Interdiszciplinary Medical Sciences (D93) The Leader of the Doctoral School: Dr. Gallyas, Ferenc

A-129/1993 Molecular and cellular biochemistry

Program leader: Dr. Gallyas, Ferenc

Dr. Berente, Zoltán	Department of Biochemistry and	Magnetic resonance imaging (MRI) and spectroscopic (MRS) study of
zoltan.berente@aok.pte.hu	Medical Chemistry	various disease models in vitro, in situ and on small animals in vivo

Nuclear magnetic resonance, due to its inherently advantageous properties, is especially suitable for noninvasive and nondestructive study of the living material (cells, tissues, intact living creatures). The method provides morphological, cellular (e.g. diffusion and perfusion) and molecular (e.g. metabolite concentrations) information practically simultaneously and in a spatially resolved manner. A further advantage of the method is that using non-radioactive isotope labelling it provides the localisation of the label not only among but also within the metabolites (i.e. which carbon atom(s) of a certain metabolite become(s) labelled). The planned studies are aimed at identifying in vivo detectable and quantifiable markers that indicate the extent and progression of the damages present in disease models. A further objective is monitoring these markers during experimental therapies (e.g. application of drug candidates) in order to characterise the efficacy of the therapy. The applicant will join the work of the MR lab in the Szentágothai Research Center of University of Pécs. The lab is already equipped with a Bruker Avance III 500 NMR spectrometer (11.7 T magnet) and during the year 2015 a 4.7 T small animal MRI instrument will be installed.

Dr. Gallyas, Ferenc	Department of Biochemistry and	Identifying new molecular targets in oxidative stress
ferenc.gallyas@aok.pte.hu	Medical Chemistry	
Oxidative stress is considered as a maj	jor pathogenic factor in various diseases.	Under pathophysiological conditions macrophages, monocytes and neutrophil
granulocytes produce high amounts of	reactive oxygen species and various cyto	kines that can induce cell and tissue damage. These processes occur locally in
ischemia-reperfusion related maladies	such as cardio- and cerebrovascular dise	eases, as well as globally in multi organ failure in septic shock. The initiative
damaging agents, the reactive oxyger	and nitrogen species produced by varie	ous processes impair certain intracellular components such as nucleic acids,
proteins and lipids. These damages ca	in lead to necrotic or apoptotic cell death	by activating specific intracellular signalling pathways. The aim of the PhD
project is identifying novel signalling	pathway elements or other drug targets	that can be used for developing new therapeutic strategies in oxidative stress
related diseases.		

Dr. Kovács, Krisztina	Department of Biochemistry and	Effects of PARP inhibitors and cytostatic agents on tumorous cell lines			
krisztina.kovacs@aok.pte.hu	Medical Chemistry				
The treatment of cancerous diseases	in most cases is not solved, the mortal	ity still shows high incidency. We use different cytostatic agents as well as			
biological thearpies in combination with PARP inhibitors. We use FDA accepted PARP inhibitors and molecules with PARP inhibitory effect in research					
phase. We use primary cell lines as well as tumorous cell lines where we detect the effectiveness of our therapies at DNA, RNA and protein levels. Testing					
new componds could prove new therap	peutic approaches in cancer therapies.				

