrilat ,,koronajuk” karosodott vagy leesett, igy a mikroinjekciokat nem lehetett
beadni; a tobbi 32 allatnal a kaniilok nem a megfeleld helyre kertiltek. Ezen allatok
adatait kizartuk a tovabbi analizisb6l. A nem megfeleld helyen elhelyezkedd
medialisan vagy lateralisan helyezkedtek el, igy a mikorinjekciok az egyik oldalon
a commissura anterior hatsé ajkanak interstitialis magjaba, a masik oldalon a stria
terminalis beagyazott magjanak fusiformis részébe keriiltek. 19 esetben a
kaniilvégek 1 mm-rel a VP ala keriiltek, igy a mikroinjekciok mindkét oldalon a
diagonalis koteg horizontalis ajkanak magjaba, illetve a nucleus preopticus
magnocellularisba torténtek, 1 esetben a kaniilok vége a VP folott volt, igy az
anyagbeadas a commissura anterior hatso ajkanak interstitialis magjaba tortént. A
kantiilpoziciok nagy heterogenitasa és az alacsony allatszam miatt a VP-t6l eltérd
helyre beadott anyagok magatartasi hatasair6l messzemend kovetkeztetéseket

levonni nem tudtunk.
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Bregma +0,20 mm

Bregma -0,26 mm

Bregma -0,40 mm

Bregma -0,80 mm

6. abra: A mikroinjekciok helyének rekonstrukcioja az Jsszes kisérletben
egyiittvéve. A VP-ban a sztereotaxikus célteriileten elhelyezkedd bilateralis
kaniilpoziciok (n = 243) az abra bal oldalan (A) lathatok. A célteriileten kiviil
elhelyezkedo mikroinjekcios helyeket (n=32) a jobb oldali (B) dabra mutatja. A
coronalis agymetszetek sematikus abrai Paxinos és Watson sztereotaxikus
patkanyagyatlaszabol [299] szdrmaznak. A kozépen 1évé szamok a bregmdhoz
viszonyitott anterior—posterior tavolsdgot jelzik mm-ben. Az agymetszetek jobb és
bal oldalan az egymdsnak megfeleld szimbolumok a bilateralis mikroinjekciok
helyét jelzik, az ezek melletti szamok pedig az allatok szamat, amelyek az adott

helyre kaptik a mikroinjekciokat.
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7. abra: A sztereotaxikus célteriileten lévo mikroinjekcios helyek szovettani képe
(krezil-ibolya festés) a VP-ban (a bregmdhoz képest -0,8 mm-re posterior
iranyban). A kis nagyitdsu kép a kaniil csatorndjat, illetve a mikroinjekcio konkrét
helyét mutatja. A nagyobb nagyitasu képen a fekete vonal 100 um-nek felel meg.
Jol lathato a glidlis proliferacio, a gliaheg, valamint az is, hogy a VPvm-of célzo
mikroinjekcio nem terjedt at a szomszédos magokra.
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4.2. Open field teszt

Két szempontos ANOVA segitségével kimutattuk, hogy a megtett ut (8. abra)
szignifikansan kiilonbozott az tilések kozott (F [1;58] = 5,838; p < 0,05), ennek
legvalésziniibb oka, hogy a teszt sordn a habituaci®6 miatt valamennyi allat
kevesebbet mozgott. A kezelések k6zott nem volt szignifikans kiilonbség (F [4;58]
= 0,104; p > 0,05), az iilések és kezelések kozti interakcid szintén nem volt

szignifikans (F [4;58] = 0,895; p > 0,05).

2500 -
O kontroll (n=8)
2000
g @ 100 ng NT (n=8)
?S’ 1500 -
E 1000 J B 250 ng NT (n=6)
8
= iy antagonista (n=6)
0 @ antagonista + NT (n=6)

Bazalis aktivitas Teszt

8. dbra: Bilateralis NT mikroinjekciok, valamint az NTSI-antagonista elékezelés
hatasa open field (OPF) tesztben. Az oszlopok az dllatok altal megtett ut dtlagat
(= SEM) mutatjak mikroinjekcio nélkiil (bazalis aktivitds), illetve a teszt sordn.
Kontroll: csak vivéanyaggal kezelt dallatok (veh2 + vehl; n = 8). 100 ng NT: 100
ng NT-nel kezelt dallatok (n = 8). 250 ng NT: 250 ng NT-nel kezelt dallatok (n = 6).
Antagonista:35 ng NTSl-antagonista SR 48692-vel kezelt dllatok (n = 6).
Antagonista + NT: 100 ng NT mikroinjekciojanak hatasa 35 ng NTSI-antagonista

elokezelést kovetoen (n = 6). Részletesebb magyarazatot ld. a szé6vegben.

A keresztezések szamat tekintve (9. dbra) nem volt szignifikdns kiilonbség sem
az ilések (F [1;58] = 0,764; p > 0,05), sem a kezelések kozott (F [4;58] = 0,298; p
>0,05), aziilések és kezelések kozotti interakcid szintén nem volt szignifikans (F
[4;58] = 0,164; p > 0,05).
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9. dbra: Bilateralis NT mikroinjekciok, valamint az NTSI-antagonista elékezelés
hatasa open field (OPF) tesztben. Az oszlopok a keresztezések szdamdt (= SEM)
mutatjak mikroinjekcio nélkiil (bazdlis aktivitas), illetve a teszt soran. Kontroll:
csak vivéanyaggal kezelt dallatok (veh2 + vehl; n = 8). 100 ng NT: 100 ng NT-nel
kezelt dllatok (n = 8). 250 ng NT: 250 ng NT-nel kezelt dallatok (n = 6).
Antagonista:35 ng NTSl-antagonista SR 48692-vel kezelt dllatok (n = 6).
Antagonista + NT: 100 ng NT mikroinjekciojanak hatasa 35 ng NTSI-antagonista

elokezelést kovetéen (n = 6). Részletesebb magyarazatot ld. a szovegben.
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4.3. Kondicionalt helypreferencia-teszt

A bilateralis NT mikroinjekciok hatasat a CPP paradigmaban a 10. abra
szemlélteti. Két szempontos ANOVA segitségével Osszehasonlitottuk az egyes
csoportok célkvadransban to6ltott idejét a habituacid, illetve a teszt soran.
Szignifikans kiilonbség volt az tlések kozt (F [1;66] = 11,189; p < 0,05) és a
kezelések kozt (F [2;66] = 3,431; p < 0,05), a kett6 kozti interakcié azonban nem
volt szignifikans (F [2;66] = 2,426; p > 0,05). A Tukey-féle post hoc teszt alapjan
a kezel6kvadransban toltott idé nem valtozott a kontrollcsoportban (n = 11), de
szignifikdnsan megemelkedett a 100 ng NT-nel kezelt csoportban (n = 12; p <
0,05). A 250 ng NT-nel kezelt csoportban (n = 13) szintén nodvekedett a

kezel6kvadransban t61tott idO, ez azonban nem volt szignifikans.
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10. abra. Bilateralis NT mikroinjekciok hatisa a VP-ban CPP paradigmaban. Az
oszlopok a kezelékvadransban toltétt idé atlagat (= SEM) mutatjak a habitudcio,
illetve a teszt soran. Kontroll: csak vivéanyaggal kezelt dllatok (vehl, n = 11). 100
ng NT: 100 ng NT-nel kezelt allatok (n = 12). 250 ng NT: 250 ng NT-nel kezelt
allatok (n = 13) *: p < 0,05.
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Az egyes napokon a kisérlet ideje (900 sec = 15 min) alatt az allatok altal
megtett utat az 1. tablazat mutatja. Ez egyben megfelel az allatok
atlagsebességének is (cm/15 min). Az iilések (habituacid, kondicionalasok, teszt)
soran mért adatok egymassal nem hasonlithatok Ossze statisztikailag, mivel a
habitudci6 és a teszt soran az allatok a teljes apparatuson beliil mozoghattak, mig a
kondicionalasok soran csak a kezelokvadransban. A kiilonbozo kezeléseket kapott
csoportok (kontroll, 100 ng NT, 250 ng NT) eredményeit egy Szempontos
ANOVA segitségével hasonlitottuk Ossze az egyes kisérleti iiléseken beliil
(habituacio, kondicionalasok, teszt). Az ANOVA nem mutatott ki szignifikans
kiilonbséget a csoportok kozott sem a habituacié (F [2;33] = 1,736; p > 0,05), sem
a kondicionalasok (F [2;33] = 0,842; p > 0,05), sem pedig a teszt soran (F [2;33] =
0,677; p > 0,05). A kondicionalasok alatt valamennyi csoport allatai kevesebbet
mozogtak, ez a kisebb teriiletnek tudhato be.

megtett ut (cm/15 min) habituacio kondicionalasok teszt
(atlag £ SEM) atlaga

kontroll (n=11) 7795,67 £ 560,50 | 4108,83 + 284,67 672797+ 617,53
100 ng NT (n=12) 8287,77 £ 744,66 | 3956,37 + 309,04 6456,71 + 624,93
250 ng NT (n=13) 6641,03 £ 633,94 | 3625,80 + 220,71 5835,87 + 444,04

1. tablazat. Az dllatok altal a CPP paradigma soran megtett ut (cm/15 min) atlaga
+ SEM szerepel. Kontroll: csak vivéanyaggal kezelt dllatok (vehl, n = 11). 100 ng
NT: 100 ng NT-nel kezelt dllatok (n = 12). 250 ng NT: 250 ng NT-nel kezelt
allatok (n = 13).

