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1. Bevezetés 
 

Napjainkban a drogaddikció, illetve a szorongásos zavarok igen komoly 

egészségügyi és társadalmi problémát jelentenek. Számos neuromodulátor szerepét 

leírták már ezekben a folyamatokban [1, 2], ezek közé tartozik a neurotenzin (NT) 

is [3-8]. A NT számos más transzmitter hatását befolyásolja a központi 

idegrendszerben, ezek közül a legfontosabb a dopamin (DA) [4, 9-15], a gamma-

amino-vajsav (GABA) [11, 14-16], a glutamát [14, 15, 17], a szerotonin (ST) [14, 

18], valamint az acetil-kolin [14]. 

 A NT a központi idegrendszer szerteágazó területein megtalálható, így a 

motivációs és jutalmazó folyamatokban központi szerepet betöltő, a nucleus 

accumbensből (NAC) a ventralis pallidumba (VP) projiciáló ventralis 

striatopallidalis pálya végződéseiben is [19, 20]. 

A VP a magatartás szabályozásának egyik fontos integráló központja [21-24]. 

Részt vesz a motivációs és a jutalomszignálok hatásának feldolgozásában és 

integrálásában [23], valamint a szorongás szabályozásában is [25, 26]. A VP-ban 

kimutattak NT-erg axonterminálisokat, valamint NT-receptorokat is [19, 20, 24], 

azonban a VP NT-receptorainak magatartásban játszott szerepéről jelenleg még 

kevés információ áll a rendelkezésünkre. Jelen kísérleteinkben a VP-ba injektált 

NT magatartás-szabályozásban, azon belül is a jutalmazásban és a megerősítésben, 

valamint a szorongásban betöltött szerepének vizsgálatát tűztük ki célul. A 

megerősítésre, illetve jutalmazásra gyakorolt hatást kondicionált helypreferencia 

(CPP) teszt segítségével, a szorongást befolyásoló hatást emelt keresztpalló teszt 

(EPM) segítségével vizsgáltuk meg. A fentiek mellett open field (OPF) tesztben a 

NT esetleges lokomotoros aktivitásra gyakorolt hatását is megvizsgáltuk. 

A NT számos agyterületen a DA-erg rendszerrel interakcióban fejti ki hatását 

[12, 13]. A DA a VP-ban megtalálható egyik fontos neurotranszmitter [27], 

magatartási hatásai is részben ismertek, azonban a DA-erg és NT-erg 

transzmisszió együttes, ill. kölcsönhatásait még nem vizsgálták ezen a területen. 

Kísérleteink másik fő célja az volt, hogy ha a NT valamelyik paradigmában 
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hatásosnak bizonyul, akkor megvizsgáljuk, hogy ezek a hatások a DA-nal 

interakcióban valósulnak-e meg. 

 

1.1. Jutalmazás, drogaddikció, szorongás 

 

A jutalmat és a pozitív megerősítést általában olyan eseményként definiálják, 

amelynek a hatására egy adott válasz előfordulási gyakorisága megnő [1, 28, 29]. 

Pszichológiai definíció szerint a jutalom kellemes érzetet és élvezetet kelt az 

élőlényben [30]. A jutalom elérésére való folyamatos törekvés hozzászokást, 

addikciót hozhat létre, a drogaddikció során pedig már destruktív és maladaptív 

viselkedésformák jönnek létre [1, 30]. A drogaddikció napjaink egyik 

legsúlyosabb népegészségügyi problémáját jelenti. A félelem és a szorongás a 

környezet különböző ingereire adott fiziológiás válaszreakciók. A szorongás tartós 

fennállása azonban számos krónikus betegség rizikófaktora is [31]. 

A jutalmazás és a szorongás szabályozásában különböző, a limbikus 

rendszerhez kapcsolódó agyterületek vesznek részt [1, 29, 30, 32], mint pl. a 

praefrontalis kéreg (PFC) [33, 34], az anterior cingularis kéreg [34], az amygdala 

[26, 30], a NAC [30, 35], a VTA [30, 36] és a VP [23, 26, 36]. Emellett számos 

neurotranszmitternek és -modulátornak szerepe van a fenti folyamatokban [1, 2], 

mint pl. GABA [30, 37], glutamát [38, 39], valamint a különféle monoaminok [6, 

35, 40-43]. Utóbbiak egyik fontos tagja a DA, amely jelentős részben a 

mezolimbikus DA-erg rendszeren keresztül fejti ki hatásait [35]. Neuropeptidek, 

úgy mint a P-anyag [25, 44-46] vagy a NT [3, 5-8] szintén bizonyítottan részt 

vesznek a jutalmazás és a szorongás szabályozásában. 
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1.2.  Neurotenzin 

 

1.2.1. A neurotenzin kémiai szerkezete 

 

A NT egy 13 aminosavból álló, ún. tridekapeptid, amely neurotranszmitter és 

neuromodulátor funkciót tölt be a központi idegrendszerben [15, 47-53]. A 

peptidet először Robert Carraway és Susan E. Leeman izolálta hypothalamusból 

1973-ban [54]. Mivel idegszövetből izolálták, perifériásan adva pedig hypotensiót 

okozott, ezért a neurotenzin nevet kapta [54]. Pontos szerkezetét 2 évvel később 

határozták meg [55]. A neurotenzin szekvenciája emberben és patkányban: 

pyroGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu-OH [55]. Más 

fajokban a szerkezete ettől eltérhet, viszont a C-terminális 6 aminosav 

szekvenciája konzervált [51], és azt is kimutatták, hogy általában ez a fragmentum 

(NT(8-13)) hordozza a NT biológiai hatását [56]. Ennek ellenére a NT és a NT(8-

13) hatása nem mindig azonos: a NT-fragmentumokat a substantia nigrában a NT-

nél nagyobb dózisban szükséges alkalmazni a tüzelési frekvencia rövid ideig tartó, 

azonos mértékű megváltoztatásához [57], továbbá a substantia nigra és a VTA 

neuronjai is rövidebb választ adnak NT(8-13)-ra és NT(9-13)-ra, mint NT-re [57, 

58]. A caudatumba injektált NT és NT(8-13) hasonló mértékben fokozza a GABA-

felszabadulást, a DA-felszabadulást viszont ugyanabban a dózisban csak a NT 

fokozza, a NT(8-13)-ból tízszeres dózis szükséges, de a hatás még akkor is 

gyengébb [59]. A VTA-ba injektált NT és érdekes módon a NT(1-11) is 

helypreferenciát vált ki, míg a NT(8-13) nem [3].  

A C-terminális számos más neuropeptid, pl. a NT-nel közös génen (NT/NN 

gén) kódolt, illetve közös prekurzorból (pro-NT) eredő neuromedin N esetében is 

hasonló a NT-éhez [60]. Az először kétéltűekből izolált  [61, 62], de emlősökben 

is kimutatható [63] xenopsin, valamint a madarakból izolált LANT-6 [64] szintén 

strukturális hasonlóságokat mutat a NT-nel. 
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1.2.2. A neurotenzin szöveti megoszlása 

 

A NT az ún. brain-gut-peptidek közé tartozik, tehát egyaránt kimutatható a 

központi idegrendszerben, valamint a gastrointestinalis rendszerben is [65]. A 

központi idegrendszerben a NT a szervezet egészében fellelhető teljes 

mennyiségének mintegy 10%-a található meg [65]. A peptidet először a 

hypothalamusból izolálták, de nagy mennyiségben kimutatható a substantia 

nigrában, a periaqueductalis szürkeállományban, a nucleus accumbensben, az 

amygdalában, a globus pallidusban, a nucleus caudatusban, a putamenben, a 

hippocampusban, a nucleus ruberben, a nucleus subthalamicusban, a kisagyban, 

valamint az agykéreg számos területén [4, 48, 51, 65-67]. Emellett nagy 

mennyiségben előfordul a hypophysis elülső, illetve hátulsó lebenyében is [65]. 

Az általunk vizsgált struktúrában, a VP-ban szintén kimutattak NT-erg 

axonterminálisokat, azonban a NT-immunoreaktivitás eloszlása a VP-n belül 

egyenlőtlen: a VP ventromedialisan erősen jelölődik, a lateralis része viszont NT-

ben szegény [19]. A NT endogén koncentrációja a VP-ban kb. 74 ± 12 * 10
-18

 

mol/10 µl [67]. 

A NT teljes mennyiségének kb. 85%-a a bélben található, emellett kimutatható 

még a májban és a gyomorban, de a tüdőben, vesében, húgyhólyagban, a szívben, 

a thymusban, és a mellékvesében is [65, 68]. 

 

1.2.3. A neurotenzin receptorai 

 

A NT legalább három különböző típusú receptoron (NTS1, NTS2 és NTS3) 

fejti ki a hatásait [13, 14, 49-53]. A NT és receptorai a központi idegrendszer 

számos területén kimutathatók: legnagyobb mennyiségben az agykéregben, az 

amygdalában, a NAC-ben, és a VP-ban is [4, 51]. 

Az 1980-as évek elején 2 különböző affinitású NT-kötőhelyet azonosítottak: 

magas affinitású, levocabastinra nem érzékeny receptorokat, valamint alacsony 

affinitású, levocabastinra érzékeny receptorokat [69, 70]. Ma (klónozásuk 

sorrendje alapján) a nagyobb affinitású (Kd = 0,1-0,3 nmol/l) kötőhelyeket [71, 72] 

NTS1-receptoroknak, a kisebb affinitásúakat (Kd = 3-10 nmol/l) NTS2-
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receptoroknak nevezzük [73, 74]. A NTS1- és NTS2-receptorok 7 transzmembrán 

doménből álló, G-protein-kapcsolt receptorok [51, 71, 74, 75]. 

A kétféle receptor jelátvitele különböző [13, 14, 49-52]. A NTS1-receptorok 

inozitol-foszfáton keresztül növelik az intracellularis kalciumszintet, emellett 

egyes sejtekben gátolják, másokban stimulálják az adenil-ciklázt, de Rho-GTP-

ázokon és NFκB-dependens utakon is hathatnak [75]. A NTS2-receptorokra 

szintén több jelátviteli út is jellemző [75]. Kínai hörcsög ovariumsejt-kultúrában 

expresszált NTS2-receptorokon a NTS1-antagonista SR 48692 és SR 142948A 

indukál jelátvitelt (Ca
2+

-beáramlás, illetve mitogénaktivált proteinkinázok 

(MAPK) aktivációja), míg a NT és a levocabastin ezeket a hatásokat kivédi [76]. 

Kisagyi szemcsesejteken viszont a NT is képes MAPK-okat aktiválni, Ca
2+

-

beáramlást viszont ezekben a sejtekben sem indukál [77]. Az adenil-cikláz gátlása 

szintén egy lehetséges jelátviteli mechanizmus [75]. 

A NTS3-receptor (sortilin-1) egyetlen transzmembrán doménből áll, és nem 

kapcsolódik G-proteinhez [78, 79]. További fontos jellemzője, hogy 90%-ban 

intracellulárisan (főleg az endoplazmatikus retikulumban, illetve a Golgi-

apparátusban) lokalizálódik, de kis mennyiségben a sejtfelszínen is kimutatható [4, 

78-80]. Egy negyedik fehérjéről, a sortilinLA/LR11-ről (NTS4) szintén leírták, 

hogy képes NT-t kötni [52, 81]. 

 

1.2.4. A neurotenzin funkciói és klinikai jelentősége 

 

A NT szerepet játszik a jutalmazás szabályozásában [4, 14, 53], illetve a 

függőség kialakulásában [8, 14, 53, 82], hiszen számos agyterületen, illetve 

szisztémásan adva pszichostimuláns hatású [4, 8, 14, 53, 83, 84]. A NT jutalmazó, 

illetve pozitív megerősítő hatással rendelkezik a VTA-ban [3, 85-87], a NAC-ben, 

a subiculumban [88], valamint az amygdala centralis magjában [89], de a lateralis 

hypothalamusban nem [90]. 

A VTA-ban fokozza a lokomotoros aktivitást, illetve az ágaskodást [91-94]. 

Intracerebroventricularis injekciója szenzitizál az amfetamin lokomotoros hatására 

[95]. Szisztémásan adott NTS1-antagonista SR 48692 csökkenti a kokainra adott 

lokomotoros választ, az ágaskodást és a helypreferenciát [96, 97], továbbá 
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késlelteti vagy csökkenti a kokain-, illetve az amfetaminszenzitizáció kialakulását 

[98-100]. 

A fentiekkel éles ellentlétben áll, hogy egyes hatásai hasonlóak az atípusos 

neuroleptikumokéhoz [10, 11, 47, 84, 101-105], így szerepe lehet az 

antipszichotikus szerek hatásmechanizmusában is. A NT-analóg NT69L blokkolja 

a kokain és amfetamin akut lokomotoros hatását [106], illetve a lokomotoros 

szenzitizációt [107, 108]. Fontos szerepe van a skizofréniában is [82, 109], 

skizofrénia esetén a liquorban alacsony NT-koncentráció mérhető [105]. Láthatjuk 

tehát, hogy a NT számos hatását a DA-erg rendszer modulációján keresztül fejti ki, 

ez a moduláció viszont agyterületenként igen eltérő lehet [4, 9-15]. 

Szerepét már az anxietás szabályozásában is leírták. A NAC-be mikroinjektált 

NT a monoaminrendszerek állapotától függően anxiolitikus [110], illetve anxiogén 

[111] hatású is lehet. NTS1-KO-egerek OPF tesztben több időt töltenek az 

apparátus fala mellett, amely szorongásra utal [112]. A szelektív NTS1-agonista 

PD 149163 gátolja a félelem által potencírozott megrezzenési (fear-potentiated 

startle) reakciót [5] és a láb elektromos sokkolása által kiváltott ultrahangos 

vokalizációt [7]. A NTS2-agonista β-laktotenzin per os adása és i.p. injekciója 

anxiolitikus hatású [6]. 

A NT-nek a tanulásban, illetve a memóriafolyamatokban is szerepe van: az 

amygdala centralis magjában fokozza a térbeli  [113], illetve a büntetéses tanulást 

[114]. A corpus mamillaréban szintén fokozza a büntetéses tanulást [115], az 

NTS1-agonista PD149163 subcutan adása viszont gátolja azt [116]. 

A NT a központi idegrendszer számos területén (a centralis amygdalában, a 

hypothalamusban, a thalamusban, a periaqueductalis szürkeállományban, valamint 

a rostralis-ventromedialis medullában) részt vesz a fájdalom feldolgozásában [52, 

117]: az opioidoktól független antinocicepcióban [118], illetve az opioidokkal 

interakcióban egyaránt [119, 120]. 

A NT részt vesz a táplálkozás szabályozásában is. Intracerebroventricularisan 

[121], a hypothalamus nucleus paraventricularisába [122] vagy ventromedialis 

régiójába [123], a VTA-ba [124], a nucleus tractus solitariiba [125] vagy a 

substantia nigrába [126] injektálva anorexigén hatású, viszont a laterális 

hypothalamusban nem [123]. A NT anorexigén hatását DA-agonisták 
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potencírozzák [123]. Más hormonok szintén részben a NT-erg rendszeren 

keresztül fejti ki anorexigén hatásukat [127]. A NT-analóg NT69L 

intraperitonealis adása csökkenti a testtömeget [128], így a NT-agonistáknak a 

jövőben az elhízás kezelésében is lehet létjogosultságuk. 

A peptidnek az alvás-ébrenlét szabályozásában is szerepe van [129]. NT adása 

ébresztő hatású, illetve megnyújtja a mély alvás megjelenésének latenciáját [130]. 

A NT a testhőmérséklet szabályozásában is fontos, mivel hypothermiát vált ki 

[131]. Ennek klinikai jelentősége az, hogy javíthatja a központi idegrendszeri 

keringészavarok prognózisát [132]. 

A NT ugyancsak részt vesz a hypothalamo-hypophysealis-rendszer 

hormonszekréciójának szabályozásában is: így a DA, a kortikotróp releasing 

hormon (CRH), és ezáltal a stresszválasz, a növekedési hormon releasing hormon 

(GHRH), valamint a prolaktin felszabadulásának szabályozásában [4, 53, 133]. 

Neuroprotektív hatását is leírták: ischaemiamodellekben a NT csökkenti az 

elhalás mértékét, valamint csökkenti a neurológiai tüneteket, ez a hypothermiás 

hatással lehet összefüggésben [132, 134, 135]. A NT-nek szerepe van a Parkinson-

kór patomechanizmusában is [14, 82, 109]: Parkinson-kór esetén csökken az 

agyban a NTS1-receptor mRNS-ének mennyisége [136], továbbá patkányokban 6-

hidroxi-dopaminos (6-OH-DA) laesio után a NT-analóg NT69L antiparkinsonos 

hatással rendelkezik [137]. Más neurodegeneratív betegségekkel szintén 

összefüggésbe hozható a NT: Alzheimer-kór esetén csökken a NT-t tartalmazó 

neuronok száma a nucleus suprachiasmaticusban, ennek szerepe lehet a cirkadián 

ritmus szabályozásának zavaraiban [138]. Öregedés során szintén csökken a NT-

erg szignalizáció, ennek szerepe lehet az öregedés során jelentkező kognitív deficit 

kialakulásában [139]. 