Dr. Nagy, Péter	Department of Biochemistry and	Redox signaling in cancer		
peter.nagy@oncol.hu	Medical Chemistry			
Reactive oxygen species (ROS) are a	chemical class of molecules that have gen	erally been considered as deleterious entities because in higher quantities they		
can damage cellular macromolecules	contributing to chronic conditions, such a	s the emergence of cancer. Therefore, cells have an arsenal of small molecule		
antioxidants and antioxidant enzymes	to protect themselves from oxidative da	amage. A paradigm shift in the field was introduced by the discovery of the		
NADPH-oxidases (NOX enzymes), w	hich are dedicated to produce ROS in a v	ariety of cells and tissues. This raised the question whether cells actually need		
ROS for their normal functions, and if	they do, in which processes could they be	e useful. Today it is generally accepted that ROS indeed play pivotal roles in a		
variety of cellular functions including	defense against invading pathogens or re-	gulation of signal transduction or metabolic pathways. Hence it is now widely		
accepted that for healthy cellular phy	siology a delicate redox balance is requir	red. Reactive cysteine residues represent the primary targets of ROS. In thiol		
proteins, redox reactions of functiona	l Cys residues at the active site represer	nt the underlying molecular mechanisms of their functions. In other proteins		
oxidation/reduction of distant regulate	ory Cys residues can lead to the alteration	n of protein functions, protein-protein interactions, subcellular localizations or		
transcriptional regulations. Hydrogen-peroxide (H2O2) has emerged as the major oxidizing agent in redox-signaling events by triggering the reversible				
oxidation of redox-regulated proteins, including phosphatases, kinases and transcription factors. In recent years it has been shown that the Peroxiredoxin				
family of proteins serve as central hu	bs in redox signaling by scavenging >95	% of endogenous H2O2 and transducing the redox signal by relaying H2O2-		
derived oxidizing equivalents on to o	ther proteins. In addition, we and others	have demonstrated that enzyme-regulated endogenous persulfidation events,		
which are novel oxidative Cys modifi	cations, are highly prevalent in cellular s	ystems playing vital roles in a variety of cellular functions. These discoveries		
introduced the Reactive Sulfur Species (RSS) concept to redox biology, which is now one of the most heavily investigated direction in the field. Importantly,				
an altered redox/persulfidation status	have been observed in different cancers.	Furthermore, redox regulation and redox signaling as well as sulfane sulfur		
species play key roles in tumorigenes	sis and the response to cancer therapeutic	cs. Therefore, our research group is focused on how an altered ROS- and/or		
RSS-status in cancer cells can reprogra	am signaling or metabolic events, with the	e aim to discover novel cancer therapies.		

B-130/1993 Investigating functional protein dynamics using biophysical methods

Program leader: Dr. Nyitrai, Miklós

Dr. Bugyi, Beáta	Department of Biophysics	Investigations of protein-protein interactions in the organization of the			
beata.bugyi@aok.pte.hu		sarcomeric thin filaments			
During muscle development, de nove	o formed myosin and actin filaments a	ssemble into the greatly organized sarcomeric structure critical for muscle			
function. Although sarcomerogenesis	clearly involves the formation of novel a	ctin filaments, it has so far been poorly understood how these filaments form.			
Two key steps of filament formation a	Two key steps of filament formation are nucleation and elongation. However, in muscle cells the essential actin nucleation and elongation factors, regulating				
actin filament formation, have not been clearly identified, and the mechanism that ensures sarcomeric thin filament assembly remained mysterious. Recently,					
we found that DAAM family formins, well known actin nucleation and elongation factors in nonmuscle cells, also play an essential role in sarcomerogenesis,					
whereas others identified the SALS pr	otein as a key regulator of thin filament	elongation. The major objective of our research is to investigate the molecular			
and cellular mechanisms of thin filam	ent assembly during sarcomerogenesis b	y the detailed analysis of the functions of DAAM family formins and SALS.			

We aim to use the combination of genetic, cellular and in vitro assays (fluorescence spectroscopy, fluorescence microscopy, reconstituted biomimetic approach) to reveal the functional properties of these proteins, and to explore their molecular interactions with each other and with the known regulators of thin filament formation. We expect that the complex approach proposed will help us to gain deeper insights into the mechanism of myofibrillogenesis, especially into the mechanism of thin filament formation and the integration of the actin and myosin filament systems.

Dr. Lőrinczy, Dénes	Department of Biophysics	Thermodynamic (differential scanning calorimetry, DSC) investigation of the intermediate states of ATP hydrolysis cycle (in rabbit pages
denes.iormezy@aok.pte.itu		of the intermediate states of ATT hydrolysis cycle (in fabbit psoas
		muscle)
Glycerinated psoas muscle fiber is a g	good biochemical and mechanical model	of the intact muscle. The ATP-hydrolysis cycle runs on ms time scale, so we
need a very rapid technics to investiga	te it. We can make a long-living interme	diate states with the help of different phosphate analogues with life time which
fits to the measuring time of other tecl	hniques (e.g.: EPR and DSC). This way	we are able to investigate the molecular dynamic and thermal stability of these
states for the better understanding of m	nuscle function.	

