

Treatment for heart failure

Medical:
inotrops, digitalis, diuretics, beta-blocker...

CRT, multisite pacing

Conventional surgical or interventional treatment of CAD, valvular disease

Acute mechanical circulatory support (<2 weeks)

Permanent mechanical circulatory support (>2 weeks)
„bridge to transplantation”, „bridge to recovery”,
„bridge to bridge”, „destination therapy”

Heart transplantation

Mechanical circulatory support

Indication: serious reversible or irreversible heart failure in spite of maximal medical therapy

Aims:

Reversible: 1. assuring adequate tissue perfusion
2. unloading the heart until recovery

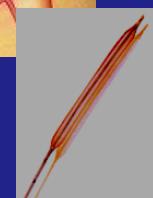
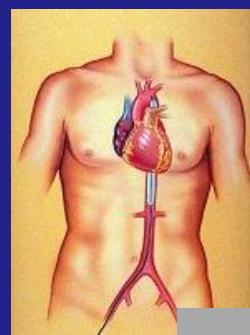
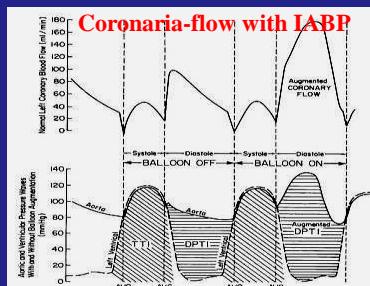
Irreversible: assuring adequate perfusion until HTX

Short range (<2 weeks) \longleftrightarrow Long-range (>2 weeks)

Extracorporeal \longleftrightarrow Intracorporeal

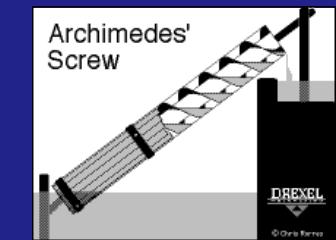
TAH \longleftrightarrow VAD (LVAD, RVAD, BiVAD)

Pulsatile \longleftrightarrow Continuous flow

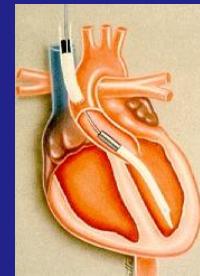



(TAH – total artificial heart, VAD – ventricular assist device)

Acute mechanical circulatory support

Intraaortic balloon pump (IABP)


- failure of inotropic treatment
- threatening! cardiogenic shock

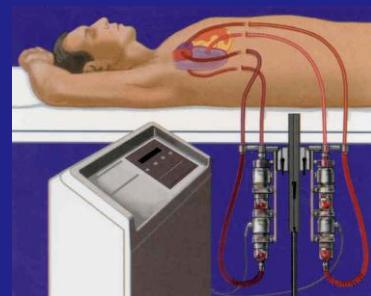
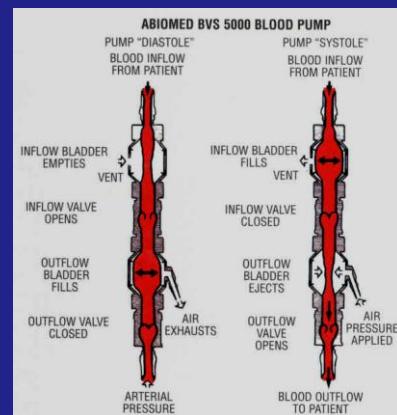
- improving coronary perfusion
- (reducing afterload)



Acute mechanical circulatory support

Hemopump

Hemopump device inserted into the left ventricle through the ascending aorta and the portable control unit.

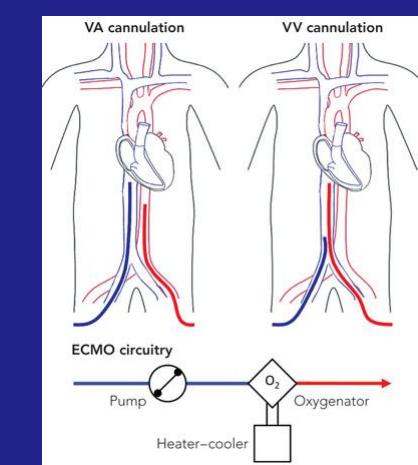


The 24-Fr version is capable to maintain the total minute volume, therefore the heart can be arrested medically without the background of ECC.

Acute mechanical circulatory support

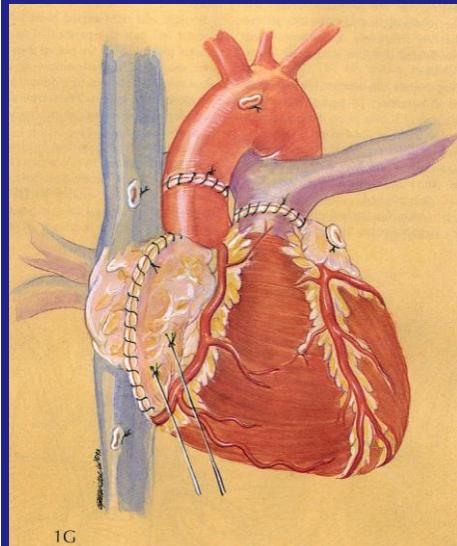
Abiomed BVS 5000

Univentricular or biventricular assist.