A NT a szív-érrendszerben is nagy jelentőségű: növeli a szív frekvenciáját, 

kontraktilitását, általában csökkenti a vérnyomást [140]. A beadás helyétől, illetve 

az élőlény éberségétől függően [141, 142] különböző érterületeken 

vazokonstrikciót, illetve –dilatációt okozhat, hatásai általában más 

keringésszabályozó mediátorok modulációján keresztül valósulnak meg [140].  

A gyomor-bélrendszerben gátolja a gyomorsav, de fokozza az exokrin pancreas 

szekrécióját [143], a digesztív fázisra jellemző mintázatot vált ki, csökkenti a 
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motilitást a felső, viszont fokozza az alsó szakaszokon [144, 145]. Emellett 

glükózkoncentrációtól függően szabályozza az endokrin pancreas inzulin-, 

glükagon- illetve szomatosztatinszekrécióját is: alacsony glükózkoncentráció 

esetén növeli, magas glükózkoncentráció esetén csökkenti [146]. A legújabb 

kutatások alapján a NT a vizeletürítés szabályozásában is szerepet játszik [147]. 

Részt vesz továbbá gyulladásos folyamatok szabályozásában is: befolyásolja az 

immunrendszer sejtjeinek működését [148, 149], ezáltal nagy jelentőségű pl. a bél 

[144, 145], illetve a bőr gyulladásos folyamataiban [150].  

A NT szerepét tumorokban is leírták: kissejtes tüdőrák, pancreas-, 

vastagbéldaganatok, valamint prosztata- és emlőtumorok esetében [151, 152]. A 

NT előanyaga, a pro-NT tumormarkerként is funkcionálhat [153]. 

 

1.2.5. A neurotenzin hatásai a különböző neurotranszmitterekre 

 

A NT számos agyterületen modulálja a DA-erg [4, 9-15], a GABA-erg  [11, 14-

16], a glutamáterg [14, 15, 17], a ST-erg  [14, 18], valamint a kolinerg [14] 

neurotranszmissziót. A NT hatása ezen rendszerekre agyterülettől és dózistól 

függően eltérő lehet [53, 154]. 

A NT és DA kolokalizációját kimutatták már a PFC-ben [10, 155], valamint a 

VTA-ban [10, 156] is. A PFC-be injektált NT lokálisan fokozza a DA 

felszabadulását [157], továbbá a VTA DA-erg sejtjeinek aktivitását is növeli [158, 

159], a nem DA-erg sejtek többségének tüzelését viszont csökkenti [159]. A PFC-

be, valamint szisztémásan egyszeri alkalommal adott SR 48692 érdekes módon 

szintén növeli, 5 héten keresztüli i.p. alkalamzása viszont csökkenti a VTA DA-

erg neuronjainak aktivitását [160]. A VTA-ban a NT preszinaptikus D2 DA-

receptorok gátlásán keresztül fokozza a DA-erg neuronok aktivitását, valamint a 

spontán motoros aktivitást [161, 162]. A VTA DA-t,  NT-t és CCK-t is termelő 

neuronjai főleg a NAC-be, az amygdalába valamint a PFC-be vetülnek [163]. A 

VTA-ba injektált NT a fokozza a DA-felszabadulást a PFC-ben [164], továbbá a 

NAC-ben is növeli a DA, valamint metabolitjainak koncentrációját [161, 165]. A 

NAC-ben a NT nagy dózisban preszinaptikus D2 DA-receptorok gátlásán 

keresztül fokozza [11, 166, 167], kis dózisban viszont GABA-függő 
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mechanizmussal csökkenti a DA-szintet [11]. A NT-receptor-antagonista SR 

48692 szisztémás adása szintén csökkenti a DA-szintet a NAC-ben, míg a PFC-

ben nem befolyásolja azt [168]. A nucleus caudatusban a NT lokális alkalmazása 

már alacsony koncentrációban is növeli a DA-felszabadulást és az extracellularis 

GABA-szintet, míg a NT(8–13) csak magas koncentrációban emeli a DA-szintet 

[59]. A striatumban szintén megnő a DA-felszabadulás NT hatására [169, 170]. A 

substantia nigra pars compactájába injektált NT növeli a DA, valamint a DA 

metabolitjainak a koncentrációját a globus pallidusban és a nucleus caudatusban 

[171]. 

A NT GABA-erg neurotranszmisszióra gyakorolt hatása szintén agyterülettől 

függően eltérő lehet. A NT növeli a GABA-szintet a PFC-ben [172, 173], a NAC-

ben [11] és a nucleus caudatusban [59]. A NT(8-13) a VP-ban szintén növeli az 

extracellularis GABA-szintet [16]. Ezzel szemben a substantia nigrába injektált 

NT mind a lokális, mind a ventralis thalamikus GABA-szintet csökkenti [174]. 

A NT a glutamáterg transzmisszióra is hatást gyakorol [17, 175]. A striatumban 

[176], a substantia nigrában [174], valamint a VTA-ban [177] növeli a 

glutamátszintet, viszont a PFC-ben nem hat rá [173]. 

A NT néhány agyterületen a ST-erg rendszer működését is modulálja: fokozza 

a raphemagok ST-erg neuronjainak aktivitását [178, 179], a NAC-ben növeli, míg 

a VTA-ban csökkenti az 5-hidroxi-indolecetsav/ST-arányt [18]. Szisztémásan 

adott NTS1-agonista PD149163 blokkolja a prepulse-gátlás ST-agonistával való 

megszakítását (diszrupcióját) [180]. 

Az acetil-kolint szintén modulálhatja a NT [14]: a PFC-ben a NT növeli az 

extracellularis acetil-kolin-szintet [173], a bazális előagy kolinerg neuronjain 

burstaktivitást [129, 181, 182], a diagonalis kötegben [183] depolarizációt okoz. 

Újabban a NT és az opioidok interakcióit is leírták, főleg a fájdalomérzés 

feldolgozása kapcsán [119, 120], ugyanakkor a NT fontos szerepét szintén 

tisztázták az opioidoktól független antinocicepcióban is [118]. A NT a morfin 

lokomóciót indukáló hatását is befolyásolhatja [184]. 
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1.3. A ventralis pallidum 

 

A VP a bazális előagy területén található, Heimer és Wilson által 1975-ben 

leírt, a commissura anterior alatt ventralisan és rostralisan elhelyezkedő struktúra 

[185], amelyre jellemző az enkefalin-immunoreaktivitás, illetve a P-anyagot 

tartalmazó ún. gyapjas (woolly) rostok sajátos mintázata [186]. 

 

1.3.1. A ventralis pallidum funkciói 

 

A VP részt vesz a motivációs és a jutalomszignálok feldolgozásában, illetve 

ezek motoros kimenetté való átalakításában (ez a folyamat az ún. limbikus-

motoros integráció), a szorongás, valamint a táplálkozás szabályozásában [21-24, 

187]. 

Már régóta ismert, hogy a VP-nak szerepe van a jutalmazásban [23]. A VP-ban 

elektromos öningerlés építhető ki [188]. Emellett fontos a kokain-önadagolás 

szabályozásában [189-191], a kondicionált helypreferencia kialakulásában [192-

196], a drogkereső magatartásban [16, 36, 197, 198], valamint a morfin indukálta 

szenzitizációban [199]. 

A táplálkozás szabályozásában is kiemelt fontosságú [200], így részt vesz pl. a 

táplálék jutalmazó hatásának közvetítésében, továbbá a tanult ízaverzióban is 

[201-204]. 

A VP közreműködik a szorongás regulációjában is [26, 205]. Emellett szerepe 

van a megrezzenési reakcióban, úgyszintén a prepulse-inhibícióban [206-208]. 

A VP fontos a tanulásban  [209, 210], a munkamemória kialakításában [211], 

illetve a memóriakonszolidációban is [212, 213]. 
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1.3.2. A ventralis pallidum alrégiói és kapcsolataik 

 

A VP négy alrégióra osztható: ventromedialis (VPvm), ventrolateralis (VPvl), 

dorsolateralis (VPdl), és rostralis (VPr) területekre [24, 214]. Az egyes alrégiók 

afferens és efferens kapcsolatai, receptorprofilja, valamint funkciója is eltérő. 

A NT VP-n belüli megoszlására jellemző, hogy főleg a VPvm-ban (a VP 

legnagyobb alrégiójában) mutatható ki, míg a többi alrégióban nem, vagy alig 

[19]. Ezzel szemben calbindin-immunoreaktivitás nem mutatható ki a VPvm-ban 

[24, 214]. A VPvm afferens rostjait főleg a  NAC-ből (azon belül is főleg a shell 

régió medialis részéből) [24, 215, 216], a ventralis tegmentalis areából (VTA) 

[217], a basolateralis amygdalából [218], a tuberculum olfactoriumból [219], 

valamint a dorsalis raphemagból [220] kapja. A fentieken kívül a NAC core 

régiójából induló és főleg a VPdl-t beidegző rostok egy része kollaterálisokat ad a 

VPvm-ba is [24, 221]. A VPvm működését a NAC-en keresztül a hippocampus is 

befolyásolja [21, 222, 223]. A NT-erg rostok főleg a NAC-ből kiinduló ventralis 

striatopallidalis pályán érkeznek, illetve kisebb mértékben a kiterjesztett 

(extended) amygdalából [19, 20, 224]. A VPvm efferens rostjai a lateralis 

hypothalamusba, a VTA-ba, a rostromedialis és pedunculopontin tegmentalis 

magokba, a retrorubralis területekre, a NAC-be, a tuberculum olfactorium medialis 

részébe (amelyekkel a VPvm kétirányú kapcsolatban van), továbbá a thalamus 

mediodorsalis magjába, illetve a substantia nigrába projiciálnak [20, 24, 214, 225-

228]. Kimutatták, hogy a VP GABA-erg neuronjai gátolják a VTA neuronjainak 

tüzelését [229], ezáltal a VP befolyásolja a VTA DA-erg neuronjainak populációs 

aktivitását [26, 230]. Ez a pálya részt vehet a VP jutalmazást, illetve szorongást 

befolyásoló hatásaiban is [229-232]. 

A VPvl-ban nem mutatható ki calbindin- és NT-immunoreaktivitás [24]. 

Afferens beidegzését a NAC shell régiójának lateralis részéből és a tuberculum 

olfactoriumból kapja [24, 219, 233]. Efferens rostjai a VPvm-mal megegyező 

agyterületekre vetülnek, de a VTA-ba nem [227]. Újabb adatok tanúsága szerint a 

VPvl-nak szerepe lehet a kokain-önadagolás szabályozásában [24].  

A VPdl NT-immunoreaktivitást nem mutat [19], viszont erősen jelölődik 

calbindinre [24, 214]. Afferens beidegzését főleg a NAC core régiójából [215], 
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kisebb részben a VTA DA-erg pályáiból [217], valamint a a nucleus 

subthalamicusból [234] kapja. Efferens pályái pedig a lateralis hypothalamusba, a 

nucleus subthalamicus dorsomedialis részébe, a VTA-ba, a substantia nigra pars 

reticulatába, a retrorubralis területekre, valamint a NAC-be projiciálnak [214, 225, 

227, 235]. A VPvm-mal ellentétben a VPdl-ban alig mutatható ki a NT [19]. A két 

alrégió funkciója is különböző, akár ellentétes is lehet: humán fMRI vizsgálatok 

alapján a VPdl étvágygerjesztő ételek képeinek nézésekor aktiválódik, míg a 

gusztustalan, illetve a romlott ételek látványa inkább a VPvm-t aktiválja [236].  

A rostralis VP (VPr) a VP rostralis ujjszerű kiterjedéseit jelenti a tuberculum 

olfactorium és a ventralis NAC irányába, NT-t és calbindint nem tartalmaz [24, 

214]. Afferens beidegzését nagyrészt a tuberculum olfactoriumból, kisebb részt a 

NAC-ből kapja [219, 221]. Efferens rostjai főként a thalamus mediodorsalis 

magjának centralis részébe vetülnek, de a PFC-be, NAC-be, habenulába, a 

kiterjesztett (extended) amygdalába, valamint a substantia nigrába is mennek 

rostok [214, 227]. 

A fentieket összefoglalva elmondható, hogy a NT a VP-on belül szinte 

kizárólag a VPvm-ban mutatható ki [19, 20, 24], így lokális NT mikroinjekciók 

alkalmazásával a VPvm-ra irányuló, alrégióspecifikus vizsgálatokra van lehetőség. 

  

1.3.3. A ventralis pallidumban található neurontípusok 

 

A VP neuronjainak 70-80%-a GABA-erg [237], ezek között találhatók 

interneuronok, illetve kimeneti neuronok is [238]. A GABA-erg neuronok 

morfológiaialag, illetve elektrofiziológiailag is több típusba sorolhatók [238, 239]. 

A VP elülső részén főleg a környező területek közepes tüskés (medium spiny) 

neuronjaival rokon, tüskés dendritekkel rendelkező sejtek találhatók, melyek 

membránpotenciálja hiperpolarizált, spontán tüzelést alig mutatnak, bemenetük 

glutamát- és GABA-erg [239]. A mediális VP hátsó, valamint a VP lateralis részén 

hosszú, tüske nélküli dendritekkel rendelkező, depolarizált membránpotenciálú, 

spontán tüzelést mutató, főleg GABA-erg bemenetű sejtek helyezkednek el [239]. 

Ezen sejtek eloszlása nem követi a VP hisztokémiai markerekkel elkülönített 

alrégióinak határait [239]. 



 

 16 

A többi sejt kolinerg kimeneti neuron [240, 241]. Ezek típusosan nagy sejtek, 

hiperpolarizált membránpotenciállal rendelkeznek, és spontán tüzelést általában 

nem mutatnak [241]. Ezen felül kimutatták, hogy a VP egyes kolinerg neuronjai 

vezikuláris glutamát-transzportereket is expresszálnak [242, 243], és glutamáterg 

projekciókat küldenek a PFC-be [242], a basolateralis amygdalába (BLA) [243], 

valamint a VTA-ba, ezáltal a VTA glutamáterg afferenseinek mintegy 7%-át 

teszik ki [244]. 

Bár a VP-ban NT-erg neuronvégződéseket [19] és NT-receptorokat [51, 245, 

246] egyaránt kimutattak, az sajnos nem ismert, hogy ezek a receptorok pontosan 

melyik sejteken találhatók. 

 

1.3.4. A ventralis pallidum neurotranszmitterei és -modulátorai  

 

A VP magatartási funkcióiban számos neurotranszmitter és neuromodulátor 

részt vesz, így pl. GABA, glutamát, DA, opioidok, illetve különböző 

neuropeptidek [16, 23, 24, 44, 194, 247, 248]. Utóbbiak közül a legfontosabbak a 

NT és a P-anyag [16, 23, 44]. 

A GABA a VP egyik legfontosabb gátló neurotranszmittere, amely főleg a 

NAC-ből kiinduló ventralis striatopallidalis pályán érkezik [215, 249, 250]. A 

pálya legalábbis részben a NAC-ben felszabaduló DA hatását közvetíti, mivel a 

NAC-be injektált DA a gátlást megszünteti [222, 251]. Emellett az amygdala 

szomatosztatint tartalmazó GABA-erg neuronajiból is érkeznek afferensek a VP-

ba [252]. A VP-ban főleg ionotróp GABAA- [253], kisebb mennyiségben 

metabotróp GABAB-receptorokat [254] azonosítottak. 

A VP GABA-erg receptorainak hatásairól rendelkezésre álló információink 

nagy része sajnos nem alrégióspecifikus, pedig a VPvm és a VPdl aktivációja és 

inaktivációja gyakran ellentétes hatású [36, 236]. A VP-ban a GABAA-receptorok 

gátlása növeli a lokomotoros aktivitást [247, 248], csökkenti a prepulse-gátlást 

[255], táplálkozást vált ki még jóllakott állatban is [256], viszont a 

helypreferenciát nem befolyásolja [247]. Ismert, hogy amfetamin [257], illetve 

heroin [258] szisztémás adása során a VP-ban csökken a GABA-szint. A VP 

GABA-receptorainak inaktivációja gátolja a kokain- [197], illetve a stressz-alapú 
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drogkereső magatartást [259]. A VP GABA-receptorainak emellett szerepük lehet 

az alkoholfüggőségben is [260]: a VP GABAA- vagy GABAB-receptorainak 

aktivációja csökkenti, a GABAA-receptorok gátlása növeli, a GABAB-receptorok 

inaktivációja nem befolyásolja az alkohol-önadagolást [261]. A VP 

megnövekedett GABA-szintjének szerepe van a kellemetlen ingerek 

megjegyzésében is [262]. A látens gátlásra nincs hatással sem a GABAA-

receptorok stimulációja, sem pedig gátlása [263]. 