Dr. Lőrinczy, Dénes	Department of Biophysics	Conformational changes of skeletal and cardiac actin/myosin under the
denes.lorinczy@aok.pte.hu		effect of toxic agents (phalloidin and jasplaklinolide) and free radicals. A
		DSC approach
Glycerinated psoas muscle fiber is a	good biochemical and mechanical mode	of the intact muscle. The muscle model and the intermediate states of ATP-

Glycerinated psoas muscle fiber is a good biochemical and mechanical model of the intact muscle. The muscle model and the intermediate states of ATPhydrolysis cycle depend strongly on the environmental effects. Some of these stabilise the structure (e.g.: toxins) while the free radicals influence the function too through the damage of the structure. UV irradiation of hydrogen peroxide produces free radicals and these will be used to monitor the structural and functional consequences of pathological hydrolysis cycle.

Dr. Lőrinczy, Dénes denes.lorinczy@aok.pte.hu	Department of Biophysics	DSC investigation of various cartilages, external knee-ligaments, recon- struction of shoulder/muscle and ligaments in human and animal
		samples
Our aim is to clarify the molecular ba	ackground of the damages in physiolog	ical function and in case of external loading or injury in the above mentioned
samples. This way we could help to un	nderstand the molecular background of p	bathological processes, to develop and check new surgical techniques as well as
the rehabilitation after the surgery (in o	cooperation with Clinic of Traumatology	/).

Dr. Lőrinczy, Dénes	Department of Biophysics	Monitoring the consequences of different surgical procedures by DSC
denes.lorinczy@aok.pte.hu		
Our aim is to clarify the molecular bac	kground of the damages in physiological	l function and in case of external loading or injury in the different organs. This
way we could help to understand th	e molecular background of pathologica	al processes, to develop and check new surgical techniques as well as the
rehabilitation after the surgery. To sup	port an experimental surgery background	d (in cooperation with the Department of Surgical Research and Techniques).

Dr. Lőrinczy, Dénes	Department of Biophysics	Measuring service in the development of probiotoc dairy products, food-
denes.lorinczy@aok.pte.hu		physics research joined to these problems/PhD project direction
The aim is to develop easy spreadable	e and youghurt type probiotic products t	o improve the misfunction of digestive system, to reduce the osteoporose, to
sustain better Ca/P ratio (in cooperation	n with Dairy Research Milker Kft.).	

Dr. Lukács, András	Department of Biophysics	Functional dynamics of photoactive flavoproteins revealed by ultrafast
andras.lukacs@aok.pte.hu		spectroscopy
Nature has many elegant ways for se	nsing the light, using photoactive protein	ns like rodhopsins, xanthophins, photototropins or flavoproteins having very
distinct pathways to regulate the ph	otoresponse. In the frame of this proj	ect we are investigating the molecular processes of blue light sensing in
cryptochromes - blue light sensors i	involved in regulation of circadian rhy	thm as well as magnetoreception in brids - and BLUF domain proteins -
transprintional antironressors in photo	synthetic besterie As the primary stans.	of the photocycle of these proteins are very fast ranging from femtoseconds

transcriptional antirepressors in photosynthetic bacteria. As the primary steps of the photocycle of these proteins are very fast – ranging from femtoseconds up to hundreds of picoseconds – we are using ultrafast spectroscopy in order to elucidate the mechanism.

