

Types and indications of blood products

Rudiments of Blood Transfusion for IV. grade medical students

Dr. Csernus Zita
National Blood Transfusion Service
Regional Blood Transfusion Centre Pécs

www.ovsz.hu

http://aok.pte.hu/index.php?page=egyseg&egy_id=1910&menu=okt_anyag&nyelv=eng

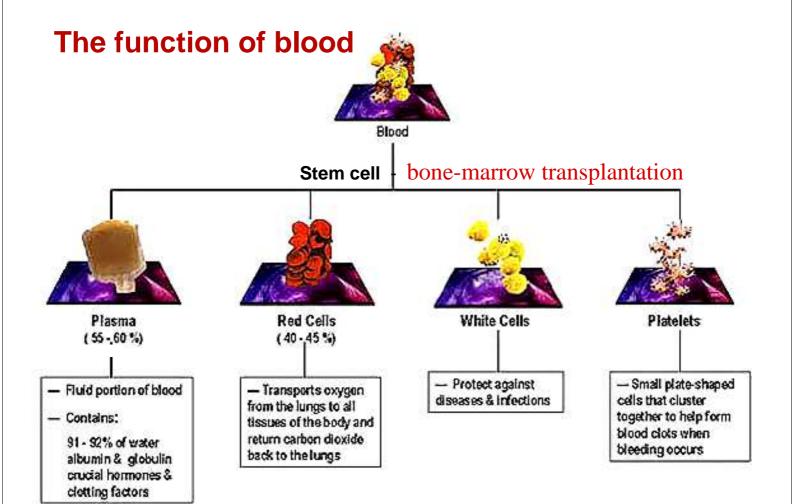
The meaning of the word transfusion

trans (lat.) trans, through, across, over

fusio (lat.) pouring, merger, associacion, fusion, assimilation

Transfusion - blood transfusion from one person to another

Why do we need blood transfusions?

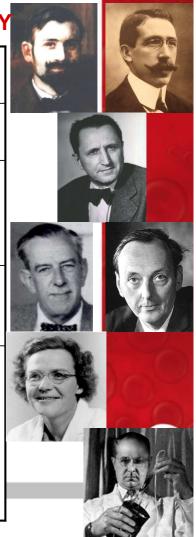

The physiological role of blood!

Absence
Function impairment
Dilution

It should be substituted



ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT


First steps	of	blood	transf	fusion
-------------	----	-------	--------	--------

	•
1628	English physician William Harvey described the functions of the heart and the circulation of Blood.
1667	Jean-Baptiste Denis in France reported successful transfusions from sheep to humans.
1814	James Blundell performed the first successful transfusion from human to human.
1901	Karl Landsteiner , an Austrian physician, discovers the first three human blood groups ABO
1940	The Rh blood group system was discovered by Karl Landsteiner and Alexander Wiener
1	

MILESTONES IN BLOOD PRESERVATION HISTORY

1914	Albert Hustin and Luis Agote using citrate kept blood for 48 hours in the liquid state
1933	Max M. Strumia developed frozen storage of plasma
1943	John F. Loutit and Patrick L. Mollison: introdution of acid – citrate - dextrose preservative, the still used method in blood preservation
1951	deep freezing of red blood cells was developed - Audrey Smith reports the use of glycerol cryoprotectant for red blood cells
1950	Carl Walter inventioned first plastic blood bag
1963 - 1973	closed blood bag systems has made possible to ensure the sterility - introducing of it safer blood products manufacturing and storage became possible
	(In Hungary, it was introduced from 1984.)

BLOOD PRESERVATION

Blood preservation is called the procedures that allow the blood viable without damage to the biological condition to be kept in a sterile condition.

Aim: the transfused blood in the patient's body

remain viable

Types: 1. use of blood preservative solutions

2. deep freezing

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

RBC metabolism

Substrate is glucose

- ribose-5-phosphate - nucleotide synthesis

Anaerob glycolysis 90% - ATP excess

- 2,3-diphospho glicerate shunt

oxygen to tissue

- ion transport

high K⁺ level in RBCs

- cell membrane integrity

osmotic resistance

- lactate - pH ↓ -

damage of RBC metabolism

I-1. CPD PRESERVATIVE SOLUTION FOR BLOOD

Storage time: 28 days

glucosum pro inf.	25,5 g
natrium citricum	26,3 g
acidum citricum	3,27 g
natrium phosphoricum acidum	2,22 g
aqua destillata	ad 1000 cm ³