A VP glutamáterg rostokat is kap az amygdalából, a NAC-ből, a tuberculum 

olfactoriumból, a thalamus középvonali magjaiból, a hypothalamusból, a VTA-ból 

[264], a PFC-ből [265], valamint a nucleus subthalamicusból [266, 267]. A VP-

ban AMPA-receptorokat, valamint metabotróp glutamátreceptorokat is 

azonosítottak [268, 269]. AMPA VP-ba történő mikroinjekciója jelentősen növeli 

a lokomotoros aktivitást, de nincs hatással a helypreferenciára [247]. Heroin 

szisztémás adása során a VP-ban emelkedik a glutamát koncentrációja [258]. 

A VP DA-erg beidegzését főleg a VTA-ból kapja, de a substantia nigrából is 

érkeznek DA-erg rostok [217]. A VP területén a D1 és a D2 DA-receptor-

családhoz tartozó receptorok is  kimutathatók [270]. A D2 DA-receptorok főleg 

preszinaptikusan, a NAC-ből érkező ventralis striatopallidalis pálya GABA-erg 

rostjain, valamint autoreceptorként igen kis mennyiségben a VTA-ból érkező DA-

erg axonterminálisokon találhatók, de a VP kimeneti sejtjein, valamint az 

interneuronokon is kimutathatók [271]. A D1 DA-receptorok pontos 

elhelyezkedéséről nem állnak rendelkezésre adatok, de valószínűleg pre- és 

posztszinaptikusan is megtalálhatóak [27]. A VP neuronjainak D1 DA-receptorok 

által mediált tüzelését az amygdalából jövő afferensek is befolyásolják  [272]. A 

VP DA-receptorainak szerepe van a motoros aktivitás szabályozásában [273, 274], 

az öningerlésben, illetve a jutalmazó, pozitív megerősítési folyamatokban [195, 

275], a térbeli- [212] és a büntetéses tanulásban [210], valamint a 

memóriakonszolidációban [212, 213]. Emellett a DA a VP-ban modulálja a GABA 

és a glutamát hatását is [276]. 

A VP monoaminerg beidegzésében a DA mellett a ST is részt vesz, a ST-erg 

afferensek a raphemagokból érkeznek [220, 277]. A VP-ban a ST bomlástermékei 

nagy koncentrációban kimutathatók [278]. A ST hiperpolarizációt okoz a VP nem-
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kolinerg neuronjain és depolarizációt a kolinerg sejteken [279], habár a ST-erg 

afferensek nem képeznek szinapszisokat a kolinerg neuronokkal [24, 280]. A VP-

ban többféle ST-receptor is megtalálható [281-284]. 5-HT2A-receptor-agonista 

VP-ba való injekciója megszünteti a prepulse-gátlást [285]. 

 Az endogén opioidok a VP fontos neurotranszmitterei, illetve –modulátorai 

[286, 287]. A VP területén µ-, δ- és κ- opioidreceptorokat is azonosítottak [288, 

289]. A VP az enkefalin-pozitív afferenseket a NAC-ből kapja [250, 286]. A VP 

opioidreceptorai modulálják a VP VTA-t beidegző efferenseinek aktivitását, [229], 

valamint preszinaptikusan a DA-felszabadulást a VTA VP-t beidegző 

axonterminálisain is [290]. A VP opioidreceptorainak blokádja (naloxonnal) 

kondicionált helyaverziót okoz, valamint gyengíti a helypreferencia kokainnal való 

kiválthatóságát [196]. A VPdl-ban a µ-opioidreceptor-agonista DAMGO pozitív 

ízreaktivitási mintázatokat (hedonikus komponens, „liking”) váltott ki, és fokozta 

a táplálkozás időtartamát (motivációs komponens: „wanting”) [23, 201]. A VPvm-

ban ellentétes hatás volt észlelhető: a DAMGO a likinget és a wantingot is 

csökkentette [23, 201]. A DAMGO a VPvm-ban csökkenti az állatok kémiai 

öningerlési frekvenciáját, a VPdl-ban viszont kémiai öningerlés építhető ki vele 

[287]. Bár a VP területén a legtöbb adattal a µ-opioidreceptorok funkcióiról 

rendelkezünk, a δ- illetve a  κ-receptorokról szintén kimutatták, hogy 

befolyásolják a VP neuronjainak tüzelését [288], magatartási hatásaik viszont 

kevésbé ismertek. 

A VP-ban a neuropeptidek közül a NT, illetve a P-anyag különösen fontos [19]. 

A VP főleg a NAC-ből eredő ventralis striatopallidalis pályán, a közepes tüskés 

(medium spiny) neuronok axonjaiból kapja NT-erg afferenseit, amelyeken a NT 

GABA-val kolokalizálódik [11, 19]. Arról, hogy a VTA dopaminerg neuronjaiból 

érkezik-e NT a VP-ba, nem állnak rendelkezésre irodalmi adatok, az viszont 

ismert, hogy a VTA-ból más agyterületekre menő efferenseken a DA gyakran 

kolokalizálódik NT-nel [13, 291, 292]. 

A NT-en kívül a P-anyag is nagy mennyiségben kimutatható a VP-ban, amely 

szintén főleg a NAC-ből érkezik [293], receptorai főleg a kolinerg neuronok 

dendritjein találhatók [294], és a VP-ban modulálja az amygdalából érkező 

glutamáterg neurotranszmissziót [295]. A vazopresszin és az oxitocin szintén a 
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ventralis striatopallidalis pálya neuromodulátorai: fontos szerepet játszanak a 

szociális kötődésben [296, 297], emellett a vazopresszin 1a receptor emelkedett 

aktivitása fokozott szorongással is jár [205]. 

 

1.3.5. A neurotenzin szerepe a ventralis pallidumban 

 

A VP-ban NT-erg neuronvégződések és NT-receptorok egyaránt kimutathatók: 

a NT jelenléte egyedül a VPvm-ra jellemző, így a VPdl-ban vagy más alrégiókban 

alig detektálható [19, 20, 24]. A NT-immunoreaktivitás főleg a striatopallidalis 

axonterminálisokon mutatható ki, viszont a perikaryonokon nem vagy csak 

minimálisan [19]. A NT receptorai közül a VPvm területén a NTS1-receptorok 

fordulnak elő a legnagyobb sűrűségben [51, 245], amelyek típusosan a 

dendriteken, illetve az idegsejtek perikaryonjain helyezkednek el [245]. A NTS2-

receptorok csak nagyon alacsony koncentrációban vannak jelen [51, 246]. A 

NTS3-receptorok jelenlétét a VP-ban eddig nem igazolták. 

A NT vagy NT-antagonisták elektrofiziológiai hatásait eddig még nem 

vizsgálták a VP-ba történő direkt mikroinjekciót követően, viszont kimutatták, 

hogy NTS1-antagonisták i.p. injekciója csökkenti a VPvm neuronjainak tüzelési 

frekvenciáját, miközben a VPdl-ra nincsenek hatással [298].  

A NT a VP-ban megnöveli az extracellularis GABA-szintet [16]. Ismert 

továbbá, hogy a VPvm gátlásának következtében GABA-erg efferens pályák is 

gátlódnak, a VTA pedig felszabadul a gátlás alól [36]. A fentiek alapján a VP-ba 

injektált NT a VTA DA-erg neuronjainak aktivitását befolyásolva szerepet játszhat 

a pozitív megerősítő és jutalmazó folyamatokban.  

A VP-ba injektált NT esetleges magatartási hatásairól szintén keveset tudunk, 

de annyi bizonyos, hogy szerepet játszik a drogaddikcióban: 

kokainadminisztrációt, majd extinkciót követően a NT(8-13) a VP-ban 

potencírozza a kokainalapú, de gátolja a cue-alapú drogkereső magatartást, míg a 

lokomócióra nincs hatással [16]. 
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2. Célkitűzések 
 

A fentiek alapján láthatjuk, hogy a NT, illetve a NTS1-receptorok szerepet 

játszhatnak a jutalom, valamint a megerősítés szabályozásában fontos ventralis 

striatopallidalis projekciók modulációjában [15, 19, 215].  Mindazonáltal a NT 

direkt hatásait a VP-ban eddig még nem vizsgálták sem a pozitív megerősítésre, 

sem a szorongásra.  

 

1. A NT, illetve a NTS1-receptor-antagonista SR 48692 lokomotoros aktivitásra 

gyakorolt esetleges akut hatásainak vizsgálata céljából open field tesztet (OPF) 

végeztünk.  

 

2. Jelen kísérleteink másik célja a ventralis pallidumba injektált NT esetleges 

jutalmazó hatásának vizsgálata volt. Erre a célra az ún. kondicionált 

helypreferencia-tesztet (CPP) alkalmaztuk. 

 

3. Amennyiben a NT jutalmazónak bizonyul, további céljaink között szerepelt 

annak igazolása, hogy a NT ezt a hatást a VP-ban nagy koncentrációban 

előforduló NTS1-receptorokon fejti-e ki. 

 

4. Kísérleteink másik vonulata a ventralis pallidumba injektált NT esetleges 

anxiolitikus hatásának vizsgálata volt. Erre a célra az ún. emelt keresztpalló tesztet 

(EPM) alkalmaztuk. 

 

5. Kíváncsiak voltunk arra is, hogy amennyiben a NT befolyásolja az anxietást, ezt 

a hatást NTS1-receptorokon fejti-e ki. 

 

6. Célunk volt még, hogy ha a NT a fenti paradigmák valamelyikében hatásosnak 

bizonyul, akkor megvizsgáljuk, hogy ez(eke)t a hatás(oka)t a VP D2 DA-

receptorainak gátlása hogyan módosítja. 
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3. Kísérleti módszertan 
 

3.1. Kísérleti állatok 

 

 

Kísérleteink során 279 hím Wistar-patkányt használtunk (LATI, Gödöllő), 

melyek átlagos testsúlya a kísérletek kezdetekor 280 - 320 g volt. Az állatok a 

műtétek előtt 1 héttel kerültek át a tenyészetből klimatizált állatházunkba (ahol a 

hőmérséklet 22 ± 1 °C, a páratartalom: 55 ± 10%). Ott egyenként, különálló 

ketrecekben, de ugyanazon helyiségben helyeztük el őket. Erre azért volt szükség, 

mert az állatok fején lévő korona megsérülhetne a más állatokkal való találkozás 

során, illetve a többi állatnak is sérülést okozhatna. A természetes napszaknak 

megfelelő mesterséges megvilágítást alkalmaztunk, 12 óra sötét és 12 óra világos 

periódust biztosítva. A ketrecek tisztítását szakképzett személyek végezték napi 

rendszerességgel. A világos periódus reggel 7 órakor, a sötét este 19 órakor 

kezdődött. Az állatok standard laboratóriumi rágcsálótápot (Charles River 

Magyarország Kft., Budapest) és csapvizet fogyaszthattak ad libitum. A 

patkányokat a műtéteket megelőzően a kísérletet végzők kezéhez szoktattuk (ún. 

„handling”). Erre azért volt szükség, mert a mikroinjekciókat kézben tartott éber 

állatoknak adtuk be. Az állatok tartása során az egyetemi (BA02/2000-8/2012), 

hazai (40/2013. (II. 14.) számú Magyar Kormányrendelet) és nemzetközi 

(European Community Council Directive, 86/609/EEC, 1986, 2010) állatkísérletes 

etikai irányelveknek megfelelően jártunk el.  

 

3.2. Sztereotaxikus műtét 

 

A műtéteket általános anesztéziában végeztük, melyet ketamin (Calypsol, 

Richter Gedeon Zrt., 80 mg/ttkg) és diazepam (Seduxen, Richter Gedeon Zrt., 20 

mg/ttkg) 4:1 arányú keverékének intraperitonealis injekciójával (2 ml/ttkg) 

idéztünk elő. Sztereotaxikus műtéti technika segítségével 22 gauge (0,64 mm) 

átmérőjű rozsdamentes acél vezetőkanülöket implantáltunk bilateralisan a 

célterület fölé 0,5 mm-rel. A célterület (1. ábra) koordinátáit Paxinos és Watson 
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sztereotaxikus agyatlasza [299] alapján határoztuk meg. Az alkalmazott 

koordináták a bregmához viszonyítva a következők voltak: anteroposterior (AP):  

-0,26 mm (a bregmától posterior irányban), lateralisan (ML): 2,2 mm (a 

középvonaltól), dorsoventralisan (DV): 7,1 mm (a dura felszínétől mérve). A 

kanülöket a koponyacsonthoz és a koponyacsontba fúrt 3 rozsdamentes acél 

csavarhoz rögzítettük fogászati akrilát segítségével (Duracryl). A vezetőkanülöket 

27 gauge (0,36 mm) átmérőjű steril dugókkal zártuk le, amelyeket az anyagbeadás 

során eltávolítottunk. Az állatok a műtétek során antibiotikum-profilaxisban 

részesültek (G-penicillin). A posztoperatív időszakban az állatoknak legalább 6 

napot hagytunk a felépülésre a kísérletek megkezdése előtt. Minden állatot 

neurológiai vizsgálatnak vetettünk alá, hogy meggyőződhessünk a szenzoros és a 

motoros funkcióik intakt voltáról. 

A magatartási teszteket a nappali periódusban végeztük, 08.00 és 18.00 óra között. 

 

1. ábra: A vezető- és a beadókanülök elhelyezkedése, illetve a mikroinjekció 

mérete a ventralis pallidumban Paxinos és Watson sztereotaxikus agyatlasza 

[299] alapján. 
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3.3. Az alkalmazott kísérleti anyagok és azok mikroinjekciója 

 

 

A NT-t (Sigma-Aldrich Co., N6383, moláris tömeg: 1672,92 g/mol) 0,15 M-os 

steril sóoldatban oldottuk fel, amely 0,01 M Na-acetátot és 0,01 M foszfát-pufferes 

sóoldatot tartalmazott (PBS, pH 7,4). A NT mikroinjekciókat két különböző 

dózisban alkalmaztuk: 100 ng (59,8 pmol/0,4 µl; 149,4 mol/l) vagy 250 ng 

(149,4 pmol/0,4 µl; 373,6 mol/l). A NTS1-antagonista SR 48692-t (Tocris Co., 

Cat. No. 3721, moláris tömeg: 587,07 g/mol) 2% dimetil-szulfoxidot és 0,01M 

PBS-t tartalmazó 0,15 M-os steril sóoldatban oldottuk fel. Az SR 48692-t  35 ng-

os (59,6 pmol/0,4 µl; 149,0 mol/l) dózisban mikroinjektáltuk. A D2 DA receptor 

antagonista (S)-(-)-sulpiridet (Sigma-Aldrich Co., S7771, moláris tömeg: 341,43  

g/mol) fiziológiás sóoldatban oldottuk fel, a sulpirid 4 g-os (11,715 nmol/0,4 µl; 

29,29 mmol/l) dózisát alkalmaztuk. A dózisok oldalanként értendők. 

A NT [89, 113-115], illetve a sulpirid [213] dózisait pilot kísérletek alapján, 

illetve a más agyterületeken alkalmazott intracerebralis mikroinjekcióknál 

korábban hatásos dózistartományok alapján választottuk meg. Az SR 48692 

dózisát úgy választottuk meg, hogy a NT hatásos dózisával ekvimoláris legyen, az 

antagonista dózisa így jóval meghaladja az 50%-os inhibitoros koncentrációt 

[300]. 