Dr. Nyitrai, Miklós	Department of Biophysics	The	investigation	n of	protein	function	and	conformation	by	using
miklos.nyitrai@aok.pte.hu		biopl	hysical metho	ds	_				-	-

The actin cytoskeleton plays essential roles in many cellular functions. The appropriate time and space control of these processes is critical for most of the cell functions, and manifested by more than 60 families of actin-binding proteins. The scientific questions of the students joining our research group will be centred around the many - yet unknown - details of these regulatory mechanisms. One of the major components of this education will be the understanding of the known mechanisms and analysing the corresponding part of the literature. As part of the process the students are expected to attend national and international conferences and workshops. After defining the research questions we will apply biochemical and molecular biology methods to purify the chosen proteins. The investigations will be carried out by using various biophysical methods, including many assays in fluorescence spectroscopy (both steady-state and time dependent), fluorescence microscopy (conventional, confocal, fluorescence lifetime imaging), calorimetry and rapid kinetic methods. The concept will be to find and describe molecular mechanisms in in vitro experiments, and then correlate them to functions and interactions in living cells. Considering the nature of these research topics the projects are available and suggested for students with background in either medical or natural sciences.

Dr. Szabó-Meleg, Edina	Department of Biophysics	Investigation of the formation and function of membrane nanotubes as
edina.meleg@aok.pte.hu		direct intercellular communication pathways
Membrane nanotubes are long, temporary membrane protrusions, providing more than physical connections between cells. Membrane nanotubes are		
described as direct communication pathways between certain cells (T-lymphocyte, neuran cells, kidney cells, myeloid cells, some cancer cells) transporting		
different matters or chemical signals. In the last few years nanotubes have quickly gained interest demonstrating a capability of spreading diseases among		
cells avoiding activation of the immune system. Viruses, prions, different cell organelles, membrane surface proteins, lipids have been identified to migrate		
between cells using membrane nanotul	bes. Our aim is to reveal molecular proce	sses and interactions in the formation and function of membrane nanotubes.

Dr. Talián, Csaba Gábor	Department of Biophysics	Functional investigation of tropomyosin isoforms
gabor.c.talian@aok.pte.hu		
The members of the actin-binding t	ropomyosin family display a high stru	ctural similarity. While their expression is strictly regulated in space and
developmental state, several isoforms	are always present in the same cell type,	and little is known about their division of labour. Tropomyosins can influence
the stability and dynamics of actin fila	ments; however, their actual biological si	ignificance may be the modification of association and function of other actin-
binding proteins. The aim of the press	ent research in our institute is to in vitro	express tropomyosin isoforms in order to reveal their interactions with other
actin-binding partners, like gelsolin,	cofilin, twinfilin, caldesmon, myosins	etc. The measurements will be carried out after fluorescent labelling by
spectroscopy methods and light mich	roscopy. We also intend to express flu	orescent proteins even in living neurons. The Ph.D. student will have the
opportunity to acquire substantial ex	spertise in various methods from prote	in cloning through molecular biology techniques to the above mentioned
measurement procedures.		

Dr. Ujalusi, Zoltán	Department of Biophysics	Examination of the intracellular pathomechanism of contrast materials
<u>zoltan.ujfalusi@aok.pte.hu</u>		
Dr. Hild, Gábor		
hild.gabor@aok.pte.hu		
Some routinely applied intravascular contrast agents penetrate in cells and modify the structure of the actin cytoskeleton. The molecular mechanism and		
further effects of this process is unknown. Our research is focused on these important molecular issues and the possible pathological effects using wide		
variety of spectroscopic devices and microscopes. Ph.D. students can acquire many other technics as well that are not strongly related to their own research		

and they are expected to take active part in teaching at the Department of Biophysics.

B-131/1993 Intracellular signal transduction pathways

Program leader: Dr. Sétáló, György

Dr. Pap, Marianna	Department of Medical Biology	Investigation of endoplasmic reticulum stress in different tumor cell
marianna.pap@aok.pte.hu		lines
The endoplasmic reticulum (ER) has an essential role in the synthesis, folding and processing of secretory proteins. The ER is armed with a quality control		
system to ensure that only properly folded proteins leave the ER lumen. Accumulation of the unfolded/misfolded proteins activates the unfolded protein		
response, which can lead to the apoptosis of the cell. ER stress has a role in the development of several diseases, including cancer. Its selective induction		
might be a promising target of the p53-negative tumors. We analyze the role and mechanism of ER stress and try to find drugs which can induce ER stress in		
different cancer cell lines.		

