

Types and indications of blood products

Rudiments of Blood Transfusion for IV. grade medical students

Zita Csernus MD National Blood Transfusion Service Regional Blood Transfusion Centre Pécs

www.ovsz.hu

The meaning of the word transfusion

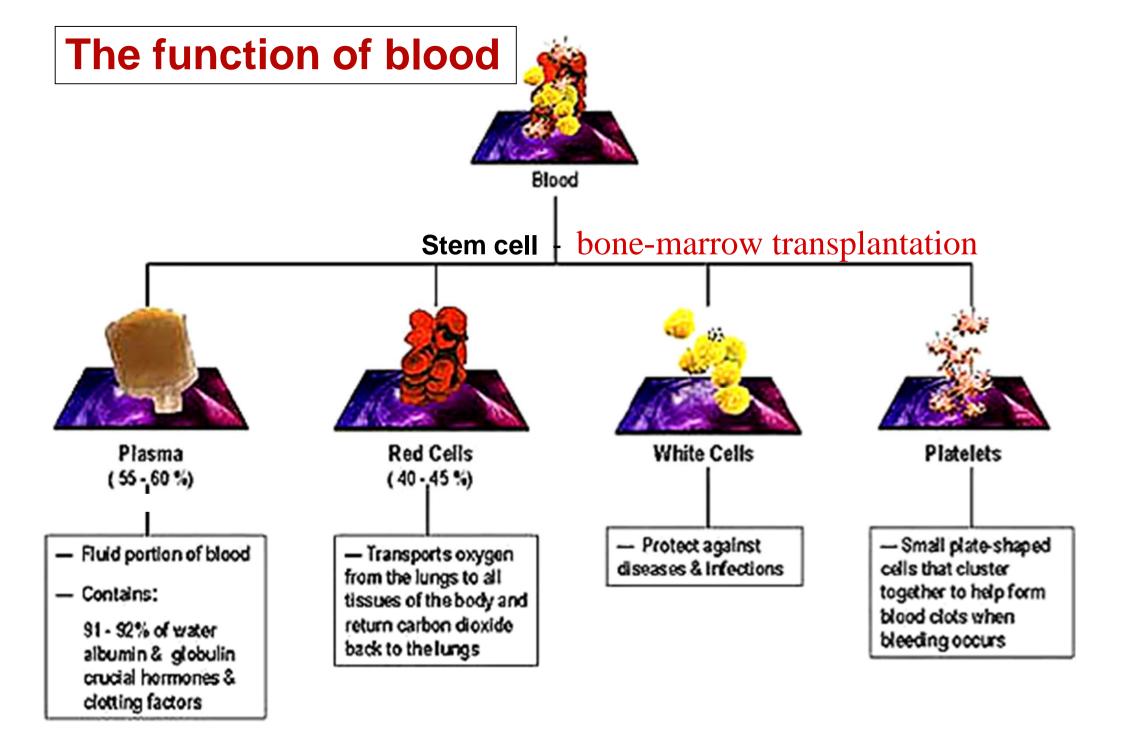
trans (lat.) trans, through, across, over

fusio (lat.) pouring, merger, associacion, fusion, assimilation

Transfusion - blood transfusion from one person to another

transplantation

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT


Why do we need blood transfusions?

The physiological role of blood!

Absence Function impairment Dilution

It should be substituted

Firs	t steps of blood transfusion
1628	English physician William Harvey described the functions of the heart and the circulation of Blood.
1667	Jean-Baptiste Denis in France reported successful transfusions from sheep to humans.
1814	James Blundell performed the first successful transfusion from human to human.
1901	Karl Landsteiner, an Austrian physician, discovers the first three human blood groups ABO
1940	The Rh blood group system was discovered by Karl Landsteiner and Alexander Wiener

MILESTONES IN BLOOD PRESERVATION HISTORY

Albert Hustin and Luis Agote using citrate kept 1914 blood for 48 hours in the liquid state 1933 Max M. Strumia developed frozen storage of plasma John F. Loutit and Patrick L. Mollison: 1943 introduction of acid -citrate -dextrose (ACD) preservative, the still used method in blood preservation deep freezing of red blood cells was 1951 developed - Audrey Smith reports the use of glycerol cryoprotectant for red blood cells 1950 Carl Walter inventioned first plastic blood bag 1957 John Gibson developed CPD preservative sol. 1963 closed blood bag systems have made possible to ensure the sterility - introducing of 1973 it safer blood products manufacturing and storage became possible (In Hungary, it was introduced from 1984.)