A mikroinjekció előzőleg kézhez szoktatott, kézben tartott, éber állatokon 

történt. Az összes anyagot 27 gauge átmérőjű rozsdamentes acél beadókanülökön 

keresztül juttattuk be, amelyek 0,5 mm-rel hosszabbak voltak az implantált 

vezetőkanülöknél. A beadókanülök polietilén csöveken keresztül (PE-10) 10 μl-es 

Hamilton-fecskendőkhöz csatlakoztak (Hamilton Co., Bonaduz, Svájc). Az egyes 

mikroinjekciók 0,4 μl térfogatban történtek, Cole-Parmer-féle infúziós pumpa 

használatával (Cole-Parmer, IITC, Life Sci. Instruments, Kalifornia, USA), 60 sec 

időtartam alatt. A beadott mennyiségeket a Hamilton-fecskendő skáláján is 

ellenőriztük. A mikroinjekciókat követően a beadókanülöket további 60 sec-ig az 

állatok fejében hagytuk, így gátolva az oldatok visszafolyását és biztosítva az 

anyagok diffúzióját a célterületre. Minden beadás után meggyőződtünk arról is, 

hogy a beadókanül nem tömődött el. 
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Az OPF tesztben a NT 100 ng-ját (n=8) vagy 250 ng-ját (n=6) mikroinjektáltuk 

az állatoknak. Az antagonistával kezelt csoport (n=6) 35 ng SR 48692-t, majd  15 

perc múlva a NT vivőanyagát (veh1), az antagonista előkezelést követően NT-nel 

kezelt csoport (n=6) 35 ng SR 48692-t, majd 15 perc múlva 100 ng NT-t kapott. A 

kontrollcsoport állatai (n=8) az SR 48692 vivőanyagát (veh2), majd 15 perc múlva 

veh1-et kaptak. 

Az első CPP kísérlet során a NT 100 ng-os (n= 12) vagy 250 ng-os (n=13) 

dózisát mikroinjektáltuk bilateralisan az állatoknak, a kontrollcsoport (n=11) veh1-

et kapott az NT-mikroinjekciókkal azonos térfogatban. A második (az 

antagonistával végzett) CPP kísérlet során a NT-nel kezelt csoport (n=13) állatai 

veh2-t, és ezt követően 100 ng NT-t kaptak (azt a dózist, amely az első kísérlet 

során hatásosnak bizonyult, ld. az eredményeknél). Az antagonistával kezelt (n=7) 

csoport 35 ng SR 48692-t, majd veh1-et kapott. Az antagonista előkezelést 

követően NT-nel kezelt csoport (n=12) 35 ng SR 48692-t, majd  15 perc múlva 

100 ng NT-t kapott. A kontrollcsoport (n=10) állatai két alkalommal kaptak 

vivőanyagot (veh2 + veh1). Az antagonistát vagy a veh2-t mindig 15 perccel a NT 

vagy a veh1 előtt adtuk be. A harmadik (sulpiriddel végzett) CPP kísérlet során a 

NT-nel kezelt csoport (n=6) állatai a sulpirid vivőanyagát (veh3), és ezt követően 

100 ng NT-t kaptak (azt a dózist, amely az első kísérlet során hatásosnak 

bizonyult, ld. az eredményeknél). A sulpiriddel kezelt csoport (n=8) 4 µg 

sulpiridet, majd veh1-et kapott. A sulpirid előkezelést követően NT-nel kezelt 

csoport (n=11) 4 µg sulpiridet, majd  15 perc múlva 100 ng NT-t kapott. A 

kontrollcsoport (n=11) állatai két alkalommal kaptak vivőanyagot (veh3 + veh1). 

A sulpiridet vagy a veh3-t mindig 15 perccel a NT vagy a veh1 előtt adtuk be. A 

második és harmadik CPP kísérlet során antagonista vagy sulpirid előkezelést 

követően alkalmazott NT 15 perc alatt 2 mikroinjekciót jelent az állat számára, 

ezért a többi csoport állatai szintén 2-2 mikroinjekciót kaptak 15 perc 

különbséggel, hogy az egyes csoportok eredményei összehasonlíthatók legyenek. 

Az első EPM kísérlet során az állatok 100 ng (n= 8) vagy 250 ng (n=8) NT-t 

kaptak bilateralisan, a kontrollcsoport (n=9) veh1-et kapott az NT-

mikroinjekciókkal azonos térfogatban. A második EPM kísérletben a NT-nel 

kezelt csoport (n=8) veh2-t, majd 100 ng NT-t kapott. Az antagonistával kezelt 
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csoport (n=9) SR 48692-t, majd veh1-et kapott. Az antagonista előkezelést 

követően NT-nel kezelt csoport (n=8) 35 ng SR 48692-t, majd 100 ng NT-t kapott. 

A kontrollcsoport (n=9) két alkalommal kapott vivőanyagot (veh2 + veh1). Az 

antagonistát vagy a veh2-t a CPP teszthez hasonlóan mindig 15 perccel a NT vagy 

a veh1 előtt adtuk be. A harmadik EPM kísérletben a NT-nel kezelt csoport (n=6) 

veh3-t, majd 100 ng NT-t kapott. A sulpiriddel kezelt csoport (n=9) 4 µg 

sulpiridet, majd veh1-et kapott. A sulpirid előkezelést követően NT-nel kezelt 

csoport (n=10) 4 µg sulpiridet, majd 100 ng NT-t kapott. A kontrollcsoport (n=11) 

két alkalommal kapott vivőanyagot (veh3 + veh1). A sulpiridet vagy a veh3-t a 

CPP teszthez hasonlóan mindig 15 perccel a NT vagy a veh1 előtt adtuk be. 

 

3.4. Magatartási vizsgálatok 

 

A különböző magatartási tesztjeinket az adott célra szolgáló apparátusokban 

végeztük. Az állatok mozgását az apparátus fölé elhelyezett kamera segítségével 

rögzítettük, az adatokat a Noldus EthoVision Basic software (Noldus Information 

Technology b.v., Wageningen, Hollandia) segítségével tároltuk és elemeztük. 

 

3.4.1. Open field (OPF) teszt  

 

Az OPF teszt apparátusa egy 50 × 50 cm alapterületű, 50 cm falmagasságú, 

szürke színű, fából készült dobozból áll. A doboz alja 16 azonos méretű négyzetre 

van osztva. A kísérlet során mértük az állatok által megtett utat, illetve a 

keresztezések számát. Minden ülés 5 percig tartott. A kísérlet 4 napig tartott (2. 

ábra). Az első napon történt a habituáció, a 2. és a 3. napon mértük az állatok 

bazális aktivitását (mikroinjekció nélkül). A 2. és 3-napon mért adatok átlagát 

tekintettük az állatok motoros alapaktivitásának (bazális aktivitás). A 4. napon 

(teszt) az állatokat az anyagok bilateralis mikroinjekcióját követően a dobozba 

helyeztük. 
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2. ábra: Az OPF teszt időbeosztása. 

 

3.4.2. Kondicionált helypreferencia- (conditioned place preference, CPP) teszt 

 

A CPP teszt anyagok jutalmazó, pozitív megerősítő, illetve averzív hatásának 

mérésére használható [301-304]. A CPP teszt apparátusa (3. ábra) egy kör alakú, 

85 cm átmérőjű és 40 cm magas doboz. Az apparátus falai és padlója műanyagból 

készült, szürke színű. A padlót vékony fekete vonalak segítségével 4 kvadránsra 

osztjuk, melyek a kondicionálások során kivehető, átlátszó plexi lapokkal 

fizikailag is elválaszthatók egymástól. A környezetben található külső jeleket, ún. 

vizuális cue-kat helyeztünk el, hogy segítsék az egyes kvadránsok 

megkülönböztetését, illetve az állatok tájékozódását az apparátusban [303]. A 

kísérletet egy hangszigetelt, klimatizált helyiségben végeztük el, a megvilágításhoz 

szükséges szórt fényt 40 W-os izzó segítségével biztosítottuk.  

 

 

3. ábra: A CPP teszt elvégzésére szolgáló kísérleti apparátus 

 

1. nap 2. nap 3. nap 4. nap 

mikroinjekció 

bazális aktivitás teszt habituáció 
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A CPP paradigma (4. ábra) egy habituációból (1. nap), három kondicionálásból 

(2-4. nap) és egy tesztből (5. nap) áll. Az ülések mindegyike 900 sec (15 min) 

hosszúságú. Az apparátust minden állat után gondosan kitisztítottuk. A habituáció 

(1. nap) során az állatokat az apparátus közepére helyeztük, ezután 900 sec-ig 

szabadon hozzáférhettek mind a négy kvadránshoz. Mértük az egyes 

kvadránsokban eltöltött időt, és azt a kvadránst választottuk ki kezelőkvadránsnak, 

ahol az állat a habituáció során nem a legtöbb, de nem is a legkevesebb időt 

töltötte. A kondicionálások (2-4. nap) során a plexilapok behelyezésével a 

kvadránsokat fizikailag elválasztottuk egymástól. Az állatokat közvetlenül a 

bilateralis mikroinjekció(ka)t követően a kezelőkvadránsba helyeztük. Ezután a 

patkányok 15 percet tartózkodtak a kezelőkvadránsban. Az 5. napon (teszt) az 

elválasztó lapokat eltávolítottuk, így az állatok újra az apparátus teljes területén 

mozoghattak. Mértük az egyes kvadránsokban töltött időt, valamint az állatok által 

megtett utat.  

 

 

 

4. ábra: A CPP teszt időbeosztása. 

 

3.4.3. Emelt keresztpalló (elevated plus maze, EPM) teszt 

 

A szorongást az EPM teszt segítségével mértük [305-307]. Az apparátus (5. 

ábra) szürke színű, kereszt alakú pallókból, azaz két, egymással szemben 

elhelyezkedő nyitott karból és két, ezekre merőlegesen elhelyezkedő zárt karból 

áll. A karok alapterülete egyenként 50 cm × 10 cm, a középen lévő centrális 

platform 10 cm × 10 cm területű. A zárt karokat 40 cm magas, szürke színű fal 

veszi körül, a teteje nyitott. A pallók 100 cm-rel a talaj szintje fölé vannak emelve. 

Az anyagok mikroinjekcióját követően az állatokat az apparátus közepére 

1. nap 2. nap 3. nap 5. nap 

kondicionálások teszt habituáció 

4. nap 

mikroinj. mikroinj. mikroinj. 
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(centrális platform) helyeztük, úgy, hogy orruk valamelyik zárt kar felé nézzen. 

Minden állaton egy alkalommal végeztük el a tesztet, amely 5 percig tartott. Az 

apparátus egyes részein (zárt karok, nyitott karok, illetve azok végei) töltött időt, 

valamint a megtett utat mértük. 

 

 
 

5. ábra: Az EPM teszt elvégzésére szolgáló kísérleti apparátus 

 

3.5. Az eredmények értékelése 

 

3.5.1. Szövettan 

 

A kísérletek végeztével a patkányokat uretán segítségével túlaltattuk (20%-os 

uretánoldat  i. p. injekciója, 1,4 g /ttkg) és izotóniás sóoldattal transcardialisan 

perfundáltuk (lassú infúziós ráta: 500 ml / 20 min), ezt 10%-os formaldehid-oldat 

infúziója követte (lassú infúziós ráta: 500 ml / 20 min). Ezután az állatok agyát 

eltávolítottuk. 

Egy héttel a fixáció után az agyakat lefagyasztottuk, 40 μm-es szeleteket 

készítettünk, amelyeket krezil-ibolyával megfestettünk.  A mikroinjekciók helyét 

Paxinos és Watson sztereotaxikus atlasza alapján rekonstruáltuk [299]. Az 

elemzésnél csak azon állatok adatait vettük figyelembe, amelyeknél a beadások a 

megfelelő agyterületre történtek. 
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3.5.2. Statisztikai módszerek 

 

Shapiro-Wilk-teszt segítségével meggyőződtünk az adatok normális 

eloszlásáról, majd az adatokat egy és két szempontos varianciaanalízissel 

(ANOVA) értékeltük „SPSS 20.0 for Windows” programcsomag segítségével. A 

minták homogenitásának vizsgálatára F-tesztet alkalmaztunk. A csoportonkénti 

összehasonlítást Tukey-féle post hoc teszttel végeztük el. A szignifikanciaszintet 

minden esetben p < 0,05-nek tekintettük, a szignifikáns értékeket a grafikonokon 

csillaggal jelöltük. A grafikonokon, illetve a táblázatokban a paraméterek átlagát ± 

a standard hibákat (SEM) tüntettük fel. 
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4. Eredmények 
 

4.1. Szövettani leletek 

 

A kanülcsatornák és a kanülvégek elhelyezkedését Paxinos és Watson 

sztereotaxikus agyatlasza alapján határoztuk meg [299]. A kanülvégek 

elhelyezkedésének sematikus ábrázolása a 6. ábrán látható. A szövettani vizsgálat 

azt mutatta, hogy a kanülvégek szimmetrikusan a célterületen helyezkedtek el a 

279 állat közül 243 esetben. A megfelelő helyen elhelyezkedő kanülvégek 

pozícióját a 6A. ábra mutatja. A 7. ábrán egy olyan agyszelet látható, ahol a 

mikroinjekciók a megfelelő helyre kerültek. Négy patkányt kizártunk, mert az 

akrilát „koronájuk” károsodott vagy leesett, így a mikroinjekciókat nem lehetett 

beadni; a többi 32 állatnál a kanülök nem a megfelelő helyre kerültek. Ezen állatok 

adatait kizártuk a további analízisből. A nem megfelelő helyen elhelyezkedő 

kanülvégek pozícióját a 6B. ábra mutatja: 12 patkánynál a kanülvégek a VP-tól 

medialisan vagy lateralisan helyezkedtek el, így a mikorinjekciók az egyik oldalon 

a commissura anterior hátsó ajkának interstitialis magjába, a másik oldalon a stria 

terminalis beágyazott magjának fusiformis részébe kerültek. 19 esetben a 

kanülvégek 1 mm-rel a VP alá kerültek, így a mikroinjekciók mindkét oldalon a 

diagonális köteg horizontalis ajkának magjába, illetve a nucleus preopticus 

magnocellularisba történtek, 1 esetben a kanülök vége a VP fölött volt, így az 

anyagbeadás a commissura anterior hátsó ajkának interstitialis magjába történt. A 

kanülpozíciók nagy heterogenitása és az alacsony állatszám miatt a VP-tól eltérő 

helyre beadott anyagok magatartási hatásairól messzemenő következtetéseket 

levonni nem tudtunk. 
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6. ábra:  A mikroinjekciók helyének rekonstrukciója az összes kísérletben 

együttvéve. A VP-ban a sztereotaxikus célterületen elhelyezkedő bilateralis 

kanülpozíciók (n = 243) az ábra bal oldalán (A) láthatók. A célterületen kívül 

elhelyezkedő mikroinjekciós helyeket (n=32) a jobb oldali (B) ábra mutatja.   A 

coronalis agymetszetek sematikus ábrái Paxinos és Watson sztereotaxikus 

patkányagyatlaszából [299] származnak. A középen lévő számok a bregmához 

viszonyított anterior–posterior távolságot jelzik mm-ben. Az agymetszetek jobb és 

bal oldalán az egymásnak megfelelő szimbólumok a bilateralis mikroinjekciók 

helyét jelzik, az ezek melletti számok pedig az állatok számát, amelyek az adott 

helyre kapták a mikroinjekciókat. 
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7. ábra: A sztereotaxikus célterületen lévő mikroinjekciós helyek szövettani képe 

(krezil-ibolya festés) a VP-ban (a bregmához képest -0,8 mm-re posterior 

irányban). A kis nagyítású kép a kanül csatornáját, illetve a mikroinjekció konkrét 

helyét mutatja. A nagyobb nagyítású képen a fekete vonal 100 µm-nek felel meg. 

Jól látható a gliális proliferáció, a gliaheg, valamint az is, hogy a VPvm-ot célzó 

mikroinjekció nem terjedt át a szomszédos magokra. 
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4.2. Open field teszt 

 

Két szempontos ANOVA segítségével kimutattuk, hogy a megtett út (8. ábra) 

szignifikánsan különbözött az ülések között  (F [1;58] = 5,838;  p < 0,05), ennek 

legvalószínűbb oka, hogy a teszt során a habituáció miatt valamennyi állat 

kevesebbet mozgott. A kezelések között nem volt szignifikáns különbség (F [4;58] 

= 0,104; p > 0,05), az ülések és kezelések közti interakció szintén nem volt 

szignifikáns (F [4;58] = 0,895; p > 0,05).  

 

 

 

8. ábra: Bilateralis NT mikroinjekciók, valamint az NTS1-antagonista előkezelés 

hatása open field (OPF) tesztben. Az oszlopok az állatok  által megtett út átlagát 

(± SEM) mutatják mikroinjekció nélkül (bazális aktivitás), illetve a teszt során. 

Kontroll: csak vivőanyaggal kezelt állatok (veh2 + veh1; n = 8). 100 ng NT: 100 

ng NT-nel kezelt állatok (n = 8). 250 ng NT: 250 ng NT-nel kezelt állatok (n = 6). 

Antagonista:35 ng NTS1-antagonista SR 48692-vel kezelt állatok (n = 6). 

Antagonista + NT: 100 ng NT mikroinjekciójának hatása 35 ng NTS1-antagonista 

előkezelést követően  (n = 6). Részletesebb magyarázatot ld. a szövegben. 