Dr. Sétáló, György gvorgy.setalo.jr@aok.pte.hu	Department of Biology	Studying the differentiation and apoptosis of rat pheochromocytoma (PC12) cells
Rat pheochromocytoma (PC12) cells of	don't require the presence of nerve grow	th factor (NGF) for their survival. Upon treatment with the peptide, however,

they differentiate into a sympathetic neuron-like phenotype. The main transducer of the underlying signals is the extracellular signal-regulated kinase cascade. In the complete absence of trophic support the cells die by apoptosis. Our goal is a better characterization of these signaling processes. Our experiments are carried out using immunoblots and confocal laser scanning fluorescence microscopy.

Dr. Sétáló, György	Department of Biology	Studying signal transduction of cell survival, differentiation and cell
gyorgy.setalo.jr@aok.pte.hu		death in in vitro cell and tissue culture systems
The signal transduction of biological phenomena listed in the title are being investigated in immortalized cell lines and organotypic tissue cultures with		
special emphasis on its possible alterations induced from a therapeutic perspective. Our applied research methods are primarily of immunological nature		
(blotting and fluorescence microscopy)		

B-1/2013 Analytic techniques in biochemistry and molecular biology

Program leader: Dr. Gallyas, Ferenc

Dr. Bock-Marquette, Ildikó	Department of Biochemistry and	New perspectives in discovering novel molecular mechanisms of cellular
ildiko.bock-marquette@aok.pte.hu	Medical Chemistry	and organ regeneration, sport therapy and performance enhancement
The lack of physical exercise, the lifestyle of our century, leads to significant increase of numerous cardiovascular and locomotor diseases worldwide.		
D	1	· 1 · · · · · · · · · · · · · · · · ·

Prevention became a critical task of the scientific and medical society. It is obvious to all, regular training not only ensures health, but may also reverse pathological processes of disease by beneficially enhancing cellular and organ regeneration. Therefore, the primary aim of our current study is to screen and detect the influence of various sport activities on the human body at physiological, cellular and molecular levels. Our goal is to establish a collection of naturally existing secreted small molecules (peptides, micro RNAs, ect.,) and to investigate their effects on tissue regeneration and repair.

Dr. Bock-Marquette, Ildikó	Department of Biochemistry and	Integrated approach identifying small molecules that promote tissue
ildiko.bock-marquette@aok.pte.hu	Medical Chemistry	repair and regeneration
Heart failure is a consequence of an i	njured or diseased heart undergoing path	nological remodeling to match cardiac output with the metabolic needs of the
body. 8 million people are confirmed	with heart failure in Europe and the USA	a combined. With few exceptions the prognostic benefits of current treatments
are limited, resulting in high rates of	morbidity and mortality. Regulatory pa	thways involved in cardiac development may have utility in reprogramming
cardiomycytes to aid in cardiac repair	: As an alternative to stem cell therapy v	we hypothesize that small, secreted peptides or their derivatives together with
other small molecules such as microR	NAs are alternatives for tissue repair stin	mulation. These molecules are believed to modulate the activation of resident
cardiac stem/progenitor cell population	ns. A systematic approach to understandi	ng the signaling mechanisms actuated by such proteins will benefit the design
of novel therapeutic agents to promote	cardiac repair and regeneration in adults	and children.

Dr. Márk, László	Department of Biochemistry and	Mass spectrometry-based biomarker discovery
laszlo.mark@aok.pte.hu	Medical Chemistry	
In this study, qualitative and quantitative analyses of pathological biomarkers will be carried out. The results from clinical samples and model animals help to		
understand the molecular pathomechanism of the disease. Additionally, the better understand of molecular networking give the possibility for faster diagnosis		
and for a novel therapeutic approach.		