BLOOD PRESERVATION

Blood preservation is called the procedures that allow the blood viable without damage to the biological condition to be kept in a sterile condition.

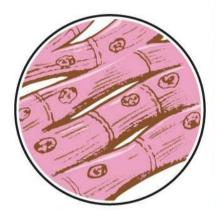
- Aim: the transfused blood in the patient's body remain viable
- Types:1. use of blood preservative solutions2. deep freezing

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

RBC metabolism

Substrate is glucose

Pentose-phosphate glycolysis 10%


- ribose-5-phosphate nucleotide synthesis
- **Anaerobic glycolysis 90%** ATP excess
 - 2,3-diphosphoglicerate shunt
 - ion transport

high K⁺ level in RBCs

- cell membrane integrity

osmotic resistance

- lactate pH↓- o
- damage of RBC metabolism

I-1. CPD PRESERVATIVE SOLUTION FOR BLOOD

Storage time : 28 days			2. Additive Solution / ADSOL /	
glucosum pro inf.	25,5	g	Storage time:	35 days
sodium citricum	26,3	g	dextrose	111,0 mM/l
acidum citricum	3,27	g	adenine	2,0 mM/l
natrium phosphoricum acidum	2,22	g	•. •	,
aqua destillata	ad 1000 cr	n ³	mannitol	41,2 mM/l
<i>Ratio:</i> 1:6 63ml CPD + 450ml blood 1 U			sodium chloride	154,0 mM/l

Na-<u>C</u>itrateanticoagulantAcid. citr. pHPhosphateATP production, pHmannitolRBC membrane integrityDextrosesubstrateAdeninered blood cell regeneration

*3. HEPARINE*Only anticoagulant effect: antithrombin cofactor *Storage time*: max . 6-8 hours

II. DEEP FREEZING (CRYOPRESERVATION OF RED CELLS)

PRODUCTION: within 24 hours from fresh blood

STORAGE: for years

TYPES: 1. SLOW FREEZING:

Temperature: -80 - -90 C° Freezing time: 7 - 8 hours 2. **RAPID or ULTRARAPID FREEZING**:

Temperature: - 196 C° Freezing time: 1 - 3 minutes **CRYOPROTECTIVE AGENTS: glycerol , (platelet-DMSO) Type of PRODUCT:** repeatedly **washed blood product**

Quality: RBC-s K⁺, ATP and 2,3 DPG levels similar to fresh blood

ADVANTAGE: - long term storage of blood or autolog blood before surgery or transplantation

- reduction in transmission of the virus and leukocytes
- decreased risk of immunization

DISADVANTAGE:

- high RBC loss / short storage time after washing
 - expensive

STORAGE OF BLOOD PRODUCTS 1. Storage times depends on: 1. storage **temperature** 2. blood **preservative** solution

CPD - adenine preservative solution

Storage temperature	Blood product	Storag	ge time
+ 22 °C (20-24 °C)	Platelets	5 days	
	Granulocytes	24 houi	rs
+ 4 °C (2-6 °C)	Red blood cells	35 days	S
	RBC washed	24 – 48	hours
	RBC irradiated	14 days	5
- 18 -25 °C	FFP	3 mon	iths
under - 30 °C	FFP	2 year	rs
- 30 °C	RBC frozen	1 year	Not in
- 80 °C	PLT, RBC	2 years	routine
- 196 °C	RBC, PLT, FFP >	∙ 10 years∫	practice

blood components.