 

A keresztezések számát tekintve (9. ábra) nem volt szignifikáns különbség sem 

az ülések (F [1;58] = 0,764;  p > 0,05), sem a kezelések között (F [4;58] = 0,298; p 

> 0,05),  az ülések és kezelések közötti interakció szintén nem volt szignifikáns (F 

[4;58] = 0,164; p > 0,05). 
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9. ábra: Bilateralis NT mikroinjekciók, valamint az NTS1-antagonista előkezelés 

hatása open field (OPF) tesztben. Az oszlopok a keresztezések számát (± SEM) 

mutatják mikroinjekció nélkül (bazális aktivitás), illetve a teszt során. Kontroll: 

csak vivőanyaggal kezelt állatok (veh2 + veh1; n = 8). 100 ng NT: 100 ng NT-nel 

kezelt állatok (n = 8). 250 ng NT: 250 ng NT-nel kezelt állatok (n = 6). 

Antagonista:35 ng NTS1-antagonista SR 48692-vel kezelt állatok (n = 6). 

Antagonista + NT: 100 ng NT mikroinjekciójának hatása 35 ng NTS1-antagonista 

előkezelést követően  (n = 6). Részletesebb magyarázatot ld. a szövegben. 
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4.3. Kondicionált helypreferencia-teszt  

 

 

A bilateralis NT mikroinjekciók hatását a CPP paradigmában a 10. ábra 

szemlélteti. Két szempontos ANOVA segítségével összehasonlítottuk az egyes 

csoportok célkvadránsban töltött idejét a habituáció, illetve a teszt során. 

Szignifikáns különbség volt az ülések közt (F [1;66] = 11,189;  p < 0,05) és a 

kezelések közt (F [2;66] = 3,431; p < 0,05), a kettő közti interakció azonban nem 

volt szignifikáns (F [2;66] = 2,426; p > 0,05). A Tukey-féle post hoc teszt alapján 

a kezelőkvadránsban töltött idő nem változott a kontrollcsoportban (n = 11), de 

szignifikánsan megemelkedett a 100 ng NT-nel kezelt csoportban (n = 12; p < 

0,05). A 250 ng NT-nel kezelt csoportban (n = 13) szintén növekedett a 

kezelőkvadránsban töltött idő, ez azonban nem volt szignifikáns. 

 

 

10. ábra. Bilateralis NT mikroinjekciók hatása a VP-ban CPP paradigmában. Az 

oszlopok a kezelőkvadránsban töltött idő átlagát (± SEM) mutatják a habituáció, 

illetve a teszt során. Kontroll: csak vivőanyaggal kezelt állatok (veh1, n = 11). 100 

ng NT: 100 ng NT-nel kezelt állatok (n = 12). 250 ng NT: 250 ng NT-nel kezelt 

állatok (n = 13) *: p < 0,05. 
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Az egyes napokon a kísérlet ideje (900 sec = 15 min) alatt az állatok által 

megtett utat az 1. táblázat mutatja. Ez egyben megfelel az állatok 

átlagsebességének is (cm/15 min). Az ülések (habituáció, kondicionálások, teszt) 

során mért adatok egymással nem hasonlíthatók össze statisztikailag, mivel a 

habituáció és a teszt során az állatok a teljes apparátuson belül mozoghattak, míg a 

kondicionálások során csak a kezelőkvadránsban. A különböző kezeléseket kapott 

csoportok (kontroll, 100 ng NT, 250 ng NT) eredményeit egy szempontos 

ANOVA segítségével hasonlítottuk össze az egyes kísérleti üléseken belül 

(habituáció, kondicionálások, teszt). Az ANOVA nem mutatott ki szignifikáns 

különbséget a csoportok között sem a habituáció (F [2;33] = 1,736; p > 0,05), sem 

a kondicionálások (F [2;33] = 0,842; p > 0,05), sem pedig a teszt során (F [2;33] = 

0,677; p > 0,05). A kondicionálások alatt valamennyi csoport állatai kevesebbet 

mozogtak, ez a kisebb területnek tudható be. 

 
megtett út (cm/15 min) 

(átlag ± SEM) 
habituáció kondicionálások 

átlaga 

teszt 

kontroll (n=11) 7795,67 ± 560,50 4108,83 ± 284,67 6727,97 ± 617,53 

100 ng NT (n=12) 8287,77 ± 744,66 3956,37 ± 309,04 6456,71 ± 624,93 

250 ng NT (n=13) 6641,03 ± 633,94 3625,80 ± 220,71 5835,87 ± 444,04 

 

1. táblázat. Az állatok által a CPP paradigma során megtett út (cm/15 min) átlaga 

± SEM szerepel. Kontroll: csak vivőanyaggal kezelt állatok (veh1, n = 11). 100 ng 

NT: 100 ng NT-nel kezelt állatok (n = 12). 250 ng NT: 250 ng NT-nel kezelt 

állatok (n = 13). 

 

A második CPP kísérletben megvizsgáltuk, hogy a 100 ng NT helypreferenciát 

indukáló hatása a NTS1-receptorokon keresztül valósul-e meg (11. ábra). Az 

állatok a habituáció során az előző kísérlethez hasonló időtartamig tartózkodtak a 

kezelőkvadránsban.  Két szempontos ANOVA alapján nem volt szignifikáns 

különbség az ülések között (F [1;76] = 3,620; p > 0,05), viszont szignifikáns 

különbség volt a kezelések között (F [3;76] = 3,637; p < 0,05), továbbá az ülések 

és kezelések közti interakció szintén szignifikánsan különbözött (F [3;76] = 3,955; 

p < 0,05). Tukey-féle post hoc teszt alapján az előző kísérlet eredményéhez 

hasonlóan a 100 ng NT-nel kezelt csoportban (n=13) megemelkedett a 
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kezelőkvadránsban töltött idő a kontrollcsoporthoz (n=10) képest (p < 0,05). Az 

NTS1-receptor antagonista SR 48692 előkezelés hatékonyan blokkolta a NT 

hatását (n = 12; p < 0,05). Az antagonista önmagában (n = 7) nem befolyásolta a 

kezelőkvadránsban töltött időt: az eredmény nem különbözött a 

kontrollcsoportétól, viszont szignifikánsan alacsonyabb volt a 100 ng NT-nel 

kezelt csoport eredményénél (p < 0,05). 

 

 

11. ábra. NTS1 antagonista előkezelés hatása a VP-ban CPP tesztben. Az oszlopok 

a kezelőkvadránsban töltött idő átlagát (± SEM) mutatják a habituáció, illetve a 

teszt során. Kontroll: csak vivőanyaggal kezelt állatok (veh2 + veh1; n = 10). 100 

ng NT: veh2-vel, majd 100 ng NT-nel kezelt állatok (n = 13). Antagonista: 35 ng 

NTS1-antagonista SR 48692-vel, majd veh1-gyel kezelt állatok (n = 7). 

Antagonista + NT: 100 ng NT mikroinjekciójának hatása 35 ng NTS1-antagonista 

előkezelést követően (n = 12). Részletesebb magyarázatot ld. a szövegben. *: p < 

0,05. 

 

Az egyes napokon az állatok által megtett utat a 2. táblázat mutatja. Az egy 

szempontos ANOVA nem mutatott ki szignifikáns különbséget az egyes kísérleti 

fázisokon belül a csoportok között (a habituáció során: F [3;38] = 0,232; p > 0,05; 

a kondicionálások során: F [3;38] = 0,222; p > 0,05; a teszt során: F [3;38] = 

2,033; p > 0,05). 
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megtett út (cm/15 min) 

(átlag ± SEM) 
habituáció kondicionálások 

átlaga 

teszt 

kontroll (n=10) 6911,06 ± 360,61 3846,81 ± 261,63 5810,63 ± 537,43 

100 ng NT (n=13) 7307,59 ± 432,64 3776,73 ± 130,23 6869,11 ± 428,13 

antagonista (n=7) 7032,61 ± 400,46 3650,00 ± 259,66 5368,35 ± 311,19 

antagonista + NT (n=12) 7428,42 ± 621,16 3629,00 ± 235,54 6370,35 ± 381,86 

 

2. táblázat. Az állatok által a CPP paradigma során megtett út (cm/15 min) átlaga 

± SEM szerepel. Kontroll: csak vivőanyaggal kezelt állatok (veh2 + veh1; n = 10). 

100 ng NT: veh2-vel, majd 100 ng NT-nel kezelt állatok (n = 13). Antagonista: 35 

ng NTS1-antagonista SR 48692-vel, majd veh1-gyel kezelt állatok (n = 7). 

Antagonista + NT: 100 ng NT mikroinjekciójának hatása 35 ng NTS1-antagonista 

előkezelést követően (n = 12). 

 

A harmadik CPP kísérletben megvizsgáltuk, hogy a 100 ng NT helypreferenciát 

indukáló hatásában szerepet játszik-e a D2 DA-receptorokkal való interakció (12. 

ábra). Az állatok a habituáció során az előző két kísérlethez hasonló időtartamot 

tartózkodtak a kezelőkvadránsban.  Két szempontos ANOVA alapján nem volt 

szignifikáns különbség az ülések között (F [1;64] = 1,064, p > 0,05), viszont a 

kezelések között (F [3;64] = 3,002, p < 0,05), továbbá az ülések és kezelések közti 

interakció tekintetében (F [3;64] = 5,022, p < 0,05) is szignifikáns különbséget 

mutatott ki a teszt. Tukey-féle post hoc teszt alapján az előző kísérletek 

eredményéhez hasonlóan a 100 ng NT-nel kezelt csoportban (n=6) megemelkedett 

a kezelőkvadránsban töltött idő a kontrollcsoporthoz (n=11) képest (p < 0,05). A 

sulpirid előkezelés hatékonyan blokkolta a NT hatását (n = 11, p < 0,05). A 

sulpirid önmagában (n = 8) nem befolyásolta a kezelőkvadránsban töltött időt, 

azaz az eredmény nem különbözött a kontrollcsoportétól. 
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12. ábra. Sulpirid előkezelés hatása a VP-ban CPP tesztben. Az oszlopok a 

kezelőkvadránsban töltött idő átlagát (± SEM) mutatják a habituáció, illetve a 

teszt során. Kontroll: csak vivőanyaggal kezelt állatok (veh3 + veh1; n = 11). 100 

ng NT: veh3-mal, majd 100 ng NT-nel kezelt állatok (n = 6). Sulpirid: 4 µg D2 

DA-receptor antagonista sulpiriddel, majd veh1-gyel kezelt állatok (n = 8). 

Sulpirid + NT: 100 ng NT mikroinjekciójának hatása 4 µg sulpirid előkezelést 

követően (n = 11). Részletesebb magyarázatot ld. a szövegben. *: p < 0,05. 

 

Az egyes napokon az állatok által megtett utat a 3. táblázat mutatja. Az egy 

szempontos ANOVA teszt alapján nem volt szignifikáns különbség a csoportok 

között a habituáció során (F [3;32] = 1,370; p > 0,05). A kondicionálások során 

megtett út átlaga (F [3;32] = 12,032; p < 0,05), valamint a teszt során megtett út (F 

[3;32] = 12,848; p < 0,05) tekintetében viszont szignifikáns különbséget mutatott 

ki az analízis. Tukey-féle post hoc teszt alapján a sulpiriddel, illetve a sulpirid 

előkezelést követően NT-nel kezelt állatok szignifikánsan kevesebb utat tesznek 

meg a kondicionálások során, mint a kontrollcsoport állatai, továbbá ugyanezek a 

csoportok a teszt során is szignifikánsan kevesebb utat tettek meg, mint a 

kontrollcsoport, illetve a NT-nel kezelt csoport tagjai. 
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megtett út (cm/15 min) 

(átlag ± SEM) 
habituáció kondicionálások 

átlaga 

teszt 

kontroll (n=11) 6984,49 ± 600,66 3961,90 ± 331,14 6518,82 ± 368,79 

100 ng NT (n=6) 6196,61 ± 438,68 2993,84 ± 222,45 5965,80 ± 668,32 

sulpirid (n=8) 6360,47 ± 410,12 * 2322,12 ± 301,00 * 3016,56 ± 310,28 

sulpirid + NT (n=11) 5719,28 ± 364,59 * 1809,27 ± 232,00 * 3693,31 ± 541,90 

 

3. táblázat. Az állatok által a CPP paradigma során megtett út (cm/15 min) átlaga 

± SEM szerepel. Kontroll: csak vivőanyaggal kezelt állatok (veh3 + veh1; n = 11). 

100 ng NT: veh3-mal, majd 100 ng NT-nel kezelt állatok (n = 6). Sulpirid: 4 µg 

D2 DA-receptor antagonista sulpiriddel, majd veh1-gyel kezelt állatok (n = 8). 

Sulpirid + NT: 100 ng NT mikroinjekciójának hatása 4 µg sulpirid előkezelést 

követően (n = 11). Részletesebb magyarázatot ld. a szövegben. *: p < 0,05. 
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4.4. Emelt keresztpalló teszt 

 

Az első EPM kísérletben 100 ng és 250 ng NT VP-ba történő bilateralis 

mikroinjekcióinak a hatását vizsgáltuk (13. ábra). Egy szempontos ANOVA 

alapján szignifikáns különbség volt a zárt karokon töltött idő (F [2;22] = 3,513,  p 

< 0,05), a nyitott karokon töltött idő (F [2;22] = 4,329,  p <  0,05), valamint a 

nyitott karok végein töltött idő tekintetében is (F [2;22] = 4,479,  p < 0,05). Tukey-

féle post hoc teszt azt igazolta, hogy a 100 ng NT-nel kezelt állatok szignifikánsan 

több időt töltöttek a nyitott karokon és azok végein, illetve szignifikánsan 

kevesebb időt a zárt karokon, mint a kontrollcsoport állatai. Ezen eredmények 

alapján a NT 100 ng-os dózisban anxiolitikus hatású. A 250 ng NT-nel kezelt 

csoport eredménye nem különbözött szignifikánsan a kontrollcsoporttól egyik mért 

paraméter tekintetében sem. 

 

 

13. ábra. Bilateralis NT mikroinjekciók hatása a VP-ban EPM paradigmában. Az 

oszlopok a zárt karokon, a nyitott karokon, illetve a nyitott karok végein töltött idő 

átlagát (± SEM) mutatják. Kontroll: csak vivőanyaggal kezelt állatok (veh1, n = 

9). 100 ng NT: 100 ng NT-nel kezelt állatok (n = 8). 250 ng NT: 250 ng NT-nel 

kezelt állatok (n = 8) *: p < 0,05. 

 

Az állatok által az apparátus teljes területén megtett utat (az állatok 

átlagsebességét 5 perc alatt) a 4. táblázat mutatja. Az egy szempontos ANOVA 

teszt nem mutatott ki szignifikáns különbséget az egyes csoportok között (F [2;22] 

= 0,403; p > 0,05). 



 

 42 

 

 

 

 megtett út (cm/5 min) 

kontroll (n=9) 2050,15 ± 203,04 

100 ng NT (n=8) 1871,84 ± 221,33 

250 ng NT (n=8) 1822,57 ± 135,39 

 

4. táblázat. Bilateralis NT mikroinjekciók hatása a VP-ban EPM paradigmában. A 

táblázatban a kísérlet során megtett út átlaga (± SEM) szerepel. Kontroll: csak 

vivőanyaggal kezelt állatok (veh1, n = 9). 100 ng NT: 100 ng NT-nel kezelt állatok 

(n = 8). 250 ng NT: 250 ng NT-nel kezelt állatok (n = 8). 

 

 

A második EPM kísérlet célja az volt, hogy megvizsgáljuk, hogy az NT hatása 

az EPM tesztben NTS1-receptorokon keresztül valósul-e meg. A kísérlet 

eredményét a 14. ábra  mutatja. Egy szempontos ANOVA szignifikáns 

különbséget mutatott ki a zárt karokon töltött idő (F [3;30] = 4,734,  p < 0,05), a 

nyitott karokon töltött idő (F [3;30] = 10,311,  p < 0,05), illetve a nyitott karok 

végein töltött idő (F [3;30] = 3,729,  p < 0,05) tekintetében is. A Tukey-féle post 

hoc teszt kimutatta, hogy az antagonista önmagában nem befolyásolta az egyes 

karokon töltött időt, az állatok értékei a kontrollcsoportéhoz hasonlóak voltak. Az 

első EPM teszthez hasonlóan, a 100 ng NT-nel kezelt állatok szignifikánsan 

kevesebb időt töltöttek a zárt, és szignifikánsan több időt a nyitott karokon, mint a 

kontrollcsoport. Az antagonista előkezelést követően NT-nel kezelt csoport 

eredményei nem különböztek szignifikánsan a kontrollcsoport eredményeitől, 

viszont szignifikánsan több időt töltöttek a zárt, és szignifikánsan kevesebb időt a 

nyitott karokon, mint a 100 ng NT-nel kezelt állatok, tehát az antagonista 

előkezelés kivédte a NT hatását. 
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14. ábra. Bilateralis NT mikroinjekciók hatása a VP-ban EPM paradigmában. Az 

oszlopok a zárt karokon, a nyitott karokon, illetve a nyitott karok végein töltött idő 

átlagát (± SEM) mutatják. Kontroll: vivőanyaggal kezelt állatok (veh2 + veh1; n = 

9). 100 ng NT: veh2-vel, majd 100 ng NT-nel kezelt állatok (n = 8). 