Dr. Márk, László	Department of Biochemistry and	In-vitro and in-vivo imaging mass spectrometry
laszlo.mark@aok.pte.hu	Medical Chemistry	
Imaging mass spectrometry (IMS) is	a new developed technique that enables t	he evaluation of molecular signals direct in situ from the tissue surface or thin

sections. MALDI and LAESI IMS are label-free techniques with the ability to visualize the distribution of even hundreds of biomolecules in a single measurement, maintaining the morphological integrity of the intact tissue by avoiding homogenization

Dr. Márk, László	Department of Biochemistry and	Clinical proteomics, lipidomics, metabolomics
laszlo.mark@aok.pte.hu	Medical Chemistry	
All pathological process based on a co	mplex networking of numerous biomolec	cules. Proteins, lipids and their metabolites are of a vital importance in medical
sciences. In this study, the molecular interactions and chemical modifications of the resulted biomolecules will be determined by high-resolution accurate		
mass MS techniques.		

Dr. Márk, László	Department of Biochemistry and	Medical Applications of Multimodal Imaging Investigations
laszlo.lark@aok.pte.hu	Medical Chemistry	
Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a new developed technique that enables the evaluation of		
molecular signals direct in situ from the tissue surface or thin sections. MALDI IMS is a label-free technique with the ability to visualize the distribution of		
even hundreds of biomolecules in a single measurement, maintaining the morphological integrity of the intact tissue by avoiding homogenization.		

Dr. Szabó, Éva	Department of Biochemistry and	Role and instrumental analysis of fatty acids in various diseases	
szabo.eva.dr@pte.hu	Medical Chemistry		
Polyunsaturated fatty acids are important components of membrane-building lipids and have several important physiological functions also. They are not			
only involved in the formation of membrane fluidity, but they can also be precursors to a number of secondary messenger molecules. It has been known for a			
long time period that in various diseases (e.g. diabetes, atherosclerosis, asthma, celiac disease) the lipid composition and fatty acid content of not only the			
plasma, but also different cells can change, which can be a cause or an effect. The body's fatty acid supply can be affected not only by nutrition, but also by			
certain life situations (e.g., pregnancy). Several studies have also reported beneficial short- and long-term effects of fatty acid supplementation in certain			
diseases. The aim of the candidate is to investigate fatty acid supply in various diseases (eg diabetes) and during pregnancy. The fatty acid composition of			
biological samples is examined by analytical methods on analytical instruments.			

Dr. Turzó, Kinga	Department of Dentistry, Oral and	Investigation of the biointegration of medical and dental implants	
turzo.kinga@pte.hu	Maxillofacial Surgery		
With the increase of the time of life of	f humans the need for biomaterials repla	acing parts of human body or organs is increasing. Therefore the study of the	
biointegration of alloplastic materials and development of biocompatible materials is one of the most important research fields of biomedical sciences. A new			
emerging field of science, the biological surface science is also connected to the field of alloplastic materials and biointegration of dental implants. Our			
studies relate to replacements of body structures in case of which the biological function requires significant load-bearing capability. Example for that are			
dental implants and artificial hip-join	t replacements. It is well known that d	lental implants are one of the most frequently used biomaterials. These are	
generally made from titanium (Ti) and its alloys as they present high corrosion resistance and biocompatibility. Their biological integration and selective			
biocide nature depends on -among oth	ers- the surface structure of the material.	Therefore our research focuses on the surface aspects of these materials using	
the tools of biological surface science (XPS, SEM, contact angle measurements). We will identify some important trends and directions in the surface			
modifications of titanium (Ti) dental in	modifications of titanium (Ti) dental implants targeting the improvement of their bio/osseointegration. Beside this we have performed studies on the effect of		
fluoride containing prophylactic gels a	nd solutions on titanium probes and on th	ne effect of decontaminating agents used for the treatment of periimplantitis on	
titanium dental implants. Our research group started its activity in the field of the biointegration of alloplastic materials 19 years ago. Aspects of successful			
bio- and osseointegration of titanium dental implants and different surface modifications (physico-chemical and biochemical) of these implants to improve			
bio(osseo)integration will be studied. Newly developed (e.g.: composites) materials will be compared to titanium, in respect of their mechanical and surface			
properties. In vitro cell culture experiments will be performed to study their biocompatibility and in vivo animal experiments to test their bio- and			
osseointegration.			