Ratio: 1:6 63ml CPD + 450ml blood 1 U

2. Additive Solution / ADSOL /

Storage time: 35 days

storetze time:	
dextrose	111,0 mM/l
adenine	2,0 mM/l
mannitol	41,2 mM/l
natrium clorid	154,0 mM/l

Na-<u>C</u>itrate anticoagulant Acid. citr. pH

Phosphate ATP production, pH mannitol RBC membrane integrity

Dextrose substrate

Adenine red blood cell regeneration

3. HEPARINE

Only anticoagulant effect: antithrombin cofactor

Storage time: max . 6-8 hours

II. DEEP FREEZING (CRYOPRESERVATION OF RED CELLS)

PRODUCTION: within 24 hours from fresh blood

STORAGE: for years

TYPES: 1. SLOW FREEZING:

Temperature: -80 - -90 C° Freezing time: 7 - 8 hours

2. RAPID or ULTRARAPID FREESING:

Temperature: - 196 C° Freezing time: 1 - 3 minutes

CRYOPROTECTIVE AGENTS: glycerine, DMSO

Type of PRODUCT: repeatedly washed blood product

Quality: RBC-s K⁺, ATP and 2,3 DPG levels similar to fresh blood

ADVANTAGE: - long term storage of blood or autolog blood

before surgery or transplantation

- reduction in transmission of the virus and leukocytes

- decreased risk of immunization

DISADVANTAGE: - high RBC loss / short storage time after washing

országos vérellátó szolgálat – expensive

STORAGE OF BLOOD PRODUCTS

1. Storage times depends on: 1. storage temperature

2. blood **preservative** solution

CPD - adenine preservative solution

Storage temperature	Blood product	Storage	e time	
+ 22 °C	Platelets	5 days		
	Granulocytes	24 hours	5	
+ 4 °C	Red blood cells	35 days		
	RBC washed	24 – 48	hours	
	RBC irradiated	14 days		
- 18 -25 °C	FFP	3 mont	hs	
under - 30 °C	FFP	2 years		
- 30 °C	RBC frozen	1 year	Not in	
- 80 °C	PLT, RBC	2 years	routine	
- 196 °C	RBC, PLT, FFP	> 10 years	practice	1

Sterile conditions for blood collection and preparation! Quality control!

Right blood storage:

Components storage on optimal temperature

(+20℃, +4℃, -30℃)

Under continuously controlled standard conditions ensuring the sterility of the preparation is done!

+ 20 °C

There is no single optimum method for all blood components.

- 30 °C

CHANGES IN QUALITY INDICATORS OF CPD-adenin BLOOD DURING STORAGE

I. Essential components reduced:

FROM 10. DAYS - ↓

- 1. **ATP** content of red cells
- 2. 2,3-**DPG** content of red cells

oxygen transport!
massive transfusion
neonatal blood exchange
cardiopulmonary diseases

PROGRESSIVELY -↓

- 3. lifetime of **cellular components** / granulocyte, thrombocyte red blood cell /
- 4. labile anticoagulant factors / VIII, V /

NOT CONTAINS -

5. **Ca ions**- citrate effect *tetany!* (larger amounts of plasma transfusion)

A

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

II. Toxic substances get into into the plasma:

FROM 5-6. DAYS -

1. **K**⁺ efflux from RBC / approx. 1 mmol/day / risk of potassium *intoxication!* Kidney insufficiency Newborns

FROM 7. DAYS -

- 2. rising of **ammonia** level risk of *intoxication*!
- Severe liver demage

PROGRESSIVELY increase

- 3.microaggregates filtration!
- 4. free **Hb** < 43g/U

Criteria for RBC concentrate:

Administered RBCs on the last day of storage should be detectable in the circulation of patients after 24 hours of 70 75%.

This is ensured if the red blood cell ATP content is 40-45% of baseline.