Antagonista:35 ng NTS1-antagonista SR 48692-vel, majd veh1-gyel kezelt állatok 

(n = 9). Antagonista + NT: 100 ng NT mikroinjekciójának hatása 35 ng NTS1-

antagonista előkezelést követően (n = 8). Részletesebb magyarázatot ld. a 

szövegben. *: p < 0,05. 

 

Az állatok által megtett utat az 5. táblázat mutatja. Az egy szempontos ANOVA 

teszt nem mutatott ki szignifikáns különbséget az egyes csoportok között (F [3;30] 

= 1,331; p > 0,05). 

 

 megtett út (cm/5 min) 

kontroll (n=9) 1818,84 ± 213,04 

100 ng NT (n=8) 1906,20 ± 127,79 

antagonista (n=9) 1805,74 ± 213,11 

antagonista + NT (n=8) 2256,66 ± 124,85 

 

5. táblázat. Bilateralis NT mikroinjekciók hatása a VP-ban EPM paradigmában. A 

táblázatban a kísérlet során megtett út átlaga (± SEM) szerepel. Kontroll: 

vivőanyaggal kezelt állatok (veh2 + veh1; n = 9). 100 ng NT: veh2-vel, majd 100 

ng NT-nel kezelt állatok (n = 8). Antagonista:35 ng NTS1-antagonista SR 48692-

vel, majd veh1-gyel kezelt állatok (n = 9). Antagonista + NT: 100 ng NT 

mikroinjekciójának hatása 35 ng NTS1-antagonista előkezelést követően (n = 8).  
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A harmadik EPM kísérlet célja az volt, hogy megvizsgáljuk, a NT anxiolitikus 

hatásában szerepet játszik-e a D2 DA-receptorokkal való interakció. A kísérlet 

eredményét a 15. ábra mutatja. Egy szempontos ANOVA nem mutatott ki 

szignifikáns különbséget a zárt karokon töltött idő (F [3;32] = 1,864;  p > 0,05) 

tekintetében. Szignifikáns különbség volt viszont a nyitott karokon töltött idő (F 

[3;32] = 4,121;  p < 0,05), illetve a nyitott karok végein töltött idő (F [3;32] = 

7,978;  p < 0,05) tekintetében. A Tukey-féle post hoc teszt kimutatta, hogy a 

sulpirid az alkalmazott dózisban önmagában nem befolyásolta az egyes karokon 

töltött időt. Habár a nyitott karok végein töltött idő átlaga a sulpiriddel kezelt 

csoportban alacsonyabb volt, az apparátus egyes részein töltött idők egyike sem 

tért el szignifikánsan a kontrollcsoportétól. A 100 ng NT-nel kezelt állatok 

szignifikánsan több időt töltöttek a nyitott karokon, illetve azok végein, mint a 

kontrollcsoport (hasonlóan az első és a második EPM kísérlethez), illetve a 

sulpiriddel kezelt csoport. A sulpirid előkezelést követően a NT-nel kezelt csoport 

eredményei nem különböztek szignifikánsan a kontrollcsoport eredményeitől, 

viszont szignifikánsan kevesebb időt töltöttek nyitott karokon és azok végein, mint 

a 100 ng NT-nel kezelt állatok. A sulpirid előkezelés tehát kivédte a NT hatását. 

 

 

15. ábra. Sulpirid előkezelés hatása a VP-ban EPM tesztben. Az oszlopok a zárt 

karokon, a nyitott karokon, illetve a nyitott karok végein töltött idő átlagát (± 

SEM) mutatják. Kontroll: csak vivőanyaggal kezelt állatok (veh3 + veh1; n = 11). 

100 ng NT: veh3-mal, majd 100 ng NT-nel kezelt állatok (n = 6). Sulpirid: 4 µg 

D2 DA-receptor antagonista sulpiriddel, majd veh1-gyel kezelt állatok (n = 9). 

Sulpirid + NT: 100 ng NT mikroinjekciójának hatása 4 µg sulpirid előkezelést 

követően (n = 10). Részletesebb magyarázatot ld. a szövegben. *: p < 0,05. 
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Az állatok által megtett utat az 6. táblázat mutatja. Az egy szempontos ANOVA 

szignifikáns különbséget mutatott ki az egyes csoportok között (F [3;32] = 15,572; 

p < 0,05). Tukey-féle post hoc teszt alapján a sulpiriddel, illetve a sulpirid 

előkezelést követően NT-nel kezelt állatok szignifikánsan kevesebb utat tettek 

meg a kísérlet során, mint a kontrollcsoport, illetve a NT-nel kezelt csoport. 

 

 megtett út (cm/5 min) 

kontroll (n=11) 1847,17 ± 81,22 

100 ng NT (n=6) 2171,96 ± 160,81 

sulpirid (n=9) * 1368,18 ± 123,40 

sulpirid + NT (n=10) * 1141,32 ± 103,87 

 

6. táblázat. Bilateralis NT mikroinjekciók hatása a VP-ban EPM paradigmában. A 

táblázatban a kísérlet során megtett út átlaga (± SEM) szerepel. Kontroll: csak 

vivőanyaggal kezelt állatok (veh3 + veh1; n = 11). 100 ng NT: veh3-mal, majd 

100 ng NT-nel kezelt állatok (n = 6). Sulpirid: 4 µg D2 DA-receptor antagonista 

sulpiriddel, majd veh1-gyel kezelt állatok (n = 9). Sulpirid + NT: 100 ng NT 

mikroinjekciójának hatása 4 µg sulpirid előkezelést követően (n = 10). *: p < 

0,05. 
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5. Diszkusszió 
 

Régóta ismert, hogy a VP fontos szerepet játszik a lokomotoros aktivitás, a 

jutalmazás, valamint a szorongás szabályozásában is [21-23, 26, 36]. A NT-ről 

szintén igazolták, hogy más agyterületeken befolyásolja a fenti folyamatokat [3, 5-

8]. A VP-ban, azon belül is a VPvm-ban nagy mennyiségben kimutathatók NTS1-

receptorok [19, 20, 24], azonban ezek jutalmazásban, illetve a szorongás 

szabályozásában játszott szerepét eddig nem vizsgálták, ezért kutatócsoportunk a 

VP NT-receptorainak magatartásra gyakorolt hatásainak részletesebb 

feltérképezését tűzte ki célul. 

 

5.1. A ventralis pallidum NTS1-receptorainak szerepe a lokomotoros aktivitás 

szabályozásában 

 

Az OPF teszt kimutatta, hogy a VP-ba injektált NT, illetve a NTS1-antagonista 

SR 48692 egyik általunk alkalmazott dózisban sem befolyásolja a lokomotoros 

aktivitást. Habár valamennyi csoportot figyelembe véve az állatok által megtett út 

szignifikánsan alacsonyabb volt a teszt során, mint a a mikroinjekció nélküli, ún. 

bazális aktivitás, valamint a keresztezések száma is némileg (bár nem 

szignifikánsan) csökkent, az egyes csoportok átlagai egymástól nem különböztek 

sem a kezeletlen állapotban, sem  a teszt során. Ez a jelenség nagy valószínűséggel 

a kísérleti környezethez való adaptációnak (további habituációnak) tudható be. Az 

OPF teszt eredményei megfelelnek Torregrossa és Kalivas korábbi kísérletének 

[16], melyben kimutatták, hogy a NT(8-13) mikroinjekciója a VP-ban nem 

befolyásolja a spontán lokomotoros aktivitást. Ezeket az eredményeket az általunk 

alkalmazottnál kisebb dózisú NT(8-13)-mal kapták, valamint ismert, hogy a NT és 

a NT(8-13) hatása nem mindig azonos [3, 57-59], ezért jobbnak láttuk NT-nel is 

elvégezni a kísérletet. Tehát saját eredményeink, illetve irodalmi adatok alapján a 

VP NT-receptorainak nincs szerepe a lokomotoros aktivitás szabályozásában. 
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5.2. A ventralis pallidum NTS1-receptorainak szerepe a jutalmazásban 

 

A CPP paradigmát széles körben alkalmazzák különféle kémiai anyagok 

jutalmazó, illetve pozitív megerősítő hatásának mérésére [301-304]. A CPP 

kísérletben a kondicionálások során mikroinjektált anyag hatása és az adott hely 

(jelen esetben a kezelőkvadráns) között kondicionált asszociáció jön létre. A 

helypreferencia kialakulásának tehát legalább két feltétele van: az egyik az anyag 

jutalmazó, illetve pozitív megerősítő hatása, a másik pedig a memória kialakulása 

[304]. A tesztek kezeletlen állapotban történnek, ennek nagy előnye, hogy az 

eredményeket az anyagok esetleges akut hatásai, illetve mellékhatásai (a 

lokomócióra, a fájdalomérzésre, a szorongásra, ill. egyéb funkciókra) nem 

befolyásolják. A teszt során az állatok magatartását a környezeti vizuális jelekhez 

(„cue”-khoz) kapcsolódó memóriafolyamatok irányítják. 

Ismert, hogy a VP fontos szerepet játszik a helypreferenciában: 

pszichostimulánsok, mint pl. kokain és amfetamin CPP-t váltanak ki [194]. A VP 

opioidreceptorainak blokádja kondicionált helyaverziót okoz [196], a VP laesiója 

esetén pedig nem alakítható ki kokain, amfetamin, illetve szukróz indukálta 

helypreferencia [192, 193, 195]. A NT-ről más agyterületeken már kimutatták, 

hogy jutalmazó hatású: kémiai öningerlés építhető ki vele a VTA-ban, a NAC-ben 

és a subiculumban, de a medialis előagyi kötegben nem [85, 88]. Emellett a NT 

helypreferenciát vált ki a VTA-ban [3] és az amygdala centralis magjában [89]. A 

VP-ban azonban eddig még nem vizsgálták a NT esetleges hatásait a 

helypreferenciára.  

Eredményeink azt mutatják, hogy a VP-ba injektált NT jutalmazó, illetve 

pozitív megerősítő hatású. Kimutattuk továbbá, hogy a NT a CPP paradigmában 

sincs hatással az állatok motoros aktivitására (a megtett útra). A CPP teszt 

eredményét az egyes anyagok lokomócióra gyakorolt esetleges akut hatásai nem 

befolyásolhatják, mivel a teszt drogmentes állapotban történik. Viszont ha a 

neurokémiai anyag a kondicionálások során hatással lenne a lokomócióra, ez a 

tesztben is megjelenhetne az ún. kondicionált droghatás következtében [304, 308], 

hiszen a kondicionálások során a lokomotoros hatás is asszociálódhat a 

kezelőkvadránssal. Jelen kísérletben a  NT sem a kondicionálások, sem a teszt 
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során nem befolyásolta az állatok által megtett utat, ez egybevág az OPF teszt 

eredményeivel. 

A jutalmazó hatás receptorspecificitását a NTS1-specifikus antagonista SR  

48692 segítségével vizsgáltuk, mivel a NT receptorai közül a VP-ban ez található 

meg a legmagasabb koncentrációban [51]. A második kísérletben a 100 ng NT-nel 

kezelt csoport az első kísérlethez hasonlóan több időt töltött a kezelőkvadránsban, 

tehát sikerült ismét kimutatni a NT 100 ng-os dózisának helypreferenciát indukáló 

hatását. Ezt a hatást ekvimoláris NTS1-specifikus antagonista előkezeléssel 

sikerült kivédeni. A CPP paradigma során az állatok által megtett utat sem a NT, 

sem az SR 48692 nem befolyásolta, az egyes állatcsoportok által megtett út átlaga 

nem különbözött az egyes kísérleti szakaszokon belül. 

Az antagonistával végzett kísérletben a kondicionálás során (az első kísérlettől 

eltérően) az állatok nem 1, hanem 2 mikroinjekciót kaptak (minden csoportban). A 

másik lehetőség az lett volna, hogy az egyféle anyaggal (vivőanyag, NT vagy SR 

48692) kezelt állatok csak 1, míg az antagonistával előkezelt csoport állatai 2 

mikroinjekciót kapnak a kondicionálások során. Ebben az esetben felmerülhetett 

volna, hogy az antagonistával előkezelt csoportban az összességében nagyobb 

mikroinjekciós térfogat befolyásolhatná a kísérletek eredményét (az antagonistával 

előkezelt csoportban 2 x 0,4 μl, míg a többi csoportban csak 0,4 μl minden 

kondicionálás során). Ennek a lehetőségnek a kizárása céljából (illetve azért, hogy 

az egyes csoportok eredményei a kísérleten belül összehasonlíthatóak legyenek) a 

kontrollcsoport állatai  is 2-2 mikroinjekciót kaptak, illetve a 100 ng NT-nel kezelt 

csoport is megkapta az antagonista vivőanyagát 15 perccel a NT-mikroinjekciók 

előtt. A 100 ng NT-nel kezelt csoport, illetve a kontrollcsoport eredményei 

azonban hasonlóak voltak az első kísérletben kapottakhoz. Ez alapján kimondható, 

hogy a kísérlet eredményét nem befolyásolta, hogy az állatok ez egyes 

kondicionálások során 1 vagy 2 mikroinjekciót kaptak. Emellett a második kísérlet 

segítségével meg is erősítettük, hogy a NT 100 ng-os dózisban jutalmazó hatású a 

VP-ban, mivel az első kísérlet eredményét reprodukálni tudtuk. A NTS1-

antagonista SR 48692 önmagában nem volt hatásos az alkalmazott dózisban, az 

antagonista előkezelés viszont kivédte a NT hatását, ezzel sikerült demonstrálni a 
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hatás NTS1-receptorspecificitását. A CPP teszt segítségével igazoltuk, hogy a VP 

NTS1-receptorainak jelentősége van a jutalmazó folyamatokban. 

 

5.3. A ventralis pallidum NTS1-receptorainak szerepe a szorongás 

szabályozásában 

 

A CPP teszt eredményeinek értelmezése kapcsán felmerülhet, hogy az állatok 

akár amiatt is több időt tölthetnek egy adott kvadránsban, ha az anyag anxiogén 

hatású. Továbbá az sem ritka, hogy a jutalmazó hatású anyagok egyben 

anxiolitikus hatással is rendelkeznek. A fenti okok miatt megvizsgáltuk a NT 

szorongásra gyakorolt hatását is. Az EPM teszt széles körben elfogadott módszer a 

szorongás vizsgálatára [305-307]. A paradigma az állatok nyílt terektől és 

magasságtól való természetes félelmén alapul [307], így a nyitott karokon vagy 

azok végein töltött több idő jól jelzi az anxiolitikus hatást. A VP szorongásban 

játszott szerepe korábban is ismert volt. Kimutatták, hogy a vazopresszin 1a 

receptor emelkedett aktivitása a VP-ban fokozza a szorongást [205]. Az NT-ről 

szintén leírták már más agyterületeken, hogy hatással van a szorongásra: NAC-ben 

a dorsalis raphemag laesióját követően anxiolitikus hatású [110], rezerpin 

szisztémás adását követően viszont fokozza a szorongást  [111], ez alapján ott a 

NT szorongásoldó hatása állapotfüggő lehet, és a monoaminok egyensúlyának 

helyreállítására irányul [111]. 

Jelen kísérleteink során a NT 100 ng-os dózisa  a VP-ban anxiolitikus 

hatásúnak bizonyult: a NT szignifikánsan csökkentette a zárt karokon, illetve 

növelte a nyitott karokon és az azok végein töltött időt. A második, antagonistával 

végzett kísérletben a NTS1-antagonista SR 48692 önmagában nem befolyásolta a 

szorongást az alkalmazott dózisban, viszont kivédte a NT szorongásoldó hatását. 

Tehát a NT anxiolitikus hatása a VP-ban szintén NTS1-receptorokon valósulnak 

meg. Emellett a második kísérletben sikerült újra kimutatni a NT 100 ng-os 

dózisának anxiolitikus hatását. A NTS1-receptorok szorongás szabályozásában 

betöltött szerepét szelektív NTS1-agonista PD 149163 szisztémás injekciójának 

anxiolitikus hatása szintén igazolja [5, 7]. Más agyterületeken viszont a NTS2-

rceptoroknak is szerepe lehet a szorongás szabályozásában [6]. A mikroinjekciók 
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száma az EPM kísérletben sem befolyásolta az eredményt, mivel a CPP teszthez 

hasonlóan ebben a paradigmában is sikeresen reprodukáltuk az első kísérlet 

eredményeit. 