Sterile conditions for blood collection and preparation!

Quality control !

There is no single optimum method for all

Under continuously controlled standard conditions ensuring the sterility of the preparation is done!

Components storage on optimal temperature

<u>RIGHT BLOOD STORAGE:</u>

(+20℃, +4℃, -30℃)

- 30 °C

CHANGES IN QUALITY INDICATORS OF CPD-adenine BLOOD DURING STORAGE

I . *Essential components reduced*: FROM 10. DAYS - ↓

ATP content of red cells
 2,3-DPG content of red cells

oxygen transport ! massive transfusion neonatal blood exchange cardiopulmonary diseases

PROGRESSIVELY - \downarrow

3. lifetime of **cellular components** /granulocyte, thrombocyte red blood cell /

4. labile **anticoagulant factors** / VIII, V /

NOT CONTAINS -

5. Ca ions- citrate effect *tetany* ! (larger amounts of plasma transfusion)

CHANGES IN QUALITY INDICATORS OF CPD-adenin BLOOD DURING STORAGE

II. *Toxic substances get into into the plasma:*

FROM 5-6. DAYS -

 K⁺ efflux from RBC / approx. 1 mmol/day / risk of potassium *intoxication*! Kidney insufficiency Newborns

FROM 7. DAYS -

2. rising of **ammonia** level risk of *intoxication* !

Severe liver demage

PROGRESSIVELY increase 3.microaggregates - filtration !

Massive transfusion

4. free **Hb** - < 43g/U

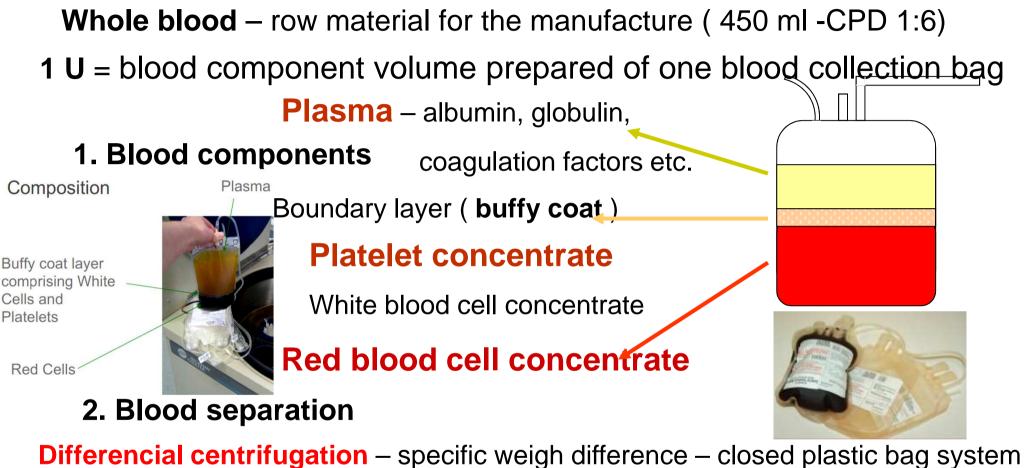
Renal failure

CRITERIA FOR RBC CONCENTRATE:

Administered RBCs on the last day of storage should be detectable in the circulation of patients after 24 hours of 70-75%.

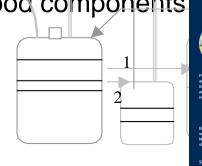
This is ensured if the red blood cell **ATP content is 40-45%** of baseline.

Preserved red blood cells can be detected in the circulation for 100 days. Elimination of them is 1% /day.