Preserved red blood cells can be detected in the circulation for 100 days. Elimination of them is 1% / day

Decreased in vivo survival: - auto-/izoimmun hemolysis

- fever increased RBC destruction
- splenomegaly
- aplastic anemia

Normal RBC survival but no Hb increase:

- severe bleeding

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

Preparation of blood components

Whole blood – row material for the manufacture (450 ml -CPD 1:6)

1 U = blood component volume prepared of one blood collection bag

Plasma – albumin, globulin,

1. Blood components coagulation factors etc.

Composition

Plasma

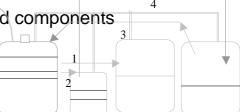
Buffy coat layer comprising White Cells and Platelets

Red Cells

Boundary layer (buffy coat)

Platelet concentrate

White blood cell concentrate


Red blood cell concentrate

2. Blood separation

Differencial centrifugation – specific weigh difference – closed plastic bag system

Apheresis – instrumental method of obtaining blood components

Autotransfusion – preparation of whole blood or blood components

Basic components: RBC, PLT, Plasma

Special components: washed, filtered, irradiated basic components

or their combinations

Unstable blood components

Non virus inctivated

basic and special types of red blood cell concentrates platelet concentrates white blood cell concentrate

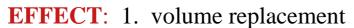
some plazma products - FFP /fresh frozen plasma/,

cryoprecipitate/cryosupernatant

hemopoetic stem cell - autologous or all

Stabile blood components

Virus inactivated


Plasma fractions prepared from human plasma pool

albumin solutions immunglobulins clotting factors other isolated plasma fractions or their combinations haemopoietic growth factors /rHu Epo, rHu IL-3, rHu IL-6, GM-CS/

I. WHOLE BLOOD AND THEIR INDICATIONS Row material

	Preservative	Storage temperature	Storage time
T	1.CPD	+4 C°	28 day
1.	2. CPD-A	+4 C°	35 day

2. restoration of oxygen-carrying capacity

Similar effect can be achived! - RBC. conc. + FFP and/or albumin

INDICATION: very limited

- 1. **acute blood loss** (the loss of 30-40 % the total blood volume, or the amount of the circulating blood volume within 24 hours) /masszive transzfusion > 10U blood /
 - 2. exchange transfusions
 - 3. emergency conditions, when there is no other option

-ood ce-- transfusion

2. EXCHANGE TRANSFUSIONS

I. ADULT EXCHANGE TRANSFUSIONS

- 1. severe acute **liver failure**
- 2. **poisoning** / mushrooms, CO, chemicals /

II. **NEONATAL** EXCHANGE TRANSFUSIONS

- a. partial: 1. rapid correction of severe anemia
 - 2. **hyperviscosity** induced polycythemia
- **b. total:** 1. haemolytic disease of newborn / **HDN** /
 - 2. severe **RDS**
 - 3. **DIC** 4. harmful substances transferred from the maternal circulation to the fetus /toxic substances, pharmaceuticals, antibodies/
 - 5. haemolytic crisis of sickle cell anaemia

BLOOD PRODUCT FOR TRANSFUSION:

RBC under 7 days old

The blood **chrossmatch** have to be performed on the mother's serum also up to 4 moths of age

AMOUNT: 180 - 200 ml /kgBW

Complications due to the white blood cell and platelet content of blood products:

- 1. febrile nonhemolytic transfusion reactions
- 2. HLA alloimmunisation
- 3. GVHD /irradiation! /

Buffy coat removing

- 4. mikroaggregate transmission /RDS, pyrogens .../
- 5. virus transmission

White blood cell (WBC) content of blood products

filtered (leucocyte reduced) RBC concentrate $< 1 \times 10^{6}$ whole blood 2 - 3 x 10⁹ RBC concentrate -resuspended buffy coat free 1-5 x 108 2×10^{7} plasma platelet concentrate 0.5×10^{8}

WBC removal methods

spin and buffy coat removal

• wash – physiological saline – plasma removal ~ 70 - 90%

• filtration - special filter /d = 40μ / WBC maximum removal of 99,995%

WBC removal rate

~ 80%

II. RED BLOOD CELL CONCENTRATE (packed RBC)

Preservative	Storage temperature	Storage time
CPD + adenin	+4 C°	35 day

HEMATOCRIT: 55 - 65 % VOLUME: ~ 200 ml

EFFECT: restoring oxygen carrying capacity

ADMINISTRATION: in normovolemia 1E / 3/4 - 1 hours

in hypovolemia it depends on the patient's circulation and volume

INDICATIONS: anemic conditions with hypoxia

/ symptoms: tachycardia, dyspnoea, cyanosis /

Explain the cause of anaemia! Patients must be cured, not the lab. findings! acut blood loss - at 20 % Htc (90 Hb) is vital indication