Ha csak az apparátus egyes területein eltöltött időt mérjük, nem zárható ki, 

hogy az eredmények részben a NT lokomotoros aktivitására gyakorolt potenciális 

hatásának következményei, tehát ha a NT fokozná a lokomotoros aktivitást, akkor 

emiatt is több időt tölthetnének az EPM tesztben a nyitott karokon. Az állatok által 

az EPM paradigma során megtett út azonban nem különbözött az egyes 

állatcsoportok között, tehát ebben a kísérletben is sikerült demonstrálni, hogy sem 

a NT, sem az SR 48692 nem befolyásolja a lokomotoros aktivitást. Ezen felül az 

egyes csoportok  által megtett út átlaga hasonló a szintén 5 perces időtartamú OPF 

teszt során kapott eredményekhez. 

Eredményeink alapján feltételezhetjük, hogy a VP NTS1-receptorainak 

aktivációja következtében kialakuló anxiolitikus hatás pozitív motivációs-

emocionális állapotot vált ki, amelyet az állat a CPP paradigmában a 

kezelőkvadránshoz köt. Ugyanez figyelhető meg a nucleus basalisba injektált P-

anyag esetében is, amely pozitív megerősítő [44], illetve anxiolitikus hatású [25]. 

Ez más agyterületeken sem szokatlan jelenség. A P-anyag a globus pallidusban 

[309], valamint az amygdala centralis magjában is helypreferenciát indukál [310], 

illetve szorongásoldó hatású [311].  Az ellenkezőjére (amikor az adott anyag nem 

hatásos mindkét paradigmában) szintén találunk példát az irodalomban. A NT az 

amygdala centralis magjában helypreferenciát vált ki, a szorongást azonban nem 

befolyásolja  [89].  

 

5.4. A 250 ng-os neurotenzin mikroinjekciók hatástalanságának lehetséges 

okai 

 

Jelen kísérleteink során a NT alkalmazott dózisai közül mind a CPP, mind az 

EPM tesztben a 100 ng-os dózis bizonyult hatásosnak, a 250 ng-os dózis nem. A 

dózis emelésekor a hatás gyengülése vagy megszűnése nem szokatlan jelenség a 

neuropeptideknél, magyarázata a fordított U alakú dózis-hatás-görbe [312, 313]. 

Korábban ugyanez volt jellemző a NT centralis amygdalában kifejtett hatására is: 
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a 100 ng-os dózisnak szerepe volt passzív elhárító szituációban, míg a 250 ng-os 

dózis nem volt hatásos [114]. Más neuropeptideknél szintén megfigyelhető a 

jelenség: a P-anyag a globus pallidusban és a centralis amygdalában 

helypreferenciát váltott ki [309, 310] és fokozta a passzív elhárító tanulást [314] 

10 ng-os dózisban, viszont 100 ng-os dózisban nem. Az acilált ghrelin 50 ng-os 

dózisban a BLA-ban javította a passzív elhárító tanulást, valamint a térbeli 

tanulást, 100 ng-os dózisban viszont nem [315, 316].  

Egy másik lehetséges magyarázat a NT magasabb dózisának gyengébb 

hatására, hogy a magasabb dózis nagyobb mértékben befolyásol más, pl. NTS2-

receptorokat, amelyek kisebb affinitással rendelkeznek a NT-re [50-52, 69, 70], és 

amelyek, bár nagyon alacsony koncentrációban, de kimutathatók a VP-ban [51, 

246]. A kétféle receptor eltérő hatásának hátterében állhatna a részben különböző 

jelátvitel [50-52], valamint az, hogy a NTS2-receptorokon a NT-antagonisták 

indukálhatnak kalcium beáramlást, amelyet a NT kivédhet [76]. A VP-ban 

található NTS2-receptorok funkcióinak tisztázása céljából a jövőben további, 

NTS2-specifikus agonisták és/vagy antagonisták hatásának vizsgálatára irányuló 

kísérletek szükségesek. 

További magyarázat lehet, hogy a különböző, NT által potenciálisan modulált 

transzmitterek különböző érzékenységgel rendelkeznek a NT-re, így a NT 

dózisától függően a NT csak az egyik, vagy akár mindkét rendszerre, illetve 

további transzmitterekre is hatást gyakorolhat és ezek a hatások interferálhatnak 

egymással. Erre a jelenségre példa a NT lokális alkalmazásának hatása a NAC-

ben: a NT nagyobb dózisban növeli az extracellularis GABA- és DA-szintet is, 

kisebb dózisban viszont csak a GABA-szintet növeli, a DA-szintet viszont 

csökkenti, ez a csökkenés azonban GABAA-antagonistával kivédhető [11]. 

Alternatív magyarázat lehetne még a NT-receptorok pre- és posztszinaptikus 

elhelyezkedése, amelyek így eltérő módon modulálhatnák a striatopallidalis 

bemeneteket. Immunológiai és elektronmikroszkópos vizsgálatok alapján azonban 

a NT-receptorok típusosan posztszinaptikusan a striatopallidalis afferenseket 

fogadó dendriteken, valamint az idegsejtek perikaryonjain helyezkednek el [19, 

245]. Preszinaptikus NT-receptorok létét  a VP-ban eddig nem igazolták, ebben 

tehát a VP különbözik a NAC-től, ahol a NT-receptorok főleg az 
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axonterminálisokon találhatók [51]. Nem zárható ki viszont, hogy a lokális 

GABA-koncentráció NT dózisától függő változásai a GABA koncentrációjától 

függően preszinaptikus GABA-receptorokon keresztül eltérő hatást 

gyakorolhatnak más transzmitterek felszabadulására, erről azonban egyelőre nem 

rendelkezünk adatokkal. 

Szintén nem zárható ki, hogy a beadott anyagok a környező agyterületekre 

diffundálnak, és a környező struktúrákban szintén jelen vannak a NT-receptorok: a 

substantia innominata, a Broca-féle diagonalis köteg horizontalis ajka, valamint a 

nucleus preopticus magnocellularis erősen jelölődik NTS1-receptor elleni 

antitestekkel, a stria terminalis beágyazott magja, a globus pallidus, a Calleja-

szigetek, a lateralis hypohtalamikus area kevésbé, a caudatumban pedig csak 

néhány interneuron  [51, 245]. A környező területekre való diffúzió valószínűségét 

viszont nagy mértékben csökkenti, hogy a NT-t a peptidázok lebontják [51, 317]. 

A NT féléletideje emberi vérplazmában 37 °C-on 1,4 perc [318], az agyban kb. 15 

perc [319, 320]. Jelen kísérleteinkben az EPM és az OPF teszt 5 percig, a CPP 

teszt kondicionálása 15 percig tartott, ezen idő a fenti eredmények alapján nem 

elegendő a NT lebomlásához, így a NT a kísérlet teljes időtartama alatt hatni 

tudott. Az 5, illetve a 15 perces időtartam viszont ahhoz valószínűleg túl rövid, 

hogy a NT a szomszédos struktúrákba diffundálhasson, és ezáltal befolyásolhassa 

a kísérletek eredményeit. A VP-mal szomszédos agyterületeken egyelőre nincs 

adat a NT esetleges magatartási hatásairól. A diffúzió pontos meghatározásához 

további vizsgálatokra lenne szükség, pl. radioaktívan jelölt NT alkalmazásával.  

 

5.5. A neurotenzin lehetséges hatásmechanizmusa a ventralis pallidumban 

 

A VP-ban a NT-receptorok szinte kizárólag a VPvm alrégióban találhatók, de a 

VPdl-ban vagy más alrégiókban nem [19, 20, 24], így a NT alkalmazásával a 

VPvm célzott vizsgálatára van lehetőség. Kimondhatjuk tehát, hogy a VP-ba 

mikroinjektált NT jutalmazó, illetve anxiolitikus hatásáért ez az alrégió felelős. A 

VPvm-ban főleg NTS1-receptorokat azonosítottak [245], az NTS2-receptorok 

viszont csak alacsony koncentrációban találhatók meg [51, 246]. Ez alapján 

feltételeztük, hogy a NT a VP-ban a NTS1-receptorokon keresztül fejti ki 
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magatartási hatásait. Ezt a feltételezést NTS1-specifikus antagonista adásával 

sikerült igazolni, mivel az SR 48692 előkezelés kivédte a NT jutalmazó, illetve 

anxiolitikus hatását is.  

Felmerül a kérdés, hogy a VP-ba injektált NT pontosan hogyan fejti ki 

jutalmazó, illetve anxiolitikus hatását. Igazolták, hogy a VP-ban a NT modulálja a 

GABA-erg neurotranszmissziót [16]. Sajnos azzal kapcsolatban nem rendelkezünk 

adatokkal, hogy a NT-receptorok a VP melyik sejttípusain találhatók, azonban 

tudjuk, hogy posztszinaptikusan helyezkednek el [19, 51, 245]. Szintén ismert, 

hogy a NT(8-13) VPvm-ba történő mikroinjekciója megnöveli az extracellularis 

GABA-szintet [16], ez alapján a NT-receptoroknak az interneuronokon 

mindenképpen jelen kell lenniük, a GABA NT hatására történő lokális növekedése 

pedig gátolja a VP GABA-erg kimeneti neuronjait. A NT a GABA-szint növelése 

mellett potencírozza a kokainalapú drogkeresést, viszont gátolja a cue-alapú 

drogkeresést kokainadminisztrációt, majd extinkciót követően [16]. Újabb 

vizsgálatok alapján a VPvm biotechnológiával kifejlesztett és lentivirális 

vektorokkal bejuttatott mesterséges, ún. designerreceptorokkal [321] való 

inaktivációja ugyanilyen, a VPdl inaktivációja viszont ezzel ellentétes hatású: 

gátolja kokainalapú drogkeresést, viszont nem befolyásolja a cue-alapú 

drogkeresést [36]. Ezen felül a cue-alapú drogkeresés során aktiválódnak a VPvm 

VTA-ba projiciáló gátló neuronjai, viszont a VPdl nem aktiválódik [36]. Humán 

fMRI-vizsgálatok szintén igazolták, hogy a VPvm és a VPdl különféle 

(gusztustalan, illetve gusztusos) stimulusok látványára aktiválódhat [236]. A 

fentiek alapján okkal feltételezhető, hogy a két szubrégió GABA-erg gátlása 

szintén ellentétes hatású. Sajnos a legtöbb mikroinjekciós kísérlet a VP-ot 

homogén egységnek tekinti és nem tesz különbséget az alrégiók között (ennek oka 

részben az alrégiók igen kis mérete, és az egyes alrégiók specifikus célzásának 

nehézségei), így az irodalomban fellelhető legtöbb eredmény tekintetében nem 

tudjuk, hogy az egyes alrégiók mutatnak-e funkcionális különbségeket. 

Érdekes módon a két alrégió GABA-erg inaktivációja nem minden kísérletben 

bizonyult ellentétes hatásúnak. GABAA-agonista muscimol a VPvm-ban és a 

VPdl-ban egyaránt csökkentette a táplálékbevitelt és negatív ízreaktivitási 

mintázatokat váltott ki [203], míg a GABAA-antagonista bicucullin fokozta a 
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táplálkozási magatartást, az ízreaktivitást pedig nem befolyásolta [23, 201]. 

Azonban a hatás tekintetében még a VPvm-on belül is inhomogenitás volt 

megfigyelhető, mivel a VPvm legventromedialisabb részén egy kis területen a 

GABAA-antagonista csökkentette a táplálékbevitelt [23, 201], így a VP egyes 

részeinek ellentétes funkciói ebben a kísérletben is kimutathatóak voltak. Arról, 

hogy a NT a VP-ban befolyásolja-e a GABA táplálkozást szabályozó hatásait, 

egyelőre nem rendelkezünk adatokkal. 

 

5.6. A ventralis pallidumba mikroinjektált neurotenzin feltételezett hatása a 

ventralis tegmentalis area aktivitására 

 

Mint a NAC fő kimenete, a VP valószínűleg a VTA-n keresztül szabályozza a 

szorongást [26, 208, 223, 231, 232], valamint a jutalmazást és a drogkereső 

magatartást [36, 177]. A VP alrégiói közül a VPvm az egyetlen, ahol nagy 

mennyiségben mutattak ki NT-receptorokat [19, 20], továbbá ismert, hogy a 

VPvm efferenseinek egyik fő célpontja a VTA [20, 215, 227]. A VPvm GABA-

erg neuronjai gátolják a VTA neuronjainak tüzelését [229], ezáltal a VP 

befolyásolja a VTA DA-erg neuronjainak populációs aktivitását [26, 208, 223, 

230]. A NAC-ből a VP-ba menő GABA-erg rostok aktivációja, vagy a VPvm 

lokális inaktivációja GABA-agonistákkal [230] vagy mesterségesen bejuttatott 

receptorok aktiválásával [36] gátolja a VPvm-ból a VTA-ba vetülő GABA-erg 

efferens pályát, ezáltal a VTA felszabadul a gátlás alól, így a DA-erg neuronok 

tüzelési frekvenciája szignifikánsan növekszik [36, 230]. A VTA megnövekedett 

aktivitása a NAC-ben mérhető extracellularis DA-szint növekedésével jár együtt 

[230]. A megnövekedett DA-szint a VTA-ban és a NAC-ben összekapcsolható a 

jutalommal és a pozitív megerősítéssel [322-324]. A legújabb kutatások alapján a 

VP-ba injektált NT [16], valamint a VPvm mesterséges receptorokkal való 

inaktivációja (melynek során a VTA felszabadul a GABA-erg gátlás alól) egyaránt 

gátolja a cue-alapú drogkeresést [36]. A fentiek alapján nagy valószínűséggel 

kijelenthetjük, hogy a NT VP-ba történő direkt mikroinjekciója a VPvm 

inaktivációján keresztül aktiválja a VTA-t, és így fejti ki jutalmazó, valamint 

szorongásoldó hatását is. Bár kimutattak a VP-ból a VTA-ba menő glutamáterg 
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efferenseket is [244], ezek azonban nem modulálják direkt a DA-erg neuronokat 

[36]. 

A BLA szintén a VP-VTA-tengelyen keresztül szabályozza a szorongást [208], 

valószínűleg a jutalmazást is. A fentieket alátámasztja, hogy a krónikus, közepes 

mértékű stressz csökkenti a VTA dopaminerg neuronjainak populációs aktivitását, 

ez a hatás pedig gyengíthető a BLA vagy a VP lokális inaktivációjával [26]. A 

prepulse-gátlás (PPI) esetén is hasonló észlelhető: a VP laesiója vagy 

farmakológiai inaktivációja normalizálja a NAC [325] vagy a BLA [208] laesiója 

vagy gátlása által kiváltott PPI-deficitet. A fentiek alapján jó okkal feltételezhető, 

hogy a NT a BLA-NAC-VP-VTA tengelyen keresztül fejti ki jutalmazó és 

anxiolitikus hatását. 

 

5.7. A dopamin szerepe a neurotenzin hatásmechanizmusában 

 

Az eddigiek alapján a NT magatartási hatásaiban a GABA-erg rendszer 

modulációjának minden bizonnyal szerepe van. Tudjuk viszont, hogy a GABAA-

antagonista picrotoxin a VP-ban semmilyen hatással nem rendelkezik CPP 

paradigmában [247], így a helypreferenciában a GABA-erg rendszer szerepe 

valószínűleg nem meghatározó. A fentiek alapján feltételeztük, hogy a NT 

magatartási hatásai (így a helypreferencia és a szorongásoldó hatás is) legalábbis 

részben a GABA-erg rendszertől függetlenül valósulnak meg.  

Egyes neuropeptidek, így pl. a NT és a P-anyag a mezolimbikus DA-erg 

rendszer modulációján keresztül fejti ki jutalmazó, pozitív megerősítő és 

anxiolitikus hatását [13, 15, 313, 326]. A NT számos agyterületen kolokalizálódik 

DA-nal, azaz ugyanabból a terminálisból DA és NT is felszabadul: a VTA-ban, a 

NAC-ben, az amygdalában és a PFC-ben [10, 155, 156]. Szintén több agyterületen 

kimutatták, hogy a NT modulálja a DA felszabadulását [11, 59, 157, 162, 164, 

167, 169-171], illetve hatását [10, 15, 154, 158, 159], tehát a két rendszer között 

akkor is lehet kölcsönhatás (interakció, illetve koakció), amikor nem ugyanazon 

axonvégződésből szabadulnak fel. Mivel a VPvm-ban NTS1- és DA-receptorokat 

is azonosítottak [19, 20, 270, 327], alapos okunk van feltételezni a NT és DA 

közötti funkcionális interakciót. A NT DA-erg rendszerrel való interakciójának 
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koncepcióját a VP-ban támogatja, hogy az i.v. beadott NT-receptor antagonisták és 

DA-receptor antagonisták hasonlóan hatnak a VP neuronjainak aktivitására [298]. 