Decreased in vivo survival: - auto-/izoimmun hemolysis

- fever increased RBC destruction
- splenomegaly
- aplastic anemia

Normal RBC survival but **no Hb increase** :


- severe bleeding

SEPARATION OF BLOOD COMPONENTS

Apheresis – instrumental method of obtaining blood components

Autotransfusion – preparation of whole blood or blood components

TYPES OF BLOOD COMPONENTS

Basic components: RBC, PLT, Plasma Special components: washed, filtered, irradiated basic components or their combinations

Unstable blood components

basic and special types of red blood cell concentrates platelet concentrates white blood cell concentrate some plazma products - FFP /fresh frozen plasma/,

cryoprecipitate/cryosupernatant hemopoetic stem cell - autologous or allogenic

Stabile blood components

Non virus inctivated

Virus inactivated

Plasma fractions prepared from human plasma pool

- albumin solutions
- immunglobulins
- clotting factors
- other isolated plasma fractions or their combinations
- haemopoietic growth factors /rHu Epo, rHu IL-3, rHu IL-6, GM-CS/

I. WHOLE BLOOD AND THEIR INDICATIONS **Row material**

	Preservative	Storage temperature	Storage time
1.	1.CPD	(+20°C) +4 °C	28 day
	2. CPD-A	+4 °C	35 day

EFFECT: 1. volume replacement

2. restoration of oxygen-carrying capacity

Similar effect can be achived! - **RBC. conc.** + **FFP and/or albumin**

INDICATION: very limited

1. acute blood loss (the loss of 30-40 % the total blood volume, or the amount of the circulating blood volume within 24 hours) /massive transfusion > 10U blood /

2. exchange transfusions

3. emergency conditions, when there is no other option

R

e d

C e

П

1

r a

f

2. EXCHANGE TRANSFUSIONS

I. ADULT EXCHANGE TRANSFUSIONS 1. severe acute liver failure 2. **poisoning** / mushrooms, CO, chemicals / Donor blood **II. NEONATAL EXCHANGE TRANSFUSIONS** a. partial: 1. rapid correction of severe anemia 2. hyperviscosity induced polycythemia **b. total :** 1. haemolytic disease of newborn / HDN / Umbilical vein 2. severe **RDS** 3. **DIC** 4. harmful substances transferred from the maternal circulation

to the fetus /toxic substances, pharmaceuticals, antibodies/

Waste

5. haemolytic crisis of sickle cell anaemia

BLOOD PRODUCT FOR TRANSFUSION:

RBC under 7 days old

The blood chrossmatch have to be performed on the **mother's serum** also up to 4 moths of age

AMOUNT: 180 - 200 ml /kgBW

COMPLICATIONS DUE TO THE WHITE BLOOD CELL AND PLATELET CONTENT OF BLOOD PRODUCTS:

- 1. febrile nonhemolytic transfusion reactions
- 2. HLA alloimmunisation
- 3. GVHD /irradiation! /

4. mikroaggregate transmission /RDS, pyrogens .../

5. virus transmission

White blood cell (WBC) content of blood products

filtered (leucocyte reduced) RBC concentrate whole blood RBC concentrate –resuspended, buffy coat free plasma platelet concentrate

WBC removal methods

- spin and buffy coat removal
- wash physiological saline plasma removal ~ 70 90%
- filtration special filter /d = 40μ / WBC maximum removal of **99,995%**

< 1 x 10⁶
2 - 3 x 10⁹
1-5 x 10⁸
2 x 10⁷
0,5 x 10⁸

Buffy coat removing

WBC removal rate ~ 80% ~ 70 - 90%

II. RED BLOOD CELL CONCENTRATE (packed RBC)

Preservative	Storage temperature	Storage time
CPD + adenin (ADSOL)	+4 C°	35 days

HEMATOCRIT:55 - 65 %VOLUME :~ 200 mlEFFECT:restoring oxygen carrying capacity

ADMINISTRATION: in normovolemia 1E / 3/4 - 1 hours

in hypovolemia it depends on the patient's circulation and volume

INDICATIONS: anemic conditions with hypoxia / symptoms: tachycardia, dyspnoea, cyanosis / **Explain the cause of angemig / P**atients must be sured not the lab findings