B-449/1999 Human Molecular Genetics

Program leader: Dr. Melegh, Béla

Dr. Melegh, Béla	Department of Human Genetics	Human Molecular Genetics
melegh.bela@pte.hu	_	

The PhD program combines two main complementary directions: investigations of "Rare Diseases", which includes mainly monogenic diseases and studying polygenic diseases affecting larger populations. The research activity involves collaboration works among universities, national and European partners. In both areas it is notable that the Department has a remarkable Biobank, with numerous samples from these diseases. Our Biobank is part of the European network (BBMRI), the collection of the rare disease Biobank contains over 10000 samples. Neuromuscular diseases is part of the laboratories original research field. Our Biobank enables research on diseases which affect larger populations, such as inflammatory bowel disease, stroke, autoimmune diseases, metabolic syndrome, polygenic variants of coronary disease. As a related area our research work is spread on the investigation of pharmacogenetically and pharmacogenomically important polymorphisms as part of personalized medicine. Part of this course is the research of enzymes and transporters, which take part in drug metabolism. OCTN2, which plays a role in carnitine transport is also part of the course, because other than resulting in systemic carnitine deficiency it can lead to several diseases. The study of the carnitine system as part of mitochondrial studies is a traditional field of research in our department and as such is part of the PhD program.

Dr. Berenténé, dr. Bene, Judit	Department of Human Genetics	Genomic, transcriptomic	and metabolomic inv	vestigations of the
melegh.bela@pte.hu		pathogenesis of genetically	letermined disorders	-
Based on the results of the Human Genome Project and ENCODE Project the sequence and more than 80 % of the function of the human genome has been				
revealed. Although this information contributes to the understanding of several biochemical and signaling pathways, however, the pathogenesis of several				
diseases have not been clarified. Due to the explosive spread of the modern, principally new genetic, genomic methods, such as next-generation sequencing,				
nowadays it has become possible to annotate other genes involved in the development of the variable disease phenotype in a certain disorder using whole				
genome sequencing (WGS). The introduction of this technology has also led to a breakthrough in transcriptional research. In contrast to earlier hybridization-				
based gene expression studies where the sequence has to be known a priori, RNA sequencing allows the identification of novel transcripts and splicing				
variants. Several congenital disorders are caused by a genetic defect that can impair the metabolism of one or more biochemically detectable metabolites: it				
may cause increase in levels or accumulation of some metabolites in tissues, while decreases in other metabolites. The investigations of the pathogenesis of				
genetically determined disorders with modern Genomic, transcriptomic and metabolomic methodology will be the scope of the PhD project.				

B-2/2008 Evidence based medicine

Program leader: Dr. Decsi, Tamás

Dr. Lohner, Szimonetta	Department of Paediatrics	The impact of clinical research results on preventive and therapeutic	
lohner.szimonetta@pte.hu		medical decisions	
Clinical trials are designed and conducted to help physicians make the most appropriate therapeutic decisions. However, in practice, this translation process is			
often biased. Within the PhD theme, sources of bias are examined from a scientific perspective, with the aim of formulating practice-oriented responses on			
how to eliminate specific kinds of bias. The theme includes, but is not restricted to the following questions: What impact do non-published or partially			
published trial data have on clinical decision-making? How are harms defined in clinical trials and how and to what extent does information on harm appear			
in scientific publications? How can the conflict of interest between industry and academia in designing, conducting, analyzing and publishing studies be			
resolved? How scientific information generated in Hungarian clinical trials is spreading as compared to trial results from other European countries and to			
what extent it gets incorporated into international professional guidelines? How can we deal with bias when conducting evidence summaries for clinicians? Is			
it enough to measure intermediate markers in order to make well-founded conclusions about the effectiveness of a therapy?			