With chronic anaemias there is compensation - clinical picture! Hb 70g/l

CONTRAINDICATIONS:

- drug-treatable deficiency anaemia / Fe, folic acid, B₁₂ /
- renal failure eritropoetin / second choice -transfusion /
- AIHA primarily steroid /tr. only in case of vital indication/
- physiological anaemia of newborn- and premature infant

III. WASHED RBC CONCENTRATE

Aim: removal of plasma

Resuspension solution	Storage temperature	Storage time
SAGM or salin(0,9%)	+4C°	48 or 24 hours

protein content: minimal 0.3 g

HEMATOCRIT: < 70% VOLUME: 150 ml

EFFECT: restoration of oxygen-carrying capacity

ADMINISTRATION: depends on patient's syndromes and circulation

Continuous monitoring is required.

INDICATIONS: 1 sensitivity to plasma proteins

/ anaphylaxis /

2. IgA deficient patients

(3. PNH / removal of complement factors! /)

IV. FROZEN RBC CONCENTRATE Several times washed Product

Preservative	Storage temperature	Storage time
CPD, glycerol		6 month, 1-2 years
<u>Volume</u> : ~ 200ml	-196 °C	unlimited
Content: minimal WBC		after thawing and
and plasma protein	+ 4 °C	washing: 24 hours

for allogen or autologous transfusion

INDICATIONS: alloimmunization to many common RBC

antigens

DISADVANTAGE: expensive, high red blood cell loss

ADVANTAGE: less risk of infection and immunogenic effect

long-term storage

Advantages of packed RBC compared with whole blood:

- 1. much smaller volume
- 2. low plasma protein content
- 3. low citrate, K⁺, Na⁺, and NH₃ content
- 4. low WBC and platelet content

V. PLATELET, WBC DEPLETED, FILTERED PACKED RB

/ 4 log filter / WBC content of 1 U RBC conc. : 1 - 2 x 10 9/U

Preservative	Storage temperature	Storage time	Filtration
CPD-A	+4°C	35 nap	within 48 hours

WBC CONTENT: $1-2 \times 10^5 / U$

EFFECT: restoration of oxygen-carrying capacity

INDICATIONS: prophylaxis of complications due to WBC and platelet content of RBC products

1 prevention of HLA alloimmunization /5 x 10 $^6\,$ WBC /

2 prevention of **febrile non haemolytic transfusion reaction** / 5 x 10 8 WBC /

3 avoidance ARDS /microaggregates - platelet+WBC+fibrine- 40 - 170 µ

4 reduction virus transmission /CMV! - 1 x 10⁷ WBC/

5 intrauterine- or perinatal transfusions

avoidance **GVHD** – only with irradiation*! / 1x10⁴ WBC /

Blood donation with apheresis

The apheresis RBC is leucodepleted blood product

0.9% sodium chloride

filter

ADSOL™ Red Cell Preservation Solution

ACD-A anticoagulant

Alyx Machine – machine used for double red cell donation

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

Aim: immunologically competent lymphocyte proliferation ihibition

prophylaxis of GVDH >10⁴ WBC

GVHD (**graft versus host disease**): caused by donor lymphocytes in immunodeficient states of recipient

therapy: irradiating of blood products (RBC, PLT, plasma)

Source of radiation: γ-ray / Cs¹³⁷, Co⁶⁰

• **Dose:** 2500 - 4000 rads

Storage time: 14 days, for neonates 48 hours

INDICATIONS:

- congenital or aquired immunosuppression conditions
- blood transfusion of relatives

Whole blood enters the centrifuge (1) and separates into plasma

(2),

(4).

leukocytes

(3), and erythrocytes

Selected components

are then drawn off (5).

VI. AUTOTRANSFUSION

TRANSFUSION OF THEIR OWN BLOOD

USED: from 12 to 70 years

donor eligibility criteria

pregnancy is not reason for refusal

iron supplementation

FORMS: 1. preoperative blood collection / 2- 5 U /

- 2. preoperative haemodilution /better tissue oxygenation
- 3. intraoperative blood salvage / cell savers /
- 4. postoperative blood salvage

ADVANTAGES:

- 1. decreased risk of infection and immunization
- 2. better tissue oxygenation / HTC 30% / hemodilution
- 3. sparing of blood products

CONTRAINDICATIONS:

- 1. not correct cardiac or haematological status of patient's
- 2. the blood transfusions are not suitable for the patient / tumor, infection

VII. HEMATOPOIETIC STEM CELL TRANSFUSION / TRANSPLANTATION

BONE MARROW TRANSPLANTATION

Allogenic or autologous

HARVESTING OF STEM CELLS FROM:

- 1. crista
- 2. periferal blood with apheresis
- 3. umbilical cord blood
- 4. fetal liver

Enrichment and freezing of stem cells

REQUIREMENTS FOR ADMNISTRATION OF BLOOD PRODUCTS CONTAINING RED BLOOD CELLS

- ABO and Rh D GROUP IDENTICAL BLOOD TO RECIPIENT SHOULD BE ADMINISTERED IF IT POSSIBLE UNLESS OTHERWISE SEROLOGICAL PROPOSAL /e.g.: exchange transfusion, irregular antibodies/
- ABO COMPATIBILITY IS MANDARORY
- REQUIRED PRETRANSFUSION TESTING:
- 1. ABO and RhD grouping of patient and blood to be administered
- 2. crossmatch is performed by Blood Bank if recommended

THE PLETHORA INHIBITS, THE ANAEMIA STIMULATES THE ERYTHROPOESIS.

Should never be increase Hb concentration with transfusion to literary value.

THE AMOUNT OF BLOOD TO BE ADMINISTERED:

 $blood\ volume\ /ml/ = \frac{TBV\ /ml/kg/\ x\ /\ Hb_2\ -\ Hb_1\ /\ g/l}{blood\ product\ Hb\ g/l}$

TBV = total blood volume = circulating blood volume x body weight /adult-70 ml/kg, neonate-90 ml/kg, immature new-born-100ml/kg/

 $Hb_1 = Hb$ patient's prior to transfusion

 Hb_2 = Hb concentration desired after transfusion

Hb concentration of blood products: (whole blood - 120 g/l)

RBC concentrate - 220 g/l

washed RBC concentrate - 300g/l

E.g.: 70 kg patient's Hb of 80g/l to 120g/l was rised

 $70 \times 70 \times 40 = 120$ **890** ml packed RBC ~ 4U 220 or 300 (depending of blood product) 650 ml washed RBC c. ~ 4U

Whole blood administration is contraindicated in normovolem

VIII. PLATELET CONCENTRATE

TYPES:

Random donor platelet concentrate /4 pooled donor /
 Apheresis single donor /

 VOLUME:
 50 - 70 ml/U 200 - 500 ml/ apherezis

 PLT CONTENT:
 $0.5 - 1.0 \times 10^{11} / U$ $2.0 - 6.0 \times 10^{11} / l/\text{apheresis}$

 RBC CONTENT:
 0.5 - 6.0 / 100 PLT small

 Small
 $0.5 \times 10^8 / 100 \text{ apheresis}$

STORAG TIME: 5 days

DEPARTMENT STORE PROHIBITED!

ADVANTAGE: good survival 8-10 days /HLA compatible donor **COST:** random platelet - low / apheresis - significant

STORAGE: in plastic bag on 20 - 22 ° C with gentle shaking

pH: 6.8 - 7

EFFECTIVE DOSE: 2.4 x 10¹¹ platelets

<u>1U /10 kg BWT</u> (4-8 U) or 1 apheresis (10 U)

INCREMENT: $5-10\ 000\ /\ \mu l\ (5-10\ G/l)\ -\ 1U$

1 hour after transfusion 20-40 G/l -4 U

VERIFYING THE EFFICACY OF PLATELET TRANSFUSIONS:

Corrected platelet count incement (CCI):

No of PLT after transfusion - No of PLT before transfusion x BSA number of units transfused

Effective PLT increment 1 hour after transfusion is

 $> 7.5 \times 10^9 / 1 \text{ PLTs}$

INDICATIONS: 1. amegacaryocytic thrombocytopenia

2. platelet dysfunction

3. dilutional thrombocytopenia

4. DIC

5. immunisation

Platelet function inhibitor medication is contraindicated.

E.g: acetyl-salicylic

Clinical signs!

PLATELET SURVIVAL:

- 1. **normal**: 8-10 days 50% detectable 1 hour after transfusion
- 2. **decreased:** lifetime is hours or minutes
 - 1. *immunization* allogen-: pregnancies, transfusions, transplantations refractory status: no effect of random donor PLTs

therapy: crossmatched HLA compatible, filtered apheresis PLTs

- autologous: ITP therapy: primarily steroid!
- **2.** *DIC* /consumption /
- 3. sepsis
- 4. splenomegaly
- 5. febrile conditions

In case protein allergy washed PLTs can be given Avoidance of GVHD with irradiation of PLT

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

IX. WHITE BLOOD CELL PRODUCTS

TYPES:

1. pool from 10 units **buffy coat** 2. single apheresis using fresh whole blood

VOLUME: 300 ml / pool 200 - 300 ml / apheresis **GRANUI OCYTE CONTENT:** ADVANTAGE:

GRANULOCYTE CONTENT: 0,5-0,60 x 10⁹ /E /70% gr. 30 % ly/ high red blood cell and platelet

1 x 10¹⁰ / apheresis
1. higher granulocyte content
2. HLA compatible

contamination STORAGE TIME:

max. 24 hours -

Prohibited store in department!

METHOD OF STORAGE: 20 - 24 °C /room temperature /

EFFECT: questionable

DOSAGE:

 1×10^{10} granulocyte / day = (10 - 15 E buffy coat)

1 apheresisWBC product

INFUSION: very slowly, in several portions

high lymphocyte content – GVHD – irradiation!

RBC content - crossmatch

Donor stimulation before apheresis:

steroid or growth factors

LIFETIME IN CIRCULATION: some hours

SURVIVAL: shortened by antibodies against HLA and/or granulocyte anigens

INDICATION: rare ALWAYS INDIVIDUALLY

- 1. SEVERE BACTERIAL OR FUNGAL INFECTION with antibiotic/antimicotic resistence even after 48 72 hours treatment with WBC count: 0.2 x10⁹ /l
- 2. NEONATAL SEPSIS / irradiated, CMV, toxoplasma negative!/

COMPLICATIONS: FREQUENT!

- 1 febrile nonhemolytic reaction / 5 10% /
- 2 anaphylaxis
- 3 RDS
- 4 Multiple immunizations / TCT. RBC. contamination /
- 5 Infections transmission / CMV, toxoplasma, HTLV-I ... /
- 6 GVHD / correlation with the lymfocyte count/

Remains in the background against haemopoetic growth factors – G-CSF, GM-CSF

A

PLASMA FRACTIONATION:

Source:

1. whole blood

2. apheresis

5% protein content -

50–60% albumin 10-15% globulins

the other protein fraction concentrates are in mg quantities

plasma

/180-200 ml/

/600-1000 ml/

fresh frosen plasma / within 6-24 hours /

cryoprecipitate

VIII.f. concentrate and other clotting factors cryo-supernatant

albumin immunoglobulins and other factors

pl: antitrombin - III. f. protein S

protein C fibronectin.

AB CONTROL OF THE CON

-asma transfus-on

I. FFP /FRESH FROSEN PLASMA/

Preservative	Storage temperature	Storage time
CPD	-30 C°	2 years

Freezing must be completed within 6-24 hours of receiving the blood!

Not disinfected PRODUCT!

CONTENT: - like fresh plasma

all clotting factor / VIII, V, too! -labile factors/

complement plasma proteins

Thawing in 37 C° a water bath and transfusing immediately after

Dose: 10-12 ml / kg / 4-7 U /

Administration: 3/4-1 hour / U

EFFECT: REPLACEMENT OF PLASMA FACTORS - labiles too

CONTROL THE EFFECT: partial thromboplastin time

- Prothrombin time

AB0 compatible

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

INDICATIONS of FFP:

- 1 severe bleeding in unknown factor defciency
- complex coagulation factor deficiency / DIC, severe liver lesions, liver transplantation, massive transfusion, blood replacement after bleeding /
- 3 congenital factor deficiency, if no missing factor concentrate /Antithrombin III, C1-esterase inhibitor, Factor V /
- 4 TTP plasma exchange / 3 L / day /

FILTERED PLASMA

PREPARATION specific plasma filters, repeated centrifugation, aphereis INDICATIONS: Patients on immunosuppressive state

IRRADIATED PLASMA

PRODUCTION: fresh product $-2500-4000 \text{ rad } \gamma$ irradiation

INDICATIONS: protect against GVHD

non >--rus--nact-->ated product

II. CRYOPRECIPITATE

Cryoprecipitate is a precipitate formed from plasma frozen at $-30 \, \text{C}$ within 4-6 hours, then thawed $+4 \, \text{C}$.

MAIN INDICATIONS: fibrinogen and factor VIII supplementation, but **in Hungary** only **raw material** of clotting factors included in precipitate, recently.

NON VIRUS INACTIVATED PRODUCT

Prepared from 4-6 U whole bloods

Volume: 100 ml

CONTENT:

1. factor VIII. / 2 - 4 U/ml t 1/2: 8-12 hours /

2. fibrinogen / 6 - 10 g/l t1/2: 3 - 5 days/ 250 mg/U plasma

3. factor von Willebrand t 1/2: 12 hours 4 fibronectin t 1/2: 1 - 3 days

Specific indication of cryosupernatant: **TTP**

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

III. CLOTTING FACTOR CONCENTRATES

1. FACTOR VIII. CONCENTRATE

virus-inactivated lyophilized preparation from THOUSANDS OF pooled donor plasma

Volume: 10 ml

Benefits: - high content of actives substance in small volume

- suitable for home treatment

CONTENT:. VIII.f 150 IU / mg protein

Half-life: 12 hours

ADMINISTRATION: intravenously in more portions / accident, surgery /

EFFECT: stops the bleeding, prevents haemorrhage and articular lesions

INDICATIONS: Hemophilia A

HUNGARIAN **PRODUCT** / Behring License / HUMAFAKTOR – 8

Others: HAEMOCTIN 500 NE, RECOMBINATE 500 NE, KOGENATE BAYER 500

NEADVATE 500 NE. BERIATE 100 NE/m

THERAPEUTIC DOSE CALCULATION IS INDIVIDUAL:

f. VIII volume to be administered = plasma volume x (Exepted f. VIII - Starting f. VIII /

2. PROTEIN S and PROTEIN C

EFFECT: - F V. and F VIII anticoagulant factor inactivating proteins

- Plasminogen activator - fibrinolytic effect

Storage: +4 ° C Expiery: several years

INDICATION: - congenital factor deficit

Symptoms

- * deep vein thrombosis
- * Massive neonatal venous thrombosis purpura fulminans

3. FACTOR IX. CONCENTRATE

HUNGARIAN PRODUCT / Behring License / HUMAFAKTOR - 9

INDICATION: hemofilia B / congenital F. IX.f./

Alphanine® SD : Monoclonal : Grifols

BeneFix®: Recombinant: Pfizer

Mononine® FS: Monoclonal: CSL Behring

Immunine Human : Baxter Haemonine Human Biotest

Dose (units) = (factor IX desired - factor IX baseline) x total body weight (kg)

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

FACTOR VIIa RECOMBINANT indicated - haemophylia A or B patients with inhibitor

4. PROTHROMBIN COMPLEX CONCENTRATE

PCC content II,VII,IX,X

Indication: acquired deficiency of the prothrombin complex coagulation factors – vitamin K deficit, liver

disease

factors

overdose of vitamin K antagonists

congenital deficiency of vitmin K dependent coagulation II and X when purified

specific coagulation factor product is

not available

Products:

Octaplex PCC II,VII,IX,X + protein S and protein C

Prothromplex TIM 3 (Baxter, Vienna, Austria) (II, IX and X) TOTAL (II,VII,IX,X)

Confidex® (CSL Behring, Marburg, Germany) (II,VII,IX,X protein S and protein C + AT+ heparin)

Adverse event: allergic reaction

HIT (heparin induced

trombocitopenia)

thromboembolism

IV. ALBUMIN (5% és 20%)

Viral inactivated, virus free blood fraction Plasma concentrations of albumin: 40 - 50 g / I

Half life time: approx. 14 days blood-derived albumin is only 12-16 hours

Heat stabilized Storage: 2-25 °C Storage time: several years

PRODUCTS:

1 5% - the same as the plasma oncotic pressure volume expansion effect lasts for 48 hours

2 20% - (oncotic effect four times that of blood plasma)

EFFECT: - extravascular compartment mobilization - water suction effect

1g albumin binds 18 ml water

movement of fluids from the interstitial to the circulation

DOSE: 5%: 250-500 ml 20% < 200-300ml/ day

dose (g) = (2.5g/dl - actual albumin concentration) x (kg x 0.8)

2.5 g/dL: desired concentration of albumin; kg: body weight;

0.8: coefficent to calculate the volume of plasma

Administration: intravenously, infusion set for single use

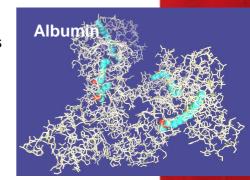
<u>INDICATIONS</u>: Albumin is used as a **second choice** when **solutions of crystalloids or non-protein colloids non** produced a clinically adequate response and in cases in which non-protein colloids are contraindicate

- 1 Acute plasma volume replacement albumin <25 g / l
- 2 Burns plasma protein replacement
- 3 Ascites not responsive to diuretics diuretic resistant edema,

hypoproteinemia 20% albumin + diuretics

Insperior charles of infants

4. Haemorrhagic shock of infants safe and can be used without blood group properties


RISK: overdose

Tissue hypoxia - dehydration
Circulatory overload - pulmonary edema
Protein Allergies - Anaphylaxis

Contraindicated in patients with Parenteral nutrition

Treatment of immunodeficiencies

no better and more specific effects than other colloidal solutions not contain essential amino acids and immunoglobulins

V. IMMUNOGLOBULINS

VIRUS FREE lyophilized plasma fraction extracted from about 1000

DONOR plasma pool PRODUCED BY FRACTIONATION

STORAGE: + 4 °C. IgG, **T 1/2**: 21 days

Indication: restoration of te specific antibody response

enhance the body's resistance (prophylaxis)

Dose: 200-400mg/kg prophylactic: 2 - 4 weeks to years

therapeutic: 3 - 5 days

Types:

Non-specific - polyvalent human serum globulin (IgG and few IgA,IgM)

- includes the average infected population antibodies

Specific - vaccines / anti-D-HBs - CMV, -varicella, -. tetanus etc /

 contains substantially higher concentrations of specific antibodies active or passive immunization gene technological methods

- hyperimmune gamma globulin / anti-D etc /

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

Absolute contraindications: Selective IgA deficiency with anti-IgA +

ADMINISTRATION: slowly

SCIG: primer immunodeficiency - self-administration at home

IMIG: measles, gram negative sepsis

IVIG: most effective - high dose - standard blood administration set

ADMINISTRATION - slowly! -recognition of possible complications

Main areas of INDICATION - still evolving

primary immunoglobulin deficiency (X chain low immunoglobulin, familiar variable immune deficiency, immunoglobulin G secondary deficiency)

secondary immunoglobulin deficiency – infection, newborn sepsis,

CLL with hypogammaglobulinaemia, toxins, drogs

autoimmune deficiency diseases - ITP, Kawasaki disease

immunocytopenia – PTP

Effect: passive immunization, immunomodulation

Products: Intragam P, Octagam, Flebogamma, Intratect, Humaglobin etc.

Characteristics of coagulation factor products Virus inactivated blood products

1. Safe: virus-inactivated, disinfected

extreme rare virus transmission

- 2. Lyophilized solvent included
- 3. Storage: 2-6 °C.
- 4. Expiry date: several years
- 5. Dosage: Strict adherence to instructions
 - The half-life taking into account factors
 - Overdose thrombosis
- 6 Disadvantage: expensive

Recommendations:

- 1. Macroscopic control before administration
- Dosage and administration -manufacturer's instructions
- 3. After resolution should be given immediately
- 4. When adding clotting factors **hematology consultation** is needed!

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

The future of transfusiology

Increase of **storage time**: red blood cells, platelets **Virus inactivation** of all plasma products and cellular blood products

Red Blood Cell Transfusion

- 1. **EPO**: chronic kidney disease, treated HIV patients, carcinoma patients, allogeneic and autologous bone marrow donors
- 2. Autologous blood transfusions
- 3. Enzymatic modification of red blood cells (converted,,0" group) or camouflaged red blood cells with mPEG
- 4. **Blood substitutes** : ⇒ Perfluorinated compounds
 - Hemoglobin solutions
 - Recombinant hemoglobin

Platelet transfusion:

- 1. **TPO** (thrombopoietin)
- 2. Artificial blood platelets

White blood cell transfusion:

- 1. **G-CSF**
- 2. **leukocyte depletion** in all blood products

Plasma and plasma product transfusion:

Rekombinant proteins (F VIII, anti-D, etc.)