Explain the cause of anaemia ! Patients must be cured, not the lab. findings! Acut blood loss - at 20 % Htc (90 g/l Hb) is vital indication With chronic anaemias there is compensation - clinical picture ! Hb 70g/l

CONTRAINDICATIONS:

- drug-treatable deficiency anaemia / Fe, folic acid, B_{12} /
- renal failure eritropoetin / second choice -transfusion /
- AIHA primarily steroid /transfusion only in **case of vital indication**/
- physiological anaemia of newborn- and premature infant

III. WASHED RBC CONCENTRATE

Aim: removal of plasma

Resuspension solution	Storage temperature	Storage time	
SAGM or salin(0,9%)	$+4C^{\circ}$	48 or 24 hours	
protein content: minimal 0.3 g			

HEMATOCRIT: < 70% VOLUME: 150 ml

EFFECT: restoration of oxygen-carrying capacity ADMINISTRATION: depends on patient's syndromes and circulation Continuous monitoring is required.

INDICATIONS: 1. Sensitivity to plasma proteins /anaphylaxis / 2. IgA deficient patients

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

IV. FROZEN RBC CONCENTRATE Several times washed Product

Preservative	Storage temperature	Storage time
CPD, glycerol		6 month, 1-2 years
<u>Volume</u> : ~ 200ml	-196 °C	unlimited
Content: minimal WBC		after thawing and
and plasma protein	+4 °C	washing: 24 hours

Storage for allogen or autologous transfusion

INDICATIONS: alloimmunization to many common RBC antigens

DISADVANTAGE: expensive, high red blood cell loss

ADVANTAGE: less risk of infection and immunogenic effect long-term storage

Advantages of packed RBC compared with whole blood:

1. much smaller volume

2. low plasma protein content

3. low citrate, K^+ , Na^+ , and NH_3 content

4. low WBC and platelet content

WBC content of 1 U RBC conc.: 1-5x10⁸/U

V. LEUCODEPLETED RBC

PLATELET, WBC DEPLETED, FILTERED PACKED RBC

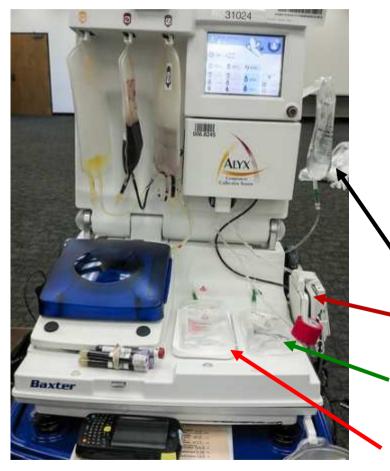
Preservative	Storage temperature	Storage time	Filtration
CPD-A	$+4^{\circ}C$	35 nap	within 48 hours

WBC CONTENT: $1-2 \ge 10^5 / U$ / 4 log filter /EFFECT:restoration of oxygen-carrying capacity

INDICATIONS: prophylaxis of complications due to WBC and platelet content of RBC products

Premature babies, newborns, those waiting for a transplant, transplant recipients

- 1 prevention of HLA alloimmunization /5 x 10 ⁶ WBC /
- 2 prevention of febrile non haemolytic transfusion reaction $\,/$ 5 x 10 8 WBC/ $\,$
- 3 avoidance ARDS /microaggregates platelet+WBC+fibrine- 40 170 μ /
- 4 reduction virus transmission /CMV ! 1 x 10^7 WBC/
- 5 intrauterine or perinatal transfusions


avoidance **GVHD** – only with irradiation* ! $/ 1x10^3$ WBC /

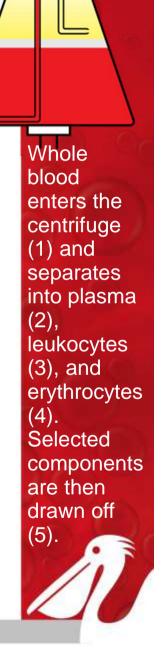
Currently this is the safest RBC product

BLOOD DONATION WITH APHERESIS

Plasma, RBC, platelet, granulocyte, stem cell - apheresis

The apheresis RBC is leucodepleted blood product 4

0.9% sodium chloride


filter

ADSOL[™] Red Cell Preservation Solution

ACD-A anticoagulant

- machine used for double red cell donation

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

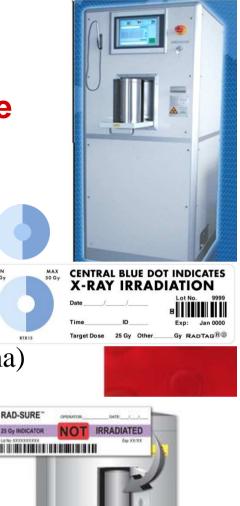
3

IRRADIATION OF BLOOD PRODUCTS

• Aim: immunologically competent lymphocyte proliferation ihibition

prophylaxis of GVDH >10³ WBC

GVHD (graft versus host disease): caused by donor lymphocytes in immunodeficient states of recipient


therapy: irradiating of blood products (RBC, PLT, plasma)

- Source of radiation: γ -ray / Cs¹³⁷, Co⁶⁰, X-ray
- **Dose:** 2500 5000 rads (25 50 Gy)

Storage time: 14 days, for neonates 48 hours

INDICATIONS:

- congenital or aquired immunosuppression conditions
- blood transfusion of relatives

VI. AUTOTRANSFUSION

TRANSFUSION OF THEIR OWN BLOOD

USED: donor eligibility criteria pregnancy is not reason for refusal iron supplementation

FORMS: 1. preoperative blood collection / 2- 3 U /

- 2. preoperative haemodilution /better tissue oxygenation /
- 3. intraoperative blood salvage / cell savers /
- 4. postoperative blood salvage

ADVANTAGES:

- 1. decreased risk of infection and immunization
- 2. better tissue oxygenation / HTC 30% / hemodilution
- 3. sparing of allogen blood products

CONTRAINDICATIONS:

- 1. not correct cardiac or haematological status of patient's
- 2. the blood transfusions are not suitable for the patient / tumor, infection

VII. HEMATOPOIETIC STEM CELL TRANSFUSION (H SCT) / TRANSPLANTATION

BONE MARROW TRANSPLANTATION Allogenic or autologous

HARVESTING OF STEM CELLS FROM:

- 1. crista
- 2. periferal blood with apheresis
- 3. umbilical cord blood
- 4. fetal liver

Enrichment and freezing of stem cells

Blood bag containing peripheral blood stem cell (PBSC) donation by apheresis

REQUIREMENTS FOR ADMNISTRATION OF BLOOD PRODUCTS CONTAINING RED BLOOD CELLS

- ABO and Rh D GROUP IDENTICAL BLOOD SHOULD BE ADMINISTERED TO THE RECIPIENT IF POSSIBLE UNLESS ANOTHER SEROLOGICAL CONSERN e.g.: exchange transfusion, irregular antibodies or *BLOOD SHORTAGE*
- ABO COMPATIBILITY IS MANDARORY
- **REQUIRED PRETRANSFUSION TESTING:**
- ABO and RhD grouping of patient and blood to be administered
 crossmatch is performed by Blood Bank if recommended

THE PLETHORA INHIBITS, THE ANAEMIA STIMULATES THE ERYTHROPOESIS

Should never be increase Hb concentration with transfusion to literary value.

THE AMOUNT OF BLOOD TO BE ADMINISTERED:

blood volume /ml/ = $\frac{\text{TBV /ml/kg/ x / Hb}_2 - \text{Hb}_1 / \text{g/l}}{\text{blood product Hb g/l}}$

TBV = total blood volume = circulating blood volume x body weight /adult-70 ml/kg, neonate-90 ml/kg, immature new-born-100ml/kg/
Hb₁ = Hb patient's prior to transfusion
Hb = Hb concentration desired after transfusion

 $Hb_2 = Hb$ concentration desired after transfusion

Hb concentration of blood products: (whole blood - 120 g/l) RBC concentrate - 220 g/l washed RBC concentrate - 300g/l

E.g.: 70 kg patient's Hb of 80g/l to 120g/l was rised

 $\frac{70 \times 70 \times 40}{220 \text{ or } 300 \text{ (depending of blood product)}}$

890 ml packed RBC ~ **4**U 650 ml washed RBC c. ~ 4U

Whole blood administration is contraindicated in normovolemia!

VIII. PLATELET CONCENTRATE

TYPES:				
1. Random donor plat		2. Apheresis single donor	-	
concentrate /4 pool	ed buffy coat/			
VOLUME: 50) - 70 ml/U	200 - 500 ml/ apheresis		
PLT CONTENT: 0,5-1,0	x 10 ¹¹ /U	3,0-6,0 x 10¹¹ /l/apheresis		
RBC CONTENT: 0,5- 6,0)/100 PLT	small		
WBC CONTENT: $1 \ge 10^6$	$5 - 10^8 / \text{U}$	5×10^8 / 10U apheresis		in the second
STORAG TIME:	5 day	vs in Blood Bank		
		NT is PROHIBITED!		
tran	sfusion withi	n 6 hours		
ADVANTAG	E: good	survival 8-10 days	HLA compa	tible donor
COST: random platelet - low			apheresis - s	significant
STORAGE:	in plastic	c bag on 20 - 24 °C v	with gentle sha	aking
pH:	6.8 - 7			\$1/¥ S
•				
EFFECTIV	E DOSE	2.4 x 10¹¹ platelets	(1 pool=4 U)	
<u>1U /10 kg BW</u>	<u>(4-8 U)</u>	or 1 apheresis (10 U))	
INCREMENT	•	5-10 000 / µl (5-10 G/	′l) / 1U	
1 hour after trar	nsfusion	20 – 40 G /	'l / 4 U (1 poo	

2.

VERIFYING THE EFFICACY OF PLATELET TRANSFUSIONS:

Corrected platelet count incement (CCI):

No of PLT after transfusion - No of PLT before transfusion x BSA number of units transfused

Effective PLT increment 1 hour after transfusion is >7.5

- **INDICATIONS:** 1. amegacaryocytic thrombocytopenia
 - 2. platelet dysfunction
 - 3. dilutional thrombocytopenia
 - 4. DIC
 - 5. immunisation

Below 5 G/l risk of intracranial bleeding! Platelet function inhibitor medication is contraindicated. E.g: acetyl-salicylic

Clinical signs!

1.20

PLATELET SURVIVAL:

- 1. **normal**: 8-10 days 50% detectable 1 hour after transfusion
- 2. **decreased:** lifetime is hours or minutes
 - 1. *immunization* allogen-: pregnancies, transfusions, transplantations refractory status: no effect of random donor PLTs

therapy: crossmatched HLA compatible, filtered apheresis PLTs

- autologous: ITP therapy: primarily steroid!

- 2. DIC /consumption /
- 3. sepsis
- 4. splenomegaly
- 5. febrile conditions

In case protein allergy washed PLTs can be given Avoidance of *GVHD* with **irradiation** of PLT

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

IX. WHITE BLOOD CELL PRODUCTS

TYPES: 1. pool from 10 units buffy coat using fresh whole blood	2. single apheresis			
<u>VOLUME</u>: 300 ml / pool	200 - 300 ml / apheresis			
GRANULOCYTE CONTENT: 0,5-0,60 x 10 ⁹ /E /70% gr. 30 % ly/ high red blood cell and platelet contamination	ADVANTAGE: 1 x 10 ¹⁰ / apheresis 1. higher granulocyte content 2. HLA compatible			
STORAGE TIME : max. 24 hours -				
Storage is Prohibited in department !				
METHOD OF STORAGE: 20 - 24	4 C° /room temperature /			

EFFECT:questionableDOSAGