Disorders of water and electrolyte balance

Tamás Kőszegi, Attila Miseta
University of Pécs
Department of Laboratory
Medicine

Average daily water intake and output of a normal adult

Intake of water	mL	Output of water	mL
Water drunk	1500	Urine volume	1500
Water in food	750	Water content of faeces	50
Water from metabolism of food	250	Losses in expired air and insensible perspiration	950
Total intake	2500	Total output	2500

Approximate contributions to plasma osmolality

	Osmolality (mmol/kg)	Per cent total
Sodium and anions	270	92
Potassium and anions	7	1
Calcium (ionized) and anions	3+	The Market of Market
Magnesium and anions	1+	
Urea	5	8
Glucose	5	
Protein	Approximately 1)
Total	Approximately 292	
	Approximately 292	

Distribution of water in the body

Electrolytes – Electrical Neutrality

Component (Cations)	Plasma (mmol/L)	Component (Anions)	Plasma (mmol/L)
Na ⁺	142	CI-	103
K ⁺	<mark>5</mark>	HCO ₃ -	24
Ca ²⁺	2	Protein ⁻	15
Mg ²⁺	1	Organic acids ⁻	3
		HPO ₄	2
		SO ₄	1
		Total Anions	1
Total cations	149		149

Change in [Electrolyte] Can Occur By...

- 1.) Increase/Decrease in amount of electrolyte
- 2.) Increase/Decrease in amount of water

Paradox of intracellular components

Human body: approx. 70kg - 10¹⁵ living cells

Intracellular components: water, protein, nucleic acids Organic small molecules macro- and microelements All in structure! Release into the extracellular space in health and in diseases conditions

Electrolyte paradox

Intracellular electrolytes: K, Ca, Mg, Zn, Fe ... Trace elements

Mostly protein bound!

Extracellular space concentrations do not mirror intracellular load!

Methodological palette

- Water electrolyte balance tested together!
- Sodium: ~ 150g Potassium: ~ 200g
- Sodium potassium: inverse distribution
- Sodium water changes parallel, strict regulation, negligible part is interchangable

Hyponatraemia Hypernatraemia Osmolality

Sodium balance

Hypernatraemia

Loss of water (dehydration)

Diabetes insipidus

Serum/urine osmolality

Excess sodium intake

Hyperaldosteronism

Hyponatraemia 1

Water retention

Total sodium normal

Serum/urine osmolality

Sodium loss, insufficient intake (rare)

(gastrointestinal, kidney)

Hyponatraemia 2

Water loss
ECF Na low

Water loss
ECF Na high

Water loss ECF Na normal

Pseudo-hyponatraemia

Plasma water volume decreases:
 Multiple myelome
 Lipemic serum

• Method dependent: flame photometry ion selective electrode

Potassium balance

- Major intracellular cation
- Easily released and reuptaken again (acidosis, catabolism, insulin dependence)
 - 3.7 5.2 mmol/l
- Not well regulated
- Daily intake is important!
- Hyper- hypokalaemia may be lethal!
- Measurement of whole body potassium

Functional K test

Intravenous load test

• 4h slow infusion, known amount of K

• Urine collection: excreted K/4h

Calculation: balance, deficit, excess

Calcium homeostasis

- Ca 1000g in adults
- 99% in bones (extracellular, Mg, P as well)
- Plasma/intracellular concentration:

total Ca 10⁻³ mol/l water

• Intracellular concentration:

"ionized" Ca 10⁻⁷ mol/l water

• Ionized Ca - muscle contraction, blood coagulation, enzyme activation, signaling, regulation of absorption/excertion

Interpretation of plasma Ca levels (2.10-2.60 mmol/l as total)

Fractions of plasma Ca	% of plasma total Ca
Ionized calcium (Ca ²⁺)	50-65
Protein (albumin) bound Ca	30-45
Ca complexes	5-10

Plasma total Ca is depending on albumin concentration

Ionized Ca concentration depends on blood H⁺ (respiratory alkalosis - tetany)

Magnesium metabolism

- 24 g in adults, mostly intracellularly
- Plasma: 0.7-1.1 mmol/l (30% protein bound)
- Deficieny: rare, slow development

 Functional test (oral)
 - 24h urinary Mg basal excretion
 - 24h urinary Mg excretion after oral dose

Functional test (intravenous)

48h urinary Mg (>90% should be excreted)

Measurement 1 Emission flame photometry

Measurement 2 Atomic absorption photometry

Measurement 2 Atomic absorption photometry

Hollow cathode lamp

Graphite furnace

More sensitive

Measurement 3 Potentiometric principles

Measurement 3 Potentiometric principles

Quality control Levey-Jennings chart

Quality control Levey-Jennings chart

(Generally used where 2 levels of control material are analyzed per run)

 1_{2S} rule R_{4S} rule

 1_{3S} rule 4_{1S} rule

 2_{2S} rule 10_X rule

+3SD

+2SD

+1SD

Mean

-1SD

-2SD

-3SD

Day