Mechanical circulatory support


**RVAD LVAD
BiVAD**

Pulsatile flow, paracorporeal,
mid-term



ECMO – extracorporeal membrane oxygenator

Respiratory, cardiorespiratory insufficiency

The evolution of HTX

1905. Carrel, Guthrie
vascular suture, organ tx

1960. Lower, Shumway
present technique, cooling

1964. Hardy et al.
chimpanzee heart to human

1967. Barnard
human to human

1980s
cyclosporin

Admission to the HTX program

Indications:

- NYHA IV in spite of maximal iv inotrop therapy
- **Max. VO₂ < 10ml/kg/min (<14, relative indic.)**
- syncope, ventricular ectopies
- bad quality of life, complaints limiting everyday activity
- high risk for cardiac mortality within 1 year

Contraindications:

- > 60-65 years
- active infection, or GI ulcer, diabetes mellitus, serious peripheral vascular disease, pulmonary disease, malignancy
- **elevated pulmonary vascular resistance (>5 Wood, >3.5 rel)**
- psychical instability, alcohol or drug abuse
- loss of compliance, impossible follow-up

Donor selection

- brain death
- matching ABO with the recipient
- age less than 40-45 years
- similar body weight (size) to the recipient
- loss of cardiovascular disease
- loss of pulmonary disease
- no malignancy (except brain tumor)
- no infection (HIV, CMV, Hepatitis)
- no sepsis
- expected ischemic time < 4-6 hours

Immunosuppression after HTX

- MMF (mycophenolate mofetil, *Cellcept*)
- tacrolimus (calcineurine inhibitor)
- corticosteroid (prednisolone)
- /cyclosporine (earlier)/

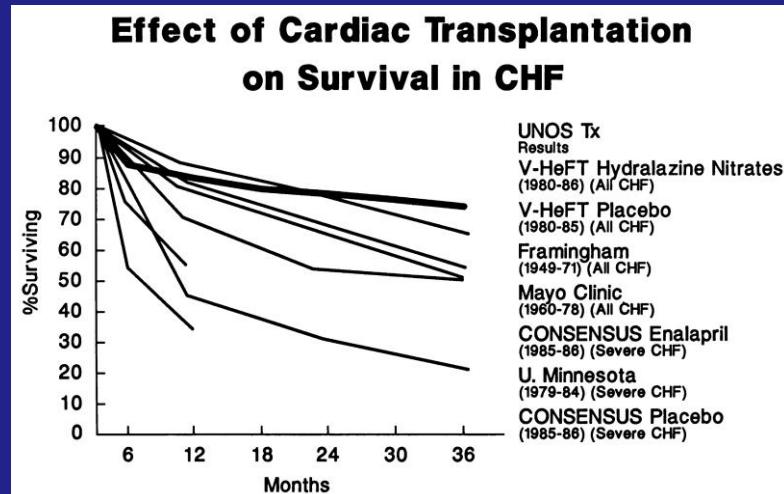
Rejection:

- corticosteroid
- ATG (anti-thymocyte-globuline)
- ALG (anti-lymphocyte-globuline)

