## Cell division: mitosis and meiosis

Judit Varga



## Cell division in prokaryotes - Fission





## The cell cycle (of somatic cells)



- interphase + M phase (cell division)
  - somatic cells → mitosis
  - germ cells → meiosis

#### interphase:

- $G_1$  phase:
  - diploid cells,  $2n \rightarrow 46$  one-chromatid chromosomes
  - synthesis of proteins and organelles, energy production
  - G<sub>0</sub> phase: quiescent cells (e.g. neurons)
- S phase:
  - DNA replication → production of two-chromatid chromosomes
  - duplication of centrosome
- G<sub>2</sub> phase:
  - tetraploid cells,  $4n \rightarrow 46$  two-chromatid chromosomes

## The Cell Cycle

Cell with chromosomes in the nucleus



Cell with duplicated chromosomes



#### **Mitosis**

- eukaryotic somatic cells
- 1 cell → 2 genetically identical daughter cells



### Prophase

- chromatin condensation → chromosomes
- formation of **mitotic spindle** starts
  - centrosomes/MTOCs (microtubule organizing centers) + microtubules
  - kinetochore + non-kinetochore MTs
- breakdown of nuclear membrane
- fragmentation of ER and Golgi complex



http://66.media.tumblr.com/tumblr\_lfc8zpZWMc1qf5zt6o1\_500.gif



## Metaphase







 chromosomes are lined up in the equatorial plane → metaphase plate

spindle formation is complete







 $http://66.media.tumblr.com/tumblr\_lfc9g2cm0l1qf5zt6o1\_500.jpg$ 

## Anaphase

- separase → chromatid segregation
- shortening of kinetochore microtubules → migration of chromatids
- sliding of microtubules → elongation of the cell
- microtubules pull the centrosomes toward the cell membrane







## Telophase and cytokinesis

- decondensation of chromosomes → reformation of chromatin
- nuclear membrane, ER and Golgi complex are reformed
- karyokinesis → 2 nuclei

 contractile ring (actin + myosin) → division of cytoplasm (cytokinesis) → 2 identical daughter cells







http://66.media.tumblr.com/tumblr\_lfc9vcWybL 1qf5zt6o1\_400.jpg





#### Meiosis



- production of germ cells (n)
  - oogenesis: formation of oocytes/egg cells
  - spermatogenesis: production of sperm cells
- 1 diploid cell → 4 haploid gametes (genetically different)
- humans: 46 one-chromatid chromosomes → 23 onechromatid chromosomes
- fertilization → diploid zygote
- meiosis I and II

#### Meiosis I

- Interphase I: DNA replication → tetraploid cell (4n) → 46 two-chromatid chromosomes/cell
- Prophase I:
  - chromatin condensation → chromosomes
  - pairing of homologous chromosomes
  - **crossing over**/homologous recombination  $\rightarrow$  increased genetic variability  $\rightarrow$  2<sup>23</sup> possibilities at the end of meiosis I
  - breakdown of nuclear membrane, ER and Golgi
  - formation of mitotic spindle starts



#### Meiosis I



#### Metaphase I:

- completion of spindle formation
- maternal and paternal chromosomes line up randomly within metaphase plate

#### • Anaphase I:

separation of homologous chromosomes

#### Telophase I:

- degradation of mitotic spindle
- nuclear membrane forms

#### • Cytokinesis I:

 2 genetically different diploid cells → 23 two-chromatid chromosomes/cell



Meiosis I

interphase I metaphase I prophase I anaphase I Centrosomes Microtubule Chiasmata Sister chromatids Metaphase (with centriole attached to remain attached plate Spindle pairs) kinetochore Núclear Chromatin Sister Tetrad Centromere **Homologous** envelope chromatids (with kinetochore) chromosomes separate **Homologous** chromosomes Chromosomes Tetrads line up Pairs of homologous pair and exchange chromosomes duplicate segments split up Synapsis - pairing of homologs to form tetrad

#### Meiosis II



- Interphase II: no DNA replication
- Prophase II
  - no crossing over
- Metaphase II
- Anaphase II:
  - Separation of sister chromatids
- Telophase II
- Cytokinesis II:
  - 4 haploid cells (genetically different) → 23 one-chromatid chromosomes/cell





separate; four haploid daughter cells result, containing single

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

chromosomes

are still double

## Gametogenesis



#### Spermatogenesis:

- starts at puberty, then it is continuous
- 1 precursor cell → 4 haploid sperm cells

#### Oogenesis:

- starts during the embryonic development but stops in prophase I
- ovulation: meiosis continues, then stops in metaphase II
- fertilization: completion of meiosis II
- 1 precursor cell → 1 egg cell + 3 polar bodies



#### Abnormalities of meiosis



- non-disjunction:
  - abnormal segregation of chromosomes/sister chromatids
  - monosomy
    - Turner syndrome: 45, X0
  - trisomy
    - trisomy 21: Down syndrome
    - Klinefelter syndrome: 47, XXY
    - Triple X syndrome: 47, XXX
    - Double Y syndrome: 47, XYY





Number of chromosomes

(a) Nondisjunction of homologous chromosomes in meiosis I

(b) Nondisjunction of sister chromatids in meiosis II



# Thank you for your attention! ©