A fentiek alapján feltételeztük, hogy a NT magatartási hatásai a DA-erg rendszer 

modulációján keresztül is  megvalósulhatnak a VP-ban, amelyet a mezolimbikus 

rendszer rostjai is beidegeznek [217].  

A VP D1 és D2 DA-receptorainak magatartási hatásai részben már ismertek. A 

jutalmazó, pozitív megerősítő folyamatokban, valamint az öningerlésben a VP  D1 

és D2 DA-receptorainak egyaránt szerepe van [195, 275]. A D1 DA-receptorok 

aktivációja növeli a lokomotoros aktivitást [273], szerepe van a térbeli [212, 213] 

és a büntetéses tanulásban [210, 213], valamint a memóriakonszolidációban [212, 

213]. A VP D2 DA-receptorainak aktivációja quinpirollal kis dózisban (0,3-1 

μg/0,5 µl) nem befolyásolja, nagy dózisban (3 μg/0,5 µl) csökkenti a lokomotoros 

aktivitást [273]. Emellett a quinpirol fokozza a térbeli tanulást Morris-féle 

úsztatási tesztben, a D2 DA-receptor-antagonista sulpirid viszont gyengíti a 

memóriakonszolidációt, valamint a rövid távú memória kialakulását is [213]. 

Passzív elhárító szituációban vizsgálva a quinpirol a VP-ban a büntetéses tanulást 

is elősegíti, a D2-antagonista sulpirid viszont ebben a paradigmában is gátolja a 

memóriakonszolidációt [213]. A VP-ba mikroinjektált quinpirol bár nem okoz 

helypreferenciát, de szignifikánsan növeli a kezelőkvadránsba történő belépések 

számát, valamint a megtett utat CPP tesztben, míg a D1 DA-receptor-agonista 

SKF 38393 semelyik mért paraméterre sem volt hatással [213]. A fentiek alapján a 

CPP paradigmában kapott eredményt inkább a D2-receptorok befolyásolhatják, 

ezért jelen vizsgálataink során erre a receptoraltípusra fókuszáltunk. A VP DA-

receptorainak szorongásban játszott szerepe egyelőre nem ismert.  

Jelen kísérleteink során a CPP paradigmában a D2 DA-receptor antagonista 

sulpirid az alkalmazott dózisban nem okozott sem helypreferenciát, sem averziót. 

Ismételten reprodukálni tudtuk a  NT 100 ng-os dózisának helypreferenciát okozó 

hatását,  amit a sulpirid előkezelés kivédett. Emellett a sulpirid önmagában is, 

valamint a sulpirid előkezelés is szignifikánsan csökkentette az állatok által 

megtett utat a kondicionálások, illetve a teszt során. A kezeletlen állapotban 

végzett teszt során nem beszélhetünk akut neurokémiai hatásról, a kapott 

eredmény lehetséges magyarázata a kondicionált droghatás [304], azaz a 
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kondicionálások során az akut droghatás miatt az állat kevesebbet mozog, és ez 

asszociálódik a kísérleti apparátussal. Ez ellen szól azonban, hogy a sulpirid 

memóriakonszolidációt gátló hatásának [213] a kondicionált droghatást is 

gyengítenie kellene. A sulpirid által okozott esetleges hosszú távú motoros deficit 

szintén szóba jöhetne, azonban Morris-féle úsztatási tesztben a korábban 

sulpiriddel kezelt állatoknál nem tapasztalható eltérés az állatok úszási sebességét 

tekintve a többi csoporthoz képest [213], így a motoros deficit szerepe is kizárható. 

Az EPM paradigmában a sulpirid előkezelés kivédte a NT (ebben a kísérletben 

ismételten reprodukált) szorongásoldó hatását. A sulpiriddel kezelt állatoknál 

ugyan tendencia volt megfigyelhető, hogy kevesebb időt (4,73 ± 2,73 sec) töltenek 

a nyitott karok végein, mint a kontrollcsoport (13,16 ± 2,52 sec), ez azonban nem 

volt szignifikáns (ld. 15. ábra). Ennek ellenére nem zárható ki a sulpirid anxiogén 

hatása, mivel a kontrollcsoport állatai is viszonylag kevés időt töltenek a nyitott 

karokon, és ehhez képest a paradigma jellegéből adódóan nehezebb szignifikáns 

anxiogén hatást kimutatni.  

A D2 DA-receptorok hatása a lokomócióra igen változatos a beadás módjától, 

illetve dózistól függően. A szisztémásan adott D2 DA-receptor antagonista sulpirid 

lokomócióra gyakorolt hatása dózisfüggő: nagy dózisban (>40 mg/kg i.p.) 

csökkenti [328, 329], kis dózisban (2,5-10 mg/kg i.p.) viszont fokozza a 

lokomóciót [328]. A NAC-ben gyengíti a kokain indukálta lokomóciót [330]. 

Kutatócsoportunk korábbi, illetve jelen kísérleteiben a D2-antagonista sulpirid (4 

µg/0,4 µl-es dózisban) csökkentette a lokomotoros aktivitást [213]. A D2-agonista 

quinpirol 1 µg/0,4 µl-es dózisban (érdekes módon csak a teszt során) növelte az 

állatok által megtett utat CPP paradigmában [213], nagyobb dózisban viszont 

csökkentette azt CPP paradigmában [213], illetve OPF tesztben is [273]. A fentiek 

alapján felmerül, hogy az egyes DA-receptorok aktivációjának, illetve 

inaktivációjának hatása a VP-ban dózistól és/vagy alrégiótól függően akár 

ellentétes lehet. A jelen kísérletek során a sulpirid kezelés hatására a megtett út 

csökken, függetlenül attól, hogy a sulipridkezelés után az állatok kaptak-e NT-t is. 

Ez hypomotilitásra utal, amely azonban nem annak következménye, hogy az állat 

a kezelőkvadránst preferálja, vagy elkerüli, hiszen a kezelőkvadránsban töltött idő 

nem változik a habituáció során mérthez képest, valamint a hypomotilitás a 
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kezelőkvadránsban, valamint a többi kvadránsban is egyaránt kimutatható (1. 

melléklet). Emellett a hypomotilitás sem befolyásolja azt, hogy az állatok mennyi 

időt töltenek az egyes kvadránsokban. 

Kísérleteink során háromszor is kimutattuk a NT helypreferenciát okozó, illetve 

szorongásoldó hatását. Figyelemre méltó, hogy a 100 ng NT-nel kezelt állatok 

eredményeinek átlagai mindhárom CPP teszt során hasonlóak, függetlenül attól, 

hogy ezek a kísérletek különböző állatcsoportokon, különböző időpontokban (bár 

standardizált körülmények között) történtek. A három EPM teszt során szintén jól 

összevethetők egymással az egyes kísérletek kontrollcsoportjainak, illetve az 

egyes kísérletek NT-nel kezelt csoportjainak átlagai is. A sulpirid előkezelés 

segítségével igazoltuk, hogy a VP-ban a NTS1-receptorok jutalmazó, illetve 

szorongásoldó hatása is a D2 DA-receptorokkal interakcióban valósul meg. 

Érdekes kérdés azonban ezen interakció jellege. A D2 DA-receptorok működése 

mindkét paradigmában szükséges feltétele a NT hatásának, hiszen a sulpirid 

előkezelés kivédi a NT hatásait, viszont a D2 DA-receptorok aktiválása (legalábbis 

a CPP tesztben) önmagában nem elegendő a hatás kialakításához [213]. Ráadásul, 

mivel a VP NT-receptorai posztszinaptikusan helyezkednek el [19, 51, 245], nem 

pedig a DA-erg axonterminálisokon, így a NT direkt nem modulálhatja a DA-erg 

bemeneti neuronok működését (habár a posztszinaptikus DA- és NT-receptorok 

közti funkcionális interakció szóba jöhet). Igen valószínű, hogy a NT 

hatásmechanizmusában a VP-ban a D2-receptorokon kívül további 

mechanizmusok is szerepet játszanak, ennek a hatásnak azonban feltétele az 

endogén DA-aktivitás. 

A D2 DA-receptoroknak valószínűleg inkább a memóriakonszolidációban van 

szerepe [213], így a D2 DA-receptorok blokkolása esetén a NT nem tud 

helypreferenciát kialakítani, mivel a memóriakonszolidáció károsodott. Ezt a 

feltételezést támogatja, hogy a VP-nak kulcsszerepe van a kokain indukálta 

kondicionált helypreferencia kialakulásában [188, 193], viszont a kondicionálás 

utáni VP-laesio nem szünteti meg a már kialakult helypreferenciát [193]. Ezzel 

azonban nem magyarázhatjuk, hogy a D2 DA-receptorok blokádja miért szünteti 

meg a NT akut anxiolitikus hatását is (hiszen ott memóriakomponensről nem 

beszélhetünk). Szintén a fenti elmélet ellen szól, hogy a memóriakonszolidációnak 
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a sulpirid mikroinjekciók ellenére bizonyos mértékig megtartottnak kell lennie, 

különben nem alakulhatna ki a CPP teszt során kondicionált droghatás. Alternatív 

magyarázat lehet a sulpirid anxiogén, esetleg szedatív hatása. A sulpirid esetleges 

akut anxiogén hatásával magyarázható a lokomotoros aktivitás hosszú távú 

motoros deficit nélküli csökkenése, valamint a helypreferencia kialakulásának 

hiánya is. A fentieket az is támogatja, hogy a sulpiriddel kezelt állatok ha nem is 

szignifikánsan, de kevesebb időt töltenek az EPM teszt során a nyitott karok 

végein, mint a többi csoport. 

 

5.8 Eredményeink lehetséges klinikai relevanciája 

 

Jelen kísérleteink során igazoltuk a NT direkt jutalmazó-megerősítő, valamint 

anxiolitikus hatását a VP-ban. Igazoltuk továbbá, hogy a D2-dopaminreceptorok 

aktivitása mindkét hatás létrejöttének szükséges feltétele. 

Eredményeink jól illeszkednek a korábbi kutatásokhoz, amelyek a VP-ban [16], 

illetve más agyterületeken is kimutatták a NT jutalmazásban, illetve 

drogaddikcióban játszott szerepét [8]. Eredményeink újabb információkat 

nyújtanak a NT-erg transzmisszió jutalmazási és megerősítési folyamatokban 

nyújtott szerepéről, így a későbbiekben hozzájárulhatnak a NT-erg transzmisszió 

manipulációjának a drogaddikciós folyamatok terápiájában való felhasználáshoz 

szükséges ismeretekhez is. 

A szorongásos zavarok prevalenciája igen magas a modern társadalmakban, 

emiatt kezelésük kulcsfontosságú. Mivel a NT már több agyterületen és 

szisztémásan alkalmazva is szorongásoldó hatásúnak bizonyult [5, 7, 110], 

valamint jelen kísérleteinkben a VP-ban is sikeresen demonstráltuk a NT 

anxiolitikus hatását, a jövőben a NT-erg transzmisszió befolyásolása ígéretes 

lehetőség lehet a szorongásos zavarok kezelésében is. 
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6. Összefoglalás 
 

A célkitűzések során feltett kérdésekre az alábbi válaszokat kaptuk: 

 

1. A NT nem befolyásolja a lokomotoros aktivitást. 

 

2. A VP-ba injektált NT 100 ng-os dózisban jutalmazó hatásúnak bizonyult CPP 

tesztben. 

 

3. A NT jutalmazó hatása NTS1-receptorokon valósul meg, mivel NTS1-

specifikus antagonista SR 48692-vel e hatás kivédhető. 

 

4. A VP-ba injektált NT 100 ng-os dózisban anxiolitikus hatású. 

 

5. A NT anxiolitikus hatása is NTS1-receptorokon valósul meg, mivel NTS1-

specifikus antagonista SR 48692-vel ez a hatás is kivédhető. 

 

6. A D2 DA-receptorok aktivitása a NT jutalmazó, valamint anxiolitikus hatásának 

is szükséges feltétele, mivel D2 DA-receptor antagonista sulpiriddel mindkét hatás 

kivédhető. 

 

Mivel a memóriakonszolidációs folyamatokban a VP D1 DA-receptorainak 

szerepe is ismert [212, 213], a jövőben szeretnénk megvizsgálni a VP D1-

receptorainak hatását is a NT jutalmazó, illetve anxiolitikus hatására.  

 

További céljaink között szerepel a VP NTS1-receptorainak esetleges más 

magatartási folyamatokban (pl. térbeli tanulás, büntetéses tanulás) betöltött 

szerepének, valamint a VP-ban alig kimutatható mennyiségben megtalálható 

NTS2-receptorok magatartási hatásainak vizsgálata is. 
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8. Rövidítésjegyzék 
 

6-OH-DA: 6-hidroxi-dopamin 

AMPA: alfa-amino-3-hidroxi-5-metil-izoxazol-4-propionát 

ANOVA: varianciaanalízis (analysis of variance) 

BLA: basolateralis amygdala 

CCK: cholecystokinin 

CPP: kondicionált helypreferencia 

DA: dopamin 

DAMGO: [D-Ala
2
, N-MePhe

4
, Gly-ol]-enkefalin 

EPM: emelt keresztpalló (elevated plus maze) 

GABA: gamma-amino-vajsav 

i.p. : intraperitonealis 

i.v.: intravénás 

Kd: kötési állandó (egyensúlyi állandó) 

MAPK: mitogénaktivált proteinkináz 

NAC: nucleus accumbens 

NFκB: nuclear factor kappa-light-chain-enhancer of activated B cells 

NMDA: N-metil-D-aszpartát 

NT: neurotenzin 

NT(8-13): NT-fragmentum (8-13-as aminosavak ) 

NT(1-11): NT-fragmentum (1-11-es aminosavak ) 

NTS1, NTS2, NTS3: NT-receptor 1, 2, illetve 3 

OPF: open field 

PBS: foszfát-pufferes sóoldat 

PFC: praefrontalis kéreg 

PPI: prepulse-gátlás (prepulse-inhibíció) 

SEM: standard hiba (standard error of the mean) 

ST: szerotonin 

ttkg: testtömeg-kilogramm 

veh1: a NT vivőanyaga, részletesen ld. 3.3. fejezet 
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veh2: az SR 48692 vivőanyaga, részletesen ld. 3.3. fejezet 

veh3: a sulpirid vivőanyaga, részletesen ld. 3.3. fejezet 

VP: ventralis pallidum 

VPvm: ventromedialis ventralis pallidum 

VPdl: dorsolateralis ventralis pallidum 

VTA: ventralis tegmentalis area 
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11. Mellékletek  
 

 
megtett út (cm) 

(átlag ± SEM) 
kezelőkvadráns többi kvadráns 

átlaga 

kontroll (n=11) 1335,13  ± 107,00 1727,90 ±  97,66 

100 ng NT (n=6) 1820,49  ± 201,59 1381,77  ± 219,49 

sulpirid (n=8) * 626,27  ± 99,13 * 796,77 ±  89,88 

sulpirid + NT (n=11) * 911,23  ± 194,53 * 927,36  ± 119,60 

 

1. melléklet. Az állatok által a CPP paradigmában a teszt ülés során megtett út 

átlaga ± SEM a kezelőkvadránsban, illetve a többi kvadránsban átlagosan. 

Kontroll: csak vivőanyaggal kezelt állatok (veh3 + veh1; n = 11). 100 ng NT: 

veh3-mal, majd 100 ng NT-nel kezelt állatok (n = 6). Sulpirid: 4 µg D2 DA-

receptor antagonista sulpiriddel, majd veh1-gyel kezelt állatok (n = 8). Sulpirid + 

NT: 100 ng NT mikroinjekciójának hatása 4 µg sulpirid előkezelést követően (n = 

11). Az egy szempontos ANOVA teszt alapján szignifikáns különbség volt a 

csoportok között teszt ülés során a kezelőkvadránsban megtett út (F [3;32] = 

8,721;  p < 0,05), valamint a többi kvadránsban megtett út (F [3;32] = 12,671; p 

< 0,05) tekintetében is. Tukey-féle post hoc teszt alapján a sulpiriddel, illetve a 

sulpirid előkezelést követően NT-nel kezelt állatok szignifikánsan kevesebb utat 

tesznek meg a kezelőkvadránsban, valamint a többi kvadránsban is. 

 