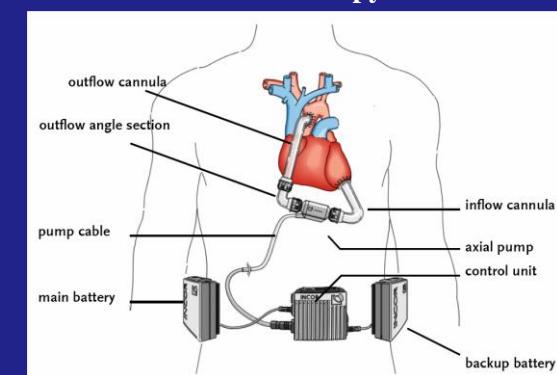
Regular endomyocardial biopsy

Special complications of HTX

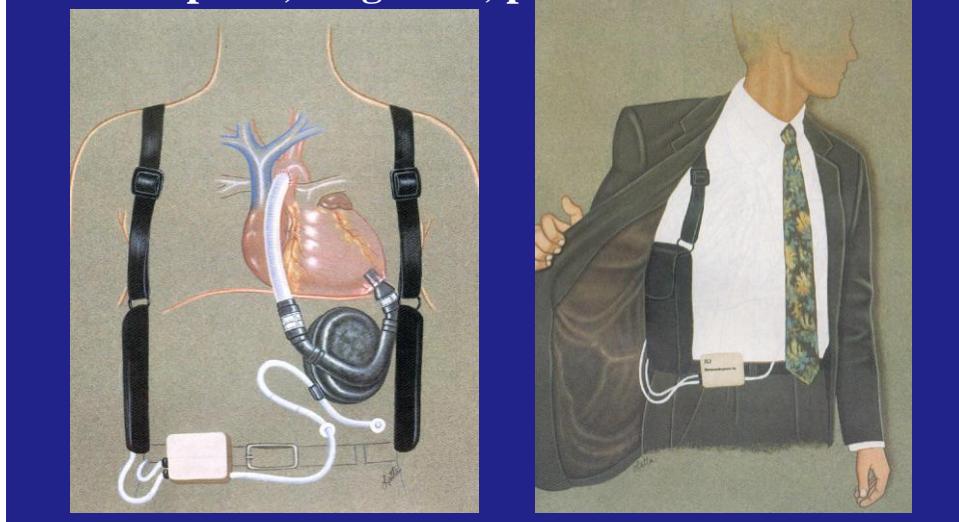
- infection (transmission, susceptibility)
- rejection
- graft coronary sclerosis
- secondary malignancies (lymphomas)
- nephrotoxicity (of cyclosporin)
- death


Problems of HTX

- complications → new immunosuppressives
- donor shortage → networks (UNOS, Eurotransplant), alternatives
- ethical concerns (abating)
- legal concerns (abating)
(definition of brain death, need for consent)
- expenses


**90 % one-year and 50 % 10-year survival,
annually about 3500 HTX all over the world,
whereas emerging need for several ten-thousand**

Comparing survival after HTX or medical treatment


Berlin Heart Incor (LVAD)

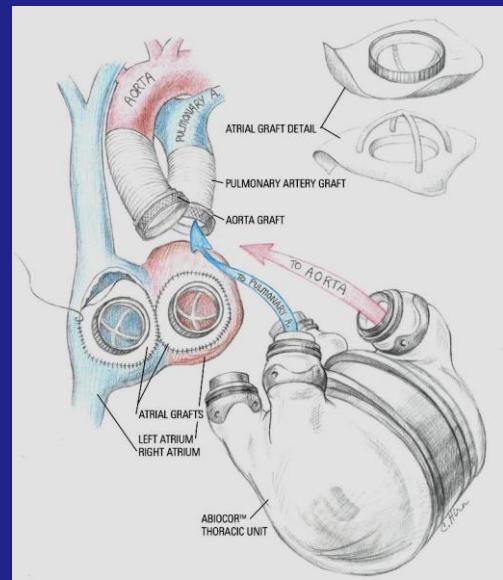
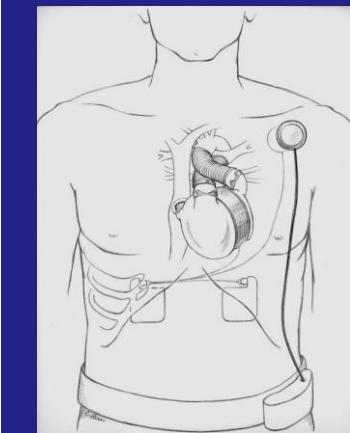
- Intracorporeal, continuous flow, permanent
- INR: 2,8-3,2
- APTI: 70-90 s
- Efficient anti-TCT therapy

Mechanical circulatory support - Univentricular assist

Intracorporeal, long-term, pulsatile

Mechanical circulatory support - Univentricular assist

1963. M. DeBakey – first human application



Draining blood from the apex of the left ventricle, pumped into the ascending or descending aorta. (applicable also in the right heart)

Since the 80s mainly in the US several hundred devices were implanted as a bridge to transplantation. Recognized the reverse remodeling as an effect of unloading the heart. Many patients were removed from HTX program because of their improvement. The future?

Artificial heart – the Abiocor

Artificial heart – the Abiocor

Artificial heart, xenotransplantation

Artificial heart: human application in experimental phase

1959. S. H. Norton, T. Akutsu, W. Kolff

1969. D. A. Cooley (Liotta pneumatic heart)
as a bridge to transplantation

1982. DeVries (Jarvik-7) as a final therapy

Now: Texas (Abiocor), Cleveland, Pittsburg

Problems: thromboembolism, power supply, safety of operation, infection, haemolysis, adaptation to needs

Xenotransplantation: animal experiments (swine)

Preventing rejection with modified surface antigens

Future possibilities

Molecular cardiomyoplasty: Fibroblasts in the infarction scar are “infected” with MyoD-gene resulted in muscular differentiation.

Cellular cardiomyoplasty: infiltrating the scar with myoblasts (satellite-cells) or stem cells from skeletal muscle, those can differentiate into heart muscle

Embryonal correction of the gene responsible for the cardiomyopathy

Induction of angiogenesis by growth factors

Summary

- HTX – gold standard
- Efficient mechanical circulatory support avail.
- The timing of mechanical assist is crucial !
- Choosing the appropriate device (availabilities)
- Bridge to HTX reduces mortality and costs
- Fast technical development – future ?
- Expenses