A masodik CPP kisérletben megvizsgaltuk, hogy a 100 ng NT helypreferenciat
indukald hatdsa a NTSI-receptorokon keresztiil valosul-e meg (11. &bra). Az
allatok a habitudci6 soran az el6zd kisérlethez hasonld iddtartamig tartozkodtak a
kezelokvadransban. Két szempontos ANOVA alapjdn nem volt szignifikdns
kiilonbség az iilések kozott (F [1;76] = 3,620; p > 0,05), viszont szignifikans
kiilonbség volt a kezelések kozott (F [3;76] = 3,637; p < 0,05), tovabba az iilések
és kezelések kozti interakcio szintén szignifikansan kiilonbozott (F [3;76] = 3,955;
p < 0,05). Tukey-féle post hoc teszt alapjan az el6z6 kisérlet eredményéhez

hasonléan a 100 ng NT-nel kezelt csoportban (n=13) megemelkedett a
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kezel6kvadransban toltott idé a kontrollcsoporthoz (n=10) képest (p < 0,05). Az
NTS1-receptor antagonista SR 48692 eldkezelés hatékonyan blokkolta a NT
hatasat (n = 12; p < 0,05). Az antagonista dnmagaban (n = 7) nem befolyasolta a
kezelokvadransban  toltott  id6t: az  eredmény nem  kiilonbozott a
kontrollcsoportétol, viszont szignifikansan alacsonyabb volt a 100 ng NT-nel

kezelt csoport eredményénél (p < 0,05).
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11. dbra. NTS1 antagonista eldkezelés hatdsa a VP-ban CPP tesztben. Az oszlopok
a kezelékvadransban toltott idd dtlagat (= SEM) mutatjak a habitudcio, illetve a
teszt soran. Kontroll: csak vivéanyaggal kezelt allatok (veh2 + vehl; n = 10). 100
ng NT: veh2-vel, majd 100 ng NT-nel kezelt dallatok (n = 13). Antagonista: 35 ng
NTS1l-antagonista SR 48692-vel, majd vehl-gyel kezelt dllatok (n = 7).
Antagonista + NT: 100 ng NT mikroinjekciojanak hatasa 35 ng NTS1-antagonista
elokezelést kovetéen (n = 12). Részletesebb magyardzatot ld. a szovegben. *: p <

0,05.

Az egyes napokon az allatok altal megtett utat a 2. tablazat mutatja. Az egy
szempontos ANOVA nem mutatott ki szignifikans kiilonbséget az egyes kisérleti
fazisokon beliil a csoportok kozott (a habituacié soran: F [3;38] = 0,232; p > 0,05;
a kondicionalasok soran: F [3;38] = 0,222; p > 0,05; a teszt soran: F [3;38] =
2,033; p > 0,05).
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megtett ut (cm/15 min) habituacio kondicionalasok teszt
(atlag = SEM) atlaga
kontroll (n=10) 6911,06 +£360,61 | 3846,81 +£261,63 | 5810,63 + 537,43

100 ng NT (n=13)

7307,59 + 432,64

3776,73 +£ 130,23

6869,11 + 428,13

antagonista (n=7)

7032,61 + 400,46

3650,00 + 259,66

5368,35+ 311,19

antagonista + NT (n=12)

7428,42 + 621,16

3629,00 + 235,54

6370,35 + 381,86

2. tablazat. Az allatok altal a CPP paradigma soran megtett ut (cm/15 min) atlaga
+ SEM szerepel. Kontroll: csak vivéanyaggal kezelt dallatok (veh2 + vehl; n = 10).
100 ng NT: veh2-vel, majd 100 ng NT-nel kezelt allatok (n = 13). Antagonista: 35
ng NTSl-antagonista SR 48692-vel, majd vehl-gyel kezelt dllatok (n = 7).
Antagonista + NT: 100 ng NT mikroinjekciojanak hatisa 35 ng NTSI-antagonista

elokezelést kovetoen (n = 12).

A harmadik CPP kisérletben megvizsgéltuk, hogy a 100 ng NT helypreferenciat
indukal6 hatdsédban szerepet jatszik-e a D2 DA-receptorokkal valé interakcid (12.
abra). Az allatok a habituacio soran az el6zo két kisérlethez hasonld idGtartamot
tartozkodtak a kezel6kvadransban. Két szempontos ANOVA alapjan nem volt
szignifikans kiilonbség az tlések kozott (F [1;64] = 1,064, p > 0,05), viszont a
kezelések kozott (F [3;64] = 3,002, p < 0,05), tovabba az iilések és kezelések kozti
interakcio tekintetében (F [3;64] = 5,022, p < 0,05) is szignifikans kiilonbséget
mutatott ki a teszt. Tukey-féle post hoc teszt alapjan az el6z6 kisérletek
eredményéhez hasonléan a 100 ng NT-nel kezelt csoportban (n=6) megemelkedett
a kezel6kvadransban tolt6tt id6 a kontrollcsoporthoz (n=11) képest (p < 0,05). A
sulpirid el6kezelés hatékonyan blokkolta a NT hatasat (n = 11, p < 0,05). A
sulpirid dnmagaban (n = 8) nem befolyasolta a kezelOkvadransban toltott 1dot,

azaz az eredmény nem kiilonbozott a kontrollcsoportétol.
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12. abra. Sulpirid eldkezelés hatisa a VP-ban CPP tesztben. Az oszlopok a
kezelSkvadransban toltott ido atlagat (= SEM) mutatiak a habitudcio, illetve a
teszt sordan. Kontroll: csak vivéanyaggal kezelt allatok (veh3 + vehl; n = 11). 100
ng NT: veh3-mal, majd 100 ng NT-nel kezelt dllatok (n = 6). Sulpirid: 4 ug D2
DA-receptor antagonista sulpiriddel, majd vehl-gyel kezelt dllatok (n = 8).
Sulpirid + NT: 100 ng NT mikroinjekciojanak hatasa 4 ug sulpirid elokezelést

kovetéen (n = 11). Részletesebb magyarazatot ld. a szovegben. *: p < (,05.

Az egyes napokon az allatok altal megtett utat a 3. tdblazat mutatja. Az egy
szempontos ANOVA teszt alapjan nem volt szignifikans kiilonbség a csoportok
kozott a habituacio soran (F [3;32] = 1,370; p > 0,05). A kondicionalasok soran
megtett ut atlaga (F [3;32] = 12,032; p < 0,05), valamint a teszt soran megtett ut (F
[3;32] = 12,848; p < 0,05) tekintetében viszont szignifikans kiilonbséget mutatott
Ki az analizis. Tukey-féle post hoc teszt alapjan a sulpiriddel, illetve a sulpirid
elokezelést kovetéen NT-nel kezelt allatok szignifikansan kevesebb utat tesznek
meg a kondiciondldsok soran, mint a kontrollcsoport allatai, tovabba ugyanezek a
csoportok a teszt soran is szignifikansan kevesebb utat tettek meg, mint a

kontrollcsoport, illetve a NT-nel kezelt csoport tagjai.
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megtett ut (cm/15 min) habituacio kondicionalasok teszt
(atlag + SEM) atlaga
kontroll (n=11) 6984,49 + 600,66 | 3961,90 + 331,14 6518,82 + 368,79

100 ng NT (n=6)

6196,61 + 438,68

2993,84 + 222,45

5965,80 + 668,32

sulpirid (n=8)

6360,47 + 410,12

*2322,12 + 301,00

*3016,56 + 310,28

sulpirid + NT (n=11)

5719,28 + 364,59

*1809,27 + 232,00

*3693,31 + 541,90

3. tablazat. Az allatok altal a CPP paradigma soran megtett ut (cm/15 min) atlaga

+ SEM szerepel. Kontroll: csak vivéanyaggal kezelt dallatok (veh3 + vehl; n = 11).
100 ng NT: veh3-mal, majd 100 ng NT-nel kezelt dallatok (n = 6). Sulpirid: 4 ug
D2 DA-receptor antagonista sulpiriddel, majd vehl-gyel kezelt dllatok (n = 8).

Sulpirid + NT: 100 ng NT mikroinjekcidjanak hatasa 4 ug sulpirid eldkezelést

kévetoen (n = 11). Részletesebb magyardzatot ld. a szovegben. *: p < 0,05.
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4.4. Emelt keresztpallo teszt

Az ¢elsé EPM kisérletben 100 ng és 250 ng NT VP-ba torténd bilateralis
mikroinjekcidinak a hatdsat vizsgaltuk (13. abra). Egy szempontos ANOVA
alapjan szignifikans kiilonbség volt a zart karokon t6ltott id6 (F [2;22] = 3,513, p
< 0,05), a nyitott karokon toltott id6 (F [2;22] = 4,329, p < 0,05), valamint a
nyitott karok végein toltott id6 tekintetében is (F [2;22] = 4,479, p < 0,05). Tukey-
féle post hoc teszt azt igazolta, hogy a 100 ng NT-nel kezelt allatok szignifikansan
tobb 1do6t toltottek a nyitott karokon és azok végein, illetve szignifikdnsan
kevesebb idOt a zart karokon, mint a kontrollcsoport allatai. Ezen eredmények
alapjan a NT 100 ng-os dozisban anxiolitikus hatasua. A 250 ng NT-nel kezelt
csoport eredménye nem kiilonbozott szignifikansan a kontrollcsoporttdl egyik mért

paraméter tekintetében sem.
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13. dbra. Bilateralis NT mikroinjekciok hatdsa a VP-ban EPM paradigmdban. Az
oszlopok a zart karokon, a nyitott karokon, illetve a nyitott karok végein toltott ido
atlagat (£ SEM) mutatjik. Kontroll: csak vivéanyaggal kezelt dllatok (vehl, n =
9). 100 ng NT: 100 ng NT-nel kezelt dallatok (n = 8). 250 ng NT: 250 ng NT-nel
kezelt allatok (n = 8) *: p <0,05.

Az éllatok altal az apparatus teljes teriiletén megtett utat (az allatok
atlagsebességét 5 perc alatt) a 4. tablazat mutatja. Az egy szempontos ANOVA
teszt nem mutatott ki szignifikans kiilonbséget az egyes csoportok kozott (F [2;22]
=0,403; p > 0,05).
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megtett it (cm/5 min)
kontroll (n=9) 2050,15 +£203,04
100 ng NT (n=8) 1871,84 £221,33
250 ng NT (n=8) 1822,57 £ 135,39

4. tabldzat. Bilateralis NT mikroinjekciok hatasa a VP-ban EPM paradigmdban. A
tablazatban a kisérlet soran megtett ut dtlaga (+ SEM) szerepel. Kontroll: csak
vivéanyaggal kezelt dallatok (vehl, n = 9). 100 ng NT: 100 ng NT-nel kezelt allatok
(n =8). 250 ng NT: 250 ng NT-nel kezelt dallatok (n = 8).

A masodik EPM kisérlet célja az volt, hogy megvizsgaljuk, hogy az NT hatasa
az EPM tesztben NTS1-receptorokon keresztiil valosul-e meg. A kisérlet
eredményét a 14. abra  mutatja. Egy szempontos ANOVA szignifikdns
kiilonbséget mutatott ki a zart karokon toltott id6 (F [3;30] = 4,734, p <0,05), a
nyitott karokon toltott id6 (F [3;30] = 10,311, p < 0,05), illetve a nyitott karok
végein toltott id6 (F [3;30] = 3,729, p < 0,05) tekintetében is. A Tukey-féle post
hoc teszt kimutatta, hogy az antagonista 6nmagaban nem befolyasolta az egyes
karokon toltott id6t, az allatok értékei a kontrollcsoportéhoz hasonldak voltak. Az
els6 EPM teszthez hasonloan, a 100 ng NT-nel kezelt allatok szignifikdnsan
kevesebb 1d6t toltottek a zart, €s szignifikansan tobb 1d6t a nyitott karokon, mint a
kontrollcsoport. Az antagonista el6kezelést kovetéen NT-nel kezelt csoport
eredményei nem Kkiilonboztek szignifikdnsan a kontrollcsoport eredményeitdl,
viszont szignifikansan tobb 1dot toltottek a zart, és szignifikansan kevesebb 1d6t a
nyitott karokon, mint a 100 ng NT-nel kezelt allatok, tehat az antagonista

elokezelés kivédte a NT hatasat.
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14. dbra. Bilateralis NT mikroinjekciok hatisa a VP-ban EPM paradigmaban. Az
oszlopok a zart karokon, a nyitott karokon, illetve a nyitott karok végein toltott ido
atlagat (£ SEM) mutatjak. Kontroll: vivéanyaggal kezelt dallatok (veh2 + vehl; n =
9). 100 ng NT: veh2-vel, majd 100 ng NT-nel kezelt dllatok (n = 8).
Antagonista:35 ng NTS1-antagonista SR 48692-vel, majd vehl-gyel kezelt dllatok
(n = 9). Antagonista + NT: 100 ng NT mikroinjekcidjanak hatisa 35 ng NTS1-
antagonista elokezelést kévetéen (n = 8). Részletesebb magyardzatot Id. a

szovegben. *: p < 0,05.

Az éllatok altal megtett utat az 5. tdblazat mutatja. Az egy szempontos ANOVA
teszt nem mutatott ki szignifikans kiilonbséget az egyes csoportok kozott (F [3;30]
=1,331; p > 0,05).

megtett it (cm/5 min)
kontroll (n=9) 1818,84 +213,04
100 ng NT (n=8) 1906,20 + 127,79
antagonista (n=9) 1805,74 £ 213,11
antagonista + NT (n=8) 2256,66 + 124,85

5. tablazat. Bilateralis NT mikroinjekciok hatdasa a VP-ban EPM paradigmadban. A
tablazatban a kisérlet soran megtett ut atlaga (= SEM) szerepel. Kontroll:
vivéanyaggal kezelt dllatok (veh2 + vehl; n = 9). 100 ng NT: veh2-vel, majd 100
ng NT-nel kezelt dllatok (n = 8). Antagonista:35 ng NTS1-antagonista SR 48692-
vel, majd vehl-gyel kezelt dllatok (n = 9). Antagonista + NT: 100 ng NT

mikroinjekciojanak hatasa 35 ng NTS1-antagonista eldkezelést kovetden (n = 8).
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A harmadik EPM kisérlet célja az volt, hogy megvizsgaljuk, a NT anxiolitikus
hatasaban szerepet jatszik-e a D2 DA-receptorokkal valo interakcid. A kisérlet
eredményét a 15. abra mutatja. Egy szempontos ANOVA nem mutatott Ki
szignifikans kiilonbséget a zart karokon toltott id6é (F [3;32] = 1,864; p > 0,05)
tekintetében. Szignifikans kiillonbség volt viszont a nyitott karokon toltdtt id6 (F
[3;32] = 4,121; p < 0,05), illetve a nyitott karok végein toltott id6 (F [3;32] =
7,978; p < 0,05) tekintetében. A Tukey-féle post hoc teszt kimutatta, hogy a
sulpirid az alkalmazott dozisban 6nmagaban nem befolyasolta az egyes karokon
toltott id6t. Habar a nyitott karok végein toltott id6 atlaga a sulpiriddel kezelt
csoportban alacsonyabb volt, az apparatus egyes részein toltétt idék egyike sem
tért el szignifikdnsan a kontrollcsoportétol. A 100 ng NT-nel kezelt allatok
szignifikansan tobb id6t toltottek a nyitott karokon, illetve azok végein, mint a
kontrollcsoport (hasonldan az els6 és a masodik EPM kisérlethez), illetve a
sulpiriddel kezelt csoport. A sulpirid el6kezelést kovetden a NT-nel kezelt csoport
eredményei nem kiilonboztek szignifikdnsan a kontrollcsoport eredményeitdl,
viszont szignifikdnsan kevesebb 1dot toltdttek nyitott karokon és azok végein, mint

a 100 ng NT-nel kezelt allatok. A sulpirid el6kezelés tehat kivédte a NT hatasat.
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15. dbra. Sulpirid eldkezelés hatisa a VP-ban EPM tesztben. Az oszlopok a zart
karokon, a nyitott karokon, illetve a nyitott karok végein téltott ido dtlagat (+
SEM) mutatjak. Kontroll: csak vivéanyaggal kezelt dllatok (veh3 + vehl; n = 11).
100 ng NT: veh3-mal, majd 100 ng NT-nel kezelt dallatok (n = 6). Sulpirid: 4 ug
D2 DA-receptor antagonista sulpiriddel, majd vehl-gyel kezelt dllatok (n = 9).
Sulpirid + NT: 100 ng NT mikroinjekciojanak hatisa 4 ug sulpirid elokezelést
kévetoen (n = 10). Részletesebb magyarazatot ld. a szovegben. *: p < 0,05.
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Az éllatok altal megtett utat az 6. tablazat mutatja. Az egy szempontos ANOVA
szignifikans kiilonbséget mutatott ki az egyes csoportok kozott (F [3;32] = 15,572,
p < 0,05). Tukey-féle post hoc teszt alapjan a sulpiriddel, illetve a sulpirid
elokezelést kovetden NT-nel kezelt allatok szignifikansan kevesebb utat tettek

meg a kisérlet soran, mint a kontrollcsoport, illetve a NT-nel kezelt csoport.

megtett Gt (cm/5 min)
kontroll (n=11) 1847,17 + 81,22
100 ng NT (n=6) 2171,96 + 160,81
sulpirid (n=9) *1368,18 + 123,40
sulpirid + NT (n=10) * 1141,32 + 103,87

6. tablazat. Bilateralis NT mikroinjekciok hatisa a VP-ban EPM paradigmaban. A
tablazatban a kisérlet soran megtett ut dtlaga (= SEM) szerepel. Kontroll: csak
vivéanyaggal kezelt dllatok (veh3 + vehl; n = 11). 100 ng NT: veh3-mal, majd
100 ng NT-nel kezelt dllatok (n = 6). Sulpirid: 4 ug D2 DA-receptor antagonista
sulpiriddel, majd vehl-gyel kezelt dllatok (n = 9). Sulpirid + NT: 100 ng NT
mikroinjekciojanak hatasa 4 ug sulpirid elokezelést kévetoen (n = 10). *: p <
0,05.
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5. Diszkusszio

Régota ismert, hogy a VP fontos szerepet jatszik a lokomotoros aktivitds, a
jutalmazas, valamint a szorongas szabalyozasaban is [21-23, 26, 36]. A NT-rél
szintén igazoltak, hogy mas agyteriileteken befolyasolja a fenti folyamatokat [3, 5-
8]. A VP-ban, azon beliil is a VPvm-ban nagy mennyiségben kimutathatok NTS1-
receptorok [19, 20, 24], azonban ezek jutalmazasban, illetve a szorongas
szabalyozasaban jatszott szerepét eddig nem vizsgaltak, ezért kutatocsoportunk a
VP  NT-receptorainak  magatartasra  gyakorolt hatdsainak  részletesebb

feltérképezését tlizte ki célul.

5.1. A ventralis pallidum NTS1-receptorainak szerepe a lokomotoros aktivitas
szabalyozasaban

Az OPF teszt kimutatta, hogy a VP-ba injektalt NT, illetve a NTS1-antagonista
SR 48692 egyik altalunk alkalmazott dézisban sem befolyasolja a lokomotoros
aktivitast. Habar valamennyi csoportot figyelembe véve az allatok altal megtett ut
szignifikansan alacsonyabb volt a teszt sordn, mint a a mikroinjekcio nélkiili, Un.
bazalis aktivitds, valamint a keresztezések szdma is némileg (bar nem
szignifikansan) csokkent, az egyes csoportok atlagai egymastol nem kiilonboztek
sem a kezeletlen allapotban, sem a teszt soran. Ez a jelenség nagy valoszinliséggel
a kisérleti kornyezethez val6 adaptacionak (tovabbi habituacionak) tudhato be. Az
OPF teszt eredményei megfelelnek Torregrossa és Kalivas korabbi kisérletének
[16], melyben kimutattadk, hogy a NT(8-13) mikroinjekcidja a VP-ban nem
befolyasolja a spontan lokomotoros aktivitast. Ezeket az eredményeket az altalunk
alkalmazottnal kisebb dozisu NT(8-13)-mal kaptak, valamint ismert, hogy a NT és
a NT(8-13) hatasa nem mindig azonos [3, 57-59], ezért jobbnak lattuk NT-nel is
elvégezni a kisérletet. Tehat sajat eredményeink, illetve irodalmi adatok alapjan a

VP NT-receptorainak nincs szerepe a lokomotoros aktivitas szabalyozasaban.
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5.2. A ventralis pallidum NTS1-receptorainak szerepe a jutalmazasban

A CPP paradigmat széles korben alkalmazzdk kiilonféle kémiai anyagok
jutalmazd, illetve pozitiv megerdsitd hatasanak mérésére [301-304]. A CPP
kisérletben a kondicionalasok soran mikroinjektalt anyag hatasa és az adott hely
(jelen esetben a kezelékvadrans) kozott kondicionalt asszociacid jon létre. A
helypreferencia kialakulasanak tehat legalabb két feltétele van: az egyik az anyag
jutalmazd, illetve pozitiv megerdsitd hatasa, a masik pedig a memoria kialakulasa
[304]. A tesztek kezeletlen allapotban torténnek, ennek nagy elénye, hogy az
eredményeket az anyagok esetleges akut hatasai, illetve mellékhatasai (a
lokomociora, a fajdalomérzésre, a szorongasra, ill. egyéb funkcidkra) nem
befolyasoljak. A teszt soran az allatok magatartasat a kornyezeti vizualis jelekhez

,,cue’-khoz) kapcsoloddo memoriafolyamatok iranyitjak.

Ismert, hogy a VP fontos szerepet jatszik a helypreferenciaban:
pszichostimulansok, mint pl. kokain és amfetamin CPP-t valtanak ki [194]. A VP
opioidreceptorainak blokadja kondicionalt helyaverziot okoz [196], a VP laesidja
esetén pedig nem alakithatdo ki kokain, amfetamin, illetve szukrdz indukalta
helypreferencia [192, 193, 195]. A NT-r6l mas agyteriileteken mar kimutattak,
hogy jutalmazé hatasu: kémiai oningerlés épithet6 ki vele a VTA-ban, a NAC-ben
¢és a subiculumban, de a medialis eléagyi kotegben nem [85, 88]. Emellett a NT
helypreferenciat valt ki a VTA-ban [3] és az amygdala centralis magjaban [89]. A
VP-ban azonban eddig még nem vizsgaltdk a NT esetleges hatdsait a
helypreferenciara.

Eredményeink azt mutatjak, hogy a VP-ba injektalt NT jutalmazo, illetve
pozitiv megerdsitd hatasu. Kimutattuk tovabba, hogy a NT a CPP paradigméban
sincs hatdssal az allatok motoros aktivitdsara (a megtett Utra). A CPP teszt
eredményét az egyes anyagok lokomocidra gyakorolt esetleges akut hatdsai nem
befolyasolhatjak, mivel a teszt drogmentes allapotban torténik. Viszont ha a
neurokémiai anyag a kondiciondldsok soran hatassal lenne a lokomociora, ez a
tesztben is megjelenhetne az Gn. kondicionalt droghatas kovetkeztében [304, 308],
hiszen a kondiciondldsok sordn a lokomotoros hatds is asszocidlodhat a

kezelokvadranssal. Jelen kisérletben a NT sem a kondicionalasok, sem a teszt
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soran nem befolydsolta az allatok altal megtett utat, ez egybevag az OPF teszt
eredményeivel.

A jutalmazé hatas receptorspecificitasat a NTS1-specifikus antagonista SR
48692 segitségével vizsgaltuk, mivel a NT receptorai koziil a VP-ban ez talalhato
meg a legmagasabb koncentracioban [51]. A masodik kisérletben a 100 ng NT-nel
kezelt csoport az els6 kisérlethez hasonloan t6bb 1ddt toltott a kezelOkvadransban,
tehat sikeriilt ismét kimutatni a NT 100 ng-os dézisanak helypreferenciat indukalo
hatasat. Ezt a hatast ekvimolaris NTS1-specifikus antagonista elokezeléssel
sikeriilt kivédeni. A CPP paradigma sordn az allatok altal megtett utat sem a NT,
sem az SR 48692 nem befolyasolta, az egyes allatcsoportok altal megtett it atlaga
nem kiilonb6zott az egyes kisérleti szakaszokon beliil.

Az antagonistaval végzett kisérletben a kondicionalas soran (az elsd kisérlettol
eltéréen) az allatok nem 1, hanem 2 mikroinjekciot kaptak (minden csoportban). A
masik lehetdség az lett volna, hogy az egyféle anyaggal (vivéanyag, NT vagy SR
48692) kezelt allatok csak 1, mig az antagonistaval eldkezelt csoport allatai 2
mikroinjekciot kapnak a kondicionalasok soran. Ebben az esetben felmeriilhetett
volna, hogy az antagonistaval el6kezelt csoportban az Osszességében nagyobb
mikroinjekcids térfogat befolyasolhatna a kisérletek eredményét (az antagonistaval
elokezelt csoportban 2 x 0,4 pl, mig a tobbi csoportban csak 0,4 pl minden
kondicionalas soran). Ennek a lehet6ségnek a kizarasa céljabdl (illetve azért, hogy
az egyes csoportok eredményei a kisérleten beliil 6sszehasonlithatdéak legyenek) a
kontrollcsoport allatai is 2-2 mikroinjekciot kaptak, illetve a 100 ng NT-nel kezelt
csoport is megkapta az antagonista vivOanyagat 15 perccel a NT-mikroinjekciok
elétt. A 100 ng NT-nel kezelt csoport, illetve a kontrollcsoport eredményei
azonban hasonléak voltak az els6 kisérletben kapottakhoz. Ez alapjan kimondhato,
hogy a kisérlet eredményét nem befolyédsolta, hogy az allatok ez egyes
kondicionalasok soran 1 vagy 2 mikroinjekciot kaptak. Emellett a masodik kisérlet
segitségével meg is erdsitettiik, hogy a NT 100 ng-os dézisban jutalmazo hatast a
VP-ban, mivel az elsd kisérlet eredményét reprodukalni tudtuk. A NTS1-
antagonista SR 48692 6nmagaban nem volt hatdsos az alkalmazott d6zisban, az

antagonista el6kezelés viszont kivédte a NT hatdsat, ezzel sikeriilt demonstralni a
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hatas NTS1-receptorspecificitdsat. A CPP teszt segitségével igazoltuk, hogy a VP

NTS1-receptorainak jelentdsége van a jutalmazo folyamatokban.

5.3. A ventralis pallidum NTS1-receptorainak szerepe a szorongas
szabalyozasaban

A CPP teszt eredményeinek értelmezése kapcsan felmeriilhet, hogy az allatok
akar amiatt is tobb id6t tolthetnek egy adott kvadransban, ha az anyag anxiogén
hatasu. Tovabba az sem ritka, hogy a jutalmaz6 hatasi anyagok egyben
anxiolitikus hatassal is rendelkeznek. A fenti okok miatt megvizsgaltuk a NT
szorongasra gyakorolt hatasat is. Az EPM teszt széles korben elfogadott modszer a
szorongas vizsgalatara [305-307]. A paradigma az allatok nyilt terekt6l és
magassagtol vald természetes félelmén alapul [307], igy a nyitott karokon vagy
azok végein toltott tobb id6 jol jelzi az anxiolitikus hatast. A VP szorongasban
jatszott szerepe korabban is ismert volt. Kimutattak, hogy a vazopresszin la
receptor emelkedett aktivitasa a VP-ban fokozza a szorongast [205]. Az NT-rdl
szintén leirtadk mar mas agyteriileteken, hogy hatassal van a szorongasra: NAC-ben
a dorsalis raphemag laesiojat kovet6en anxiolitikus hatasa [110], rezerpin
szisztémas adasat kovetden viszont fokozza a szorongast [111], ez alapjan ott a
NT szorongasoldd hatasa allapotfiiggd lehet, és a monoaminok egyensulyanak
helyreallitasara iranyul [111].

Jelen kisérleteink soran a NT 100 ng-os dézisa a VP-ban anxiolitikus
hatdsinak bizonyult: a NT szignifikdnsan csokkentette a zart karokon, illetve
novelte a nyitott karokon €s az azok végein t6ltott idét. A masodik, antagonistaval
végzett kisérletben a NTS1-antagonista SR 48692 dnmagaban nem befolyasolta a
szorongast az alkalmazott dozisban, viszont kivédte a NT szorongéasoldo hatasat.
Tehat a NT anxiolitikus hatasa a VP-ban szintén NTS1-receptorokon valdosulnak
meg. Emellett a masodik kisérletben sikeriilt Gjra kimutatni a NT 100 ng-0sS
dozisanak anxiolitikus hatasat. A NTS1-receptorok szorongas szabalyozasaban
betoltott szerepét szelektiv NTS1-agonista PD 149163 szisztémas injekciojanak
anxiolitikus hatasa szintén igazolja [5, 7]. Mas agyteriileteken viszont a NTS2-

rceptoroknak is szerepe lehet a szorongas szabalyozasaban [6]. A mikroinjekciok

49



szama az EPM kisérletben sem befolyésolta az eredményt, mivel a CPP teszthez
hasonléan ebben a paradigmaban is sikeresen reprodukaltuk az elsé kisérlet
eredményeit.

Ha csak az apparatus egyes teriiletein eltoltott idét mérjik, nem zarhatéd ki,
hogy az eredmények részben a NT lokomotoros aktivitasara gyakorolt potencialis
hatasanak kovetkezményei, tehat ha a NT fokozné a lokomotoros aktivitast, akkor
emiatt is tobb 1d6t tolthetnének az EPM tesztben a nyitott karokon. Az allatok altal
az EPM paradigma soran megtett ut azonban nem kiilonbozott az egyes
allatcsoportok kozott, tehat ebben a kisérletben is sikeriilt demonstralni, hogy sem
a NT, sem az SR 48692 nem befolyasolja a lokomotoros aktivitast. Ezen feliil az
egyes csoportok altal megtett Gt 4tlaga hasonl6 a szintén 5 perces id6tartamu OPF
teszt soran kapott eredményekhez.

Eredményeink alapjan feltételezhetjiik, hogy a VP NTS1-receptorainak
aktivacidja kovetkeztében kialakulo anxiolitikus hatas pozitiv motivacios-
emocionalis allapotot valt ki, amelyet az allat a CPP paradigmaban a
kezel6kvadranshoz kot. Ugyanez figyelhetd meg a nucleus basalisba injektalt P-
anyag esetében is, amely pozitiv megerdsité [44], illetve anxiolitikus hatasu [25].
Ez mas agyteriileteken sem szokatlan jelenség. A P-anyag a globus pallidushan
[309], valamint az amygdala centralis magjaban is helypreferenciat indukal [310],
illetve szorongasoldo hatasu [311]. Az ellenkez6jére (amikor az adott anyag nem
hatdsos mindkét paradigméban) szintén taldlunk példat az irodalomban. A NT az
amygdala centralis magjaban helypreferenciat valt ki, a szorongast azonban nem
befolyasolja [89].

5.4. A 250 ng-0s neurotenzin mikroinjekciok hatastalansaganak lehetséges
okai

Jelen kisérleteink soran a NT alkalmazott dozisai koziil mind a CPP, mind az
EPM tesztben a 100 ng-os dozis bizonyult hatasosnak, a 250 ng-os dozis nem. A
dozis emelésekor a hatds gyengiilése vagy megsziinése nem szokatlan jelenség a
neuropeptideknél, magyarazata a forditott U alakt do6zis-hatas-gorbe [312, 313].

Korébban ugyanez volt jellemz6 a NT centralis amygdalaban kifejtett hatasara is:
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a 100 ng-os dozisnak szerepe volt passziv elharitd szitudcidban, mig a 250 ng-0S
dozis nem volt hatasos [114]. Mas neuropeptideknél szintén megfigyelheté a
jelenség: a P-anyag a globus pallidusban ¢és a centralis amygdalaban
helypreferenciat valtott ki [309, 310] és fokozta a passziv elharité tanulast [314]
10 ng-os dozisban, viszont 100 ng-os dézisban nem. Az acilalt ghrelin 50 ng-0s
doézisban a BLA-ban javitotta a passziv elharitd tanulast, valamint a térbeli
tanulast, 100 ng-os d6zisban viszont nem [315, 316].

Egy masik lehetséges magyardzat a NT magasabb doézisdnak gyengébb
hatasara, hogy a magasabb dozis nagyobb mértékben befolydsol mas, pl. NTS2-
receptorokat, amelyek kisebb affinitassal rendelkeznek a NT-re [50-52, 69, 70], és
amelyek, bar nagyon alacsony koncentraciéban, de kimutathatok a VP-ban [51,
246]. A kétféle receptor eltéré hatasanak hatterében allhatna a részben kiillonbozo
jelatvitel [50-52], valamint az, hogy a NTS2-receptorokon a NT-antagonistak
indukalhatnak kalcium bearamlast, amelyet a NT kivédhet [76]. A VP-ban
talalhatdo NTS2-receptorok funkcidinak tisztazasa céljabol a jovében tovabbi,
NTS2-specifikus agonistak és/vagy antagonistak hatdsanak vizsgalatara iranyuld
kisérletek sziikségesek.

Tovéabbi magyarazat lehet, hogy a kiilonb6zd, NT altal potencidlisan modulalt
transzmitterek kiilonb6zd érzékenységgel rendelkeznek a NT-re, igy a NT
dozisatol fiiggben a NT csak az egyik, vagy akdr mindkét rendszerre, illetve
tovabbi transzmitterekre is hatast gyakorolhat és ezek a hatdsok interferalhatnak
egymassal. Erre a jelenségre példa a NT lokalis alkalmazisanak hatasa a NAC-
ben: a NT nagyobb doézisban néveli az extracellularis GABA- és DA-szintet is,
kisebb dozisban viszont csak a GABA-szintet noveli, a DA-szintet viszont
csokkenti, ez a csokkenés azonban GABA a-antagonistaval kivédhet6 [11].

Alternativ magyarazat lehetne még a NT-receptorok pre- és posztszinaptikus
elhelyezkedése, amelyek igy eltér6 modon modulalhatnak a striatopallidalis
bemeneteket. Immunolégiai és elektronmikroszkdpos vizsgalatok alapjan azonban
a NT-receptorok tipusosan posztszinaptikusan a striatopallidalis afferenseket
fogado dendriteken, valamint az idegsejtek perikaryonjain helyezkednek el [19,
245]. Preszinaptikus NT-receptorok 1étét a VP-ban eddig nem igazoltak, ebben
tehat a VP kiilonbozik a NAC-t6l, ahol a NT-receptorok féleg az
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axonterminalisokon talalhatok [51]. Nem zarhatdo ki viszont, hogy a lokalis
GABA-koncentracio NT dozisatdl fiiggd valtozasai a GABA koncentracidjatol
fliggben  preszinaptikus ~ GABA-receptorokon  keresztiill  eltér6  hatast
gyakorolhatnak mads transzmitterek felszabaduldsara, err6l azonban egyeldre nem
rendelkeziink adatokkal.

Szintén nem zarhato ki, hogy a beadott anyagok a kornyezd agyteriiletekre
diffundalnak, és a kdrnyez0 struktarakban szintén jelen vannak a NT-receptorok: a
substantia innominata, a Broca-féle diagonalis kdteg horizontalis ajka, valamint a
nucleus preopticus magnocellularis erésen jelolodik NTS1-receptor elleni
antitestekkel, a stria terminalis beagyazott magja, a globus pallidus, a Calleja-
szigetek, a lateralis hypohtalamikus area kevésbé, a caudatumban pedig csak
néhany interneuron [51, 245]. A kdrnyez6 teriiletekre vald diffuzio valosziniiségét
viszont nagy mértékben csokkenti, hogy a NT-t a peptidazok lebontjak [51, 317].
A NT féléletideje emberi vérplazmaban 37 °C-on 1,4 perc [318], az agyban kb. 15
perc [319, 320]. Jelen kisérleteinkben az EPM és az OPF teszt 5 percig, a CPP
teszt kondiciondlasa 15 percig tartott, ezen idé a fenti eredmények alapjan nem
elegendd a NT lebomlésahoz, igy a NT a kisérlet teljes idotartama alatt hatni
tudott. Az 5, illetve a 15 perces id6étartam viszont ahhoz valdsziniileg tal rovid,
hogy a NT a szomszédos strukturdkba diffundalhasson, és ezaltal befolyasolhassa
a kisérletek eredményeit. A VP-mal szomszédos agyteriileteken egyeldre nincs
adat a NT esetleges magatartdsi hatdsairol. A diffazié pontos meghatarozasdhoz

tovabbi vizsgalatokra lenne szilikség, pl. radioaktivan jelolt NT alkalmazéasaval.

5.5. A neurotenzin lehetséges hatasmechanizmusa a ventralis pallidumban

A VP-ban a NT-receptorok szinte kizarolag a VPvm alrégioban talalhatok, de a
VPdl-ban vagy mas alrégiokban nem [19, 20, 24], igy a NT alkalmazasaval a
VPvm célzott vizsgalatara van lehetéség. Kimondhatjuk tehat, hogy a VP-ba
mikroinjektalt NT jutalmazo, illetve anxiolitikus hatasaért ez az alrégio felelés. A
VPvm-ban foleg NTS1-receptorokat azonositottak [245], az NTS2-receptorok
viszont csak alacsony koncentracioban talalhatok meg [51, 246]. Ez alapjan
feltételeztiik, hogy a NT a VP-ban a NTS1-receptorokon keresztiil fejti ki
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magatartdsi hatasait. Ezt a feltételezést NTS1-specifikus antagonista adasaval
sikeriilt igazolni, mivel az SR 48692 ecldkezelés kivédte a NT jutalmazo, illetve
anxiolitikus hatasat is.

Felmertil a kérdés, hogy a VP-ba injektalt NT pontosan hogyan fejti ki
jutalmazd, illetve anxiolitikus hatasat. lgazoltak, hogy a VP-ban a NT modulalja a
GABA-erg neurotranszmissziot [16]. Sajnos azzal kapcsolatban nem rendelkeziink
adatokkal, hogy a NT-receptorok a VP melyik sejttipusain talalhatok, azonban
tudjuk, hogy posztszinaptikusan helyezkednek el [19, 51, 245]. Szintén ismert,
hogy a NT(8-13) VPvm-ba torténé mikroinjekcidja megndveli az extracellularis
GABA-szintet [16], ez alapjan a NT-receptoroknak az interneuronokon
mindenképpen jelen kell lenniiik, a GABA NT hatédsara torténd lokalis ndvekedése
pedig gatolja a VP GABA-erg kimeneti neuronjait. A NT a GABA-szint novelése
mellett potencirozza a kokainalapt drogkeresést, viszont gatolja a cue-alapi
drogkeresést kokainadminisztraciét, majd extinkciot kovetden [16]. Ujabb
vizsgalatok alapjan a VPvm biotechnologiaval kifejlesztett ¢és lentiviralis
vektorokkal bejuttatott mesterséges, Un. designerreceptorokkal [321] valo
inaktivacidja ugyanilyen, a VPdI inaktivacidja viszont ezzel ellentétes hatasu:
gatolja kokainalapi drogkeresést, viszont nem befolyasolja a cue-alapu
drogkeresést [36]. Ezen feliil a cue-alapti drogkeresés soran aktivalodnak a VPvm
VTA-ba projicialo gatldé neuronjai, viszont a VPdI nem aktivaloédik [36]. Human
fMRI-vizsgalatok szintén igazoltdk, hogy a VPvm ¢és a VPdl kiilonféle
(gusztustalan, illetve gusztusos) stimulusok latvanyara aktivalodhat [236]. A
fentiek alapjan okkal feltételezhetd, hogy a két szubrégi6 GABA-erg gatlasa
szintén ellentétes hatast. Sajnos a legtobb mikroinjekcids kisérlet a VP-ot
homogén egységnek tekinti és nem tesz kiilonbséget az alrégiok kozott (ennek oka
részben az alrégiok igen kis mérete, és az egyes alrégiok specifikus célzdsanak
nehézségei), igy az irodalomban fellelhetd legtobb eredmény tekintetében nem
tudjuk, hogy az egyes alrégiok mutatnak-e funkcionalis kiilonbségeket.

Erdekes médon a két alrégié GABA-erg inaktivacidja nem minden kisérletben
bizonyult ellentétes hatasunak. GABAAa-agonista muscimol a VPvm-ban és a
VPdl-ban egyarant csokkentette a taplalékbevitelt és negativ izreaktivitasi

mintazatokat valtott ki [203], mig a GABAa-antagonista bicucullin fokozta a

53



taplalkozasi magatartast, az izreaktivitast pedig nem befolyasolta [23, 201].
Azonban a hatas tekintetében még a VPvm-on beliill is inhomogenitas volt
megfigyelhetd, mivel a VPvm legventromedialisabb részén egy kis teriileten a
GABAA-antagonista csokkentette a taplalékbevitelt [23, 201], igy a VP egyes
részeinek ellentétes funkcidi ebben a kisérletben is kimutathatéak voltak. Arrol,
hogy a NT a VP-ban befolyasolja-e a GABA taplalkozast szabalyoz6 hatasait,

egyeldre nem rendelkeziink adatokkal.

5.6. A ventralis pallidumba mikroinjektalt neurotenzin feltételezett hatasa a
ventralis tegmentalis area aktivitasara

Mint a NAC {6 kimenete, a VP valdszintlileg a VTA-n keresztiil szabalyozza a
szorongast [26, 208, 223, 231, 232], valamint a jutalmazast és a drogkeres6
magatartast [36, 177]. A VP alrégioi kozil a VPvm az egyetlen, ahol nagy
mennyiségben mutattak ki NT-receptorokat [19, 20], tovabba ismert, hogy a
VPvm efferenseinek egyik f6 célpontja a VTA [20, 215, 227]. A VPvm GABA-
erg neuronjai gatoljak a VTA neuronjainak tiizelését [229], ezaltal a VP
befolyasolja a VTA DA-erg neuronjainak populacios aktivitasat [26, 208, 223,
230]. A NAC-b6l a VP-ba men6 GABA-erg rostok aktivacioja, vagy a VPvm
lokalis inaktivacioja GABA-agonistakkal [230] vagy mesterségesen bejuttatott
receptorok aktivalasaval [36] gatolja a VPvm-bol a VTA-ba vetiilld6 GABA-erg
efferens palyat, ezaltal a VTA felszabadul a gatlas alol, igy a DA-erg neuronok
tiizelési frekvenciaja szignifikansan novekszik [36, 230]. A VTA megndvekedett
aktivitasa @ NAC-ben mérheté extracellularis DA-szint novekedésével jar egyiitt
[230]. A megnovekedett DA-szint a VTA-ban és a NAC-ben Osszekapcsolhatd a
jutalommal és a pozitiv megerésitéssel [322-324]. A legujabb kutatasok alapjan a
VP-ba injektalt NT [16], valamint a VPvm mesterséges receptorokkal valod
inaktivacidja (melynek soran a VTA felszabadul a GABA-erg gatlas aldl) egyarant
gatolja a cue-alapi drogkeresést [36]. A fentiek alapjan nagy valoszinliséggel
kijelenthetjiik, hogy a NT VP-ba torténd direkt mikroinjekcigja a VPvm
inaktivaciojan keresztiil aktivalja a VTA-t, és igy fejti ki jutalmazo, valamint

szorongasoldd hatasat is. Bar kimutattak a VP-bol a VTA-ba mend glutamaterg
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efferenseket is [244], ezek azonban nem modulaljak direkt a DA-erg neuronokat
[36].

A BLA szintén a VP-VTA-tengelyen keresztiil szabalyozza a szorongast [208],
valosziniileg a jutalmazést is. A fentieket aldtdmasztja, hogy a kronikus, kdzepes
mértéki stressz csokkenti a VTA dopaminerg neuronjainak populacids aktivitasat,
ez a hatas pedig gyengithet6 a BLA vagy a VP lokalis inaktivacidjaval [26]. A
prepulse-gatlas (PPI) esetén is hasonldo észlelheté: a VP laesidja vagy
farmakologiai inaktivacidja normalizalja a NAC [325] vagy a BLA [208] laesioja
vagy gatlasa altal kivaltott PPI-deficitet. A fentiek alapjan jo okkal feltételezhetd,
hogy a NT a BLA-NAC-VP-VTA tengelyen keresztiil fejti ki jutalmazd és

anxiolitikus hatasat.

5.7. A dopamin szerepe a neurotenzin hatismechanizmusaban

Az eddigiek alapjan a NT magatartasi hatidsaiban a GABA-erg rendszer
antagonista picrotoxin a VP-ban semmilyen hatassal nem rendelkezik CPP
paradigmaban [247], igy a helypreferenciaban a GABA-erg rendszer szerepe
valdszinilileg nem meghataroz6. A fentiek alapjan feltételeztik, hogy a NT
magatartdsi hatasai (igy a helypreferencia és a szorongasoldd hatés is) legalabbis
részben a GABA-erg rendszertdl fiiggetleniil valosulnak meg.

Egyes neuropeptidek, igy pl. a NT ¢és a P-anyag a mezolimbikus DA-erg
anxiolitikus hatasat [13, 15, 313, 326]. A NT szamos agyteriileten kolokalizalodik
DA-nal, azaz ugyanabbol a terminalisbol DA és NT is felszabadul: a VTA-ban, a
NAC-ben, az amygdalaban és a PFC-ben [10, 155, 156]. Szintén tobb agyteriileten
kimutattak, hogy a NT modulalja a DA felszabadulasat [11, 59, 157, 162, 164,
167, 169-171], illetve hatasat [10, 15, 154, 158, 159], tehat a két rendszer kozott
akkor is lehet kdlcsonhatas (interakcid, illetve koakcid), amikor nem ugyanazon
axonvégz6désbol szabadulnak fel. Mivel a VPvm-ban NTS1- és DA-receptorokat
is azonositottak [19, 20, 270, 327], alapos okunk van feltételezni a NT és DA

kozotti funkciondlis interakciot. A NT DA-erg rendszerrel vald interakciojanak
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koncepcidjat a VP-ban tdmogatja, hogy az i.v. beadott NT-receptor antagonistak és
DA-receptor antagonistak hasonldéan hatnak a VP neuronjainak aktivitasara [298].
A fentiek alapjan feltételeztiik, hogy a NT magatartasi hatasai a DA-erg rendszer
rendszer rostjai is beidegeznek [217].

A VP D1 ¢és D2 DA-receptorainak magatartasi hatasai részben mar ismertek. A
jutalmazo, pozitiv megerdsitd folyamatokban, valamint az oningerlésben a VP DI
és D2 DA-receptorainak egyarant szerepe van [195, 275]. A D1 DA-receptorok
aktivacidja noveli a lokomotoros aktivitast [273], szerepe van a térbeli [212, 213]
és a bilintetéses tanulasban [210, 213], valamint a memoriakonszolidacioban [212,
213]. A VP D2 DA-receptorainak aktivacidja quinpirollal kis doézisban (0,3-1
ng/0,5 ul) nem befolyasolja, nagy dozisban (3 pg/0,5 ul) csokkenti a lokomotoros
aktivitast [273]. Emellett a quinpirol fokozza a térbeli tanulast Morris-féle
usztatasi tesztben, a D2 DA-receptor-antagonista sulpirid viszont gyengiti a
memoriakonszolidaciot, valamint a rovid tavih memoria kialakulasat is [213].
Passziv elharito szituacioban vizsgalva a quinpirol a VVP-ban a biintetéses tanulast
is elésegiti, a D2-antagonista sulpirid viszont ebben a paradigmaban is gatolja a
memoriakonszolidaciot [213]. A VP-ba mikroinjektalt quinpirol bar nem okoz
helypreferenciat, de szignifikansan noveli a kezeldkvadransba torténé belépések
szamat, valamint a megtett utat CPP tesztben, mig a D1 DA-receptor-agonista
SKF 38393 semelyik mért paraméterre sem volt hatassal [213]. A fentiek alapjan a
CPP paradigméaban kapott eredményt inkabb a D2-receptorok befolyasolhatjak,
ezért jelen vizsgalataink soran erre a receptoraltipusra fokuszaltunk. A VP DA-
receptorainak szorongasban jatszott szerepe egyeldre nem ismert.

Jelen kisérleteink soran a CPP paradigmaban a D2 DA-receptor antagonista
sulpirid az alkalmazott d6zisban nem okozott sem helypreferenciat, sem averziot.
Ismételten reprodukalni tudtuk a NT 100 ng-os dézisanak helypreferenciat okozo
hatasat, amit a sulpirid elokezelés kivédett. Emellett a sulpirid dnmagaban is,
valamint a sulpirid eldkezelés is szignifikdnsan csokkentette az allatok altal
megtett utat a kondicionalasok, illetve a teszt soran. A kezeletlen allapotban
végzett teszt soran nem beszélhetiink akut neurokémiai hatasrol, a kapott

eredmény lehetséges magyarazata a kondicionalt droghatas [304], azaz a
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kondicionalasok sordn az akut droghatas miatt az allat kevesebbet mozog, és ez
asszocialodik a kisérleti apparatussal. Ez ellen sz6l azonban, hogy a sulpirid
memoriakonszolidaciot gatlo hatasanak [213] a kondicionalt droghatast is
gyengitenie kellene. A sulpirid altal okozott esetleges hosszl tdvi motoros deficit
szintén szoba jOhetne, azonban Morris-féle usztatdsi tesztben a kordbban
sulpiriddel kezelt allatoknal nem tapasztalhato eltérés az allatok uszasi sebességét
tekintve a tobbi csoporthoz képest [213], igy a motoros deficit szerepe is kizarhato.

Az EPM paradigmaban a sulpirid eldkezelés kivédte a NT (ebben a kisérletben
ismételten reprodukalt) szorongasoldé hatasat. A sulpiriddel kezelt allatoknal
ugyan tendencia volt megfigyelhet6, hogy kevesebb id6t (4,73 £ 2,73 sec) toltenek
a nyitott karok végein, mint a kontrollcsoport (13,16 + 2,52 sec), ez azonban nem
volt szignifikans (Id. 15. abra). Ennek ellenére nem zarhat6 ki a sulpirid anxiogén
hatasa, mivel a kontrollcsoport allatai is viszonylag kevés id6t toltenek a nyitott
karokon, és ehhez képest a paradigma jellegébdl adéddan nehezebb szignifikans
anxiogén hatast kimutatni.

A D2 DA-receptorok hatdsa a lokomoéciora igen valtozatos a beadas modjatol,
illetve dozistol fliggben. A szisztémasan adott D2 DA-receptor antagonista sulpirid
lokomociora gyakorolt hatasa dozisfiiggd: nagy dozisban (>40 mg/kg i.p.)
csokkenti [328, 329], kis dozisban (2,5-10 mg/kg i.p.) viszont fokozza a
lokomociot [328]. A NAC-ben gyengiti a kokain indukalta lokomociot [330].
Kutatdcsoportunk korabbi, illetve jelen kisérleteiben a D2-antagonista sulpirid (4
ug/0,4 ul-es dozisban) csokkentette a lokomotoros aktivitast [213]. A D2-agonista
quinpirol 1 pg/0,4 pl-es dozisban (érdekes modon csak a teszt soran) novelte az
allatok altal megtett utat CPP paradigmaban [213], nagyobb doézisban viszont
csokkentette azt CPP paradigmaban [213], illetve OPF tesztben is [273]. A fentiek
alapjan felmeriil, hogy az egyes DA-receptorok aktivacigjanak, illetve
inaktivaciojanak hatdsa a VP-ban dozistol és/vagy alrégiotol fliggéen akar
ellentétes lehet. A jelen kisérletek soran a sulpirid kezelés hatasara a megtett ut
csokken, fliiggetleniil attol, hogy a sulipridkezelés utan az allatok kaptak-e NT-t is.
Ez hypomotilitasra utal, amely azonban nem annak kdvetkezménye, hogy az allat
a kezel6kvadranst preferalja, vagy elkertili, hiszen a kezel6kvadransban toltott id6

nem valtozik a habituaciéo sordn mérthez képest, valamint a hypomotilitds a

57



kezel6kvadransban, valamint a tobbi kvadransban is egyarant kimutathatd (1.
melléklet). Emellett a hypomotilitds sem befolyasolja azt, hogy az allatok mennyi
1dot toltenek az egyes kvadransokban.

Kisérleteink soran haromszor is kimutattuk a NT helypreferenciat okozd, illetve
szorongasoldo hatasat. Figyelemre mélto, hogy a 100 ng NT-nel kezelt allatok
eredményeinek atlagai mindharom CPP teszt soran hasonldak, fliggetleniil attol,
hogy ezek a kisérletek kiilonb6z6 allatcsoportokon, kiillonboz6 idépontokban (bar
standardizalt koriilmények kozott) torténtek. A harom EPM teszt soran szintén jol
OsszevethetOk egymassal az egyes kisérletek kontrollcsoportjainak, illetve az
egyes kisérletek NT-nel kezelt csoportjainak atlagai is. A sulpirid elékezelés
segitségével igazoltuk, hogy a VP-ban a NTSl-receptorok jutalmazo, illetve
szorongasoldd hatasa is a D2 DA-receptorokkal interakcidban valosul meg.
Erdekes kérdés azonban ezen interakci6 jellege. A D2 DA-receptorok miikodése
mindkét paradigmaban sziikséges feltétele a NT hatasanak, hiszen a sulpirid
elokezelés kivédi a NT hatasait, viszont a D2 DA-receptorok aktivalasa (legalabbis
a CPP tesztben) 6nmagaban nem elegendé a hatas kialakitasahoz [213]. Raadasul,
mivel a VP NT-receptorai posztszinaptikusan helyezkednek el [19, 51, 245], nem
pedig a DA-erg axonterminalisokon, igy a NT direkt nem modulalhatja a DA-erg
bemeneti neuronok mitkodését (habar a posztszinaptikus DA- és NT-receptorok
kozti funkcionalis interakci®é szoba johet). Igen valoszinii, hogy a NT
hatasmechanizmusaban a VP-ban a D2-receptorokon kiviil tovabbi
mechanizmusok is szerepet jatszanak, ennek a hatasnak azonban feltétele az
endogén DA-aktivitas.

A D2 DA-receptoroknak valészinilileg inkdbb a memoriakonszolidacioban van
szerepe [213], igy a D2 DA-receptorok blokkolasa esetén a NT nem tud
helypreferenciat kialakitani, mivel a memoriakonszolidacié karosodott. Ezt a
feltételezést tamogatja, hogy a VP-nak kulcsszerepe van a kokain indukalta
kondicionalt helypreferencia kialakulasaban [188, 193], viszont a kondicionalas
utani VP-laesio nem sziinteti meg a mar kialakult helypreferenciat [193]. Ezzel
azonban nem magyarazhatjuk, hogy a D2 DA-receptorok blokadja miért sziinteti
meg a NT akut anxiolitikus hatasat is (hiszen ott memoriakomponensrél nem

beszélhetiink). Szintén a fenti elmélet ellen sz6l, hogy a memoriakonszolidacionak

58



a sulpirid mikroinjekciok ellenére bizonyos mértékig megtartottnak kell lennie,
kiilonben nem alakulhatna ki a CPP teszt soran kondicionalt droghatés. Alternativ
magyarazat lehet a sulpirid anxiogén, esetleg szedativ hatasa. A sulpirid esetleges
akut anxiogén hatasaval magyarazhatd a lokomotoros aktivitds hosszii tavu
motoros deficit nélkiili csokkenése, valamint a helypreferencia kialakuldsanak
hidnya is. A fentieket az is tamogatja, hogy a sulpiriddel kezelt allatok ha nem is
szignifikansan, de kevesebb id6t toltenek az EPM teszt soran a nyitott karok

végein, mint a tobbi csoport.

5.8 Eredményeink lehetséges klinikai relevanciaja

Jelen kisérleteink soran igazoltuk a NT direkt jutalmazd-meger6sitd, valamint
anxiolitikus hatasat a VP-ban. Igazoltuk tovabba, hogy a D2-dopaminreceptorok
aktivitasa mindkét hatas létrejottének sziikséges feltétele.

Eredményeink jol illeszkednek a korabbi kutatasokhoz, amelyek a VP-ban [16],
illetve mas agyteriileteken is kimutattdk a NT jutalmazasban, illetve
drogaddikcioban jatszott szerepét [8]. Eredményeink tjabb informaciokat
nyUjtanak a NT-erg transzmisszid jutalmazasi €s megerdsitési folyamatokban
nyUjtott szerepérdl, igy a késdbbiekben hozzajarulhatnak a NT-erg transzmisszid
sziikséges ismeretekhez is.

A szorongasos zavarok prevalencidja igen magas a modern tarsadalmakban,
emiatt kezelésiik kulcsfontossdgu. Mivel a NT mar tobb agyteriileten és
szisztémasan alkalmazva is szorongasoldd hatastnak bizonyult [5, 7, 110],
valamint jelen kisérleteinkben a VP-ban is sikeresen demonstraltuk a NT
anxiolitikus hatasat, a jovében a NT-erg transzmisszio befolyasolasa igéretes

lehetéség lehet a szorongasos zavarok kezelésében is.
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6. Osszefoglalas

A célkitlizések soran feltett kérdésekre az alabbi valaszokat kaptuk:
1. A NT nem befolyasolja a lokomotoros aktivitast.

2. A VP-ba injektalt NT 100 ng-os dozisban jutalmazé hatdsunak bizonyult CPP
tesztben.

3. A NT jutalmazé hatdsa NTSl-receptorokon valésul meg, mivel NTS1-
specifikus antagonista SR 48692-vel e hatas kivédhetd.

4. A VP-ba injektalt NT 100 ng-os dozisban anxiolitikus hatasu.

5. A NT anxiolitikus hatasa is NTS1-receptorokon valosul meg, mivel NTS1-

specifikus antagonista SR 48692-vel ez a hatas is kivédhetd.

6. A D2 DA-receptorok aktivitasa a NT jutalmazo, valamint anxiolitikus hatasanak

is sziikséges feltétele, mivel D2 DA-receptor antagonista sulpiriddel mindkét hatas
kivédhetd.

Mivel a memoriakonszolidacios folyamatokban a VP D1 DA-receptorainak
szerepe is ismert [212, 213], a jovOben szeretnénk megvizsgalni a VP DI1-

receptorainak hatasat is a NT jutalmazo, illetve anxiolitikus hatasara.

Tovéabbi céljaink kozott szerepel a VP NTSI-receptorainak esetleges mas
magatartasi folyamatokban (pl. térbeli tanulds, biintetéses tanulas) betoltott
szerepének, valamint a VP-ban alig kimutathatd mennyiségben megtalalhato

NTS2-receptorok magatartasi hatasainak vizsgalata is.
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7. Koszonetnyilvanitas

Halas koszonettel tartozom témavezetdémnek, Prof. Dr. Léndard Ldaszlo
akadémikusnak, aki lehetévé tette, hogy PhD-hallgatoként kutatdcsoportjdhoz
csatlakozhassak. Holisztikus gondolkodasaval olyan szemléletet adott, amely nagy
mértékben eldsegitette tudomanyos munkamat. A témavalasztastdl a modszertan
elsajatitasan at, az eredmények értékelése és megvitatasa soran, valamint a cikkek
megirdsaban minden szakmai segitséget megadott, idejét sosem sajnalva.

Koszonettel tartozom Prof. Dr. Karddi Zoltannak a PTE AOK Elettani Intézet
igazgatojanak a cikkek és a disszertacid megirdsa soran nyujtott segitségéért,
hasznos szakmai tanacsaiért, tamogatasaért és azért, hogy biztositotta a

munkamhoz a biztos hatteret.

Kiilon koszonet illeti baratomat és kozvetlen munkatirsamat Dr. Péczely
Laszlot, a kisérletek megtervezésében, szakmai kiértékelésében, valamint az

eredmények megvitatdsdban nyljtott nélkiilozhetetlen segitségéért.

Koszonettel tartozom tovabba Dr. Ldszlo Kristéfnak, Dr. Gdlosi Ritanak,
Kallai Veronikdnak, Dr. Kertes Erikdanak, Dr. Kovdcs Anitanak és Dr. Zagoracz
Olgadnak a kisérletek soran nyujtott segitségiikért és az értékes szakmai vitakért,
tanicsaikeért.

Koszonetet szeretnék mondani Berente Eszternek, Dr. Gubik Agnesnek, Dr.
Szabo Adamnak, Dr. Jelinek Ddnielnek, Dr. Hollési Tibornak, Gyérgy Eszternek

és Dusa Daniellanak a kisérletek kivitelezésében nyujtott segitségiikért.

Végezetiil kiilon koszonetet szeretnék mondani Kdroly Enikének, a kisérletek
kivitelezésében nyujtott nélkiilozhetetlen segitségéért, valamint Korona
Erzsébetnek a szovettani feldolgozas, illetve a kisérletek kivitelezésében nyujtott
nélkiilozhetetlen segitségért.

Kosz6nom tovabba az Intézet tobbi munkatdrsanak és csaldadomnak, hogy

tdmogatasukkal és segitségiikkel létrejohetett ez az értekezés.
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8. Roviditésjegyzék

6-OH-DA: 6-hidroxi-dopamin

AMPA: alfa-amino-3-hidroxi-5-metil-izoxazol-4-propionat
ANOVA: varianciaanalizis (analysis of variance)
BLA: basolateralis amygdala

CCK: cholecystokinin

CPP: kondicionalt helypreferencia

DA: dopamin

DAMGO: [D-Ala?, N-MePhe*, Gly-ol]-enkefalin
EPM: emelt keresztpall6 (elevated plus maze)
GABA: gamma-amino-vajsav

I.p. : intraperitonealis

1.v.: intravénas

Kq: kotési allando (egyensulyi allando)

MAPK: mitogénaktivalt proteinkinaz

NAC: nucleus accumbens

NF«B: nuclear factor kappa-light-chain-enhancer of activated B cells
NMDA: N-metil-D-aszpartat

NT: neurotenzin

NT(8-13): NT-fragmentum (8-13-as aminosavak )
NT(1-11): NT-fragmentum (1-11-es aminosavak )
NTS1, NTS2, NTS3: NT-receptor 1, 2, illetve 3
OPF: open field

PBS: foszfat-pufferes sdoldat

PFC: praefrontalis kéreg

PPI: prepulse-gatlas (prepulse-inhibicid)

SEM: standard hiba (standard error of the mean)
ST: szerotonin

ttkg: testtomeg-kilogramm

vehl: a NT vivéanyaga, részletesen 1d. 3.3. fejezet
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veh2: az SR 48692 vivéanyaga, részletesen 1d. 3.3. fejezet
veh3: a sulpirid vivéanyaga, részletesen 1d. 3.3. fejezet
VP: ventralis pallidum

VPvm: ventromedialis ventralis pallidum

VPdI: dorsolateralis ventralis pallidum

VTA: ventralis tegmentalis area
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11. Mellékletek

megtett Ut (cm)
(atlag + SEM)

kezelokvadrans

tobbi kvadrans
atlaga

kontroll (n=11)

1335,13 + 107,00

1727,90 £ 97,66

100 ng NT (n=6)

1820,49 +201,59

1381,77 +219,49

sulpirid (n=8)

* 626,27 £99,13

* 796,77 £ 89,88

sulpirid + NT (n=11)

* 011,23 +£194,53

*927,36 £119,60

1. melléklet. Az allatok altal a CPP paradigmaban a teszt iilés soran megtett ut

atlaga + SEM a kezelokvadransban, illetve a tobbi kvadrdansban dtlagosan.

Kontroll: csak vivéanyaggal kezelt dllatok (veh3 + vehl; n = 11). 100 ng NT:
veh3-mal, majd 100 ng NT-nel kezelt dllatok (n = 6). Sulpirid: 4 ug D2 DA-

receptor antagonista sulpiriddel, majd vehl-gyel kezelt dallatok (n = 8). Sulpirid +

NT: 100 ng NT mikroinjekciojanak hatasa 4 ug sulpirid elokezelést kévetoen (n
11). Az egy szempontos ANOVA teszt alapjan szignifikans kiilonbség volt

csoportok kozétt teszt iilés soran a kezel6kvadransban megtett ut (F [3;32]

a

8,721, p < 0,05), valamint a tobbi kvadrdansban megtett ut (F [3;32] = 12,671; p

< 0,05) tekintetében is. Tukey-féle post hoc teszt alapjan a sulpiriddel, illetve a

sulpirid eldkezelést kovetoen NT-nel kezelt allatok szignifikansan kevesebb utat

tesznek meg a kezelokvadransban, valamint a t6bbi kvadransban is.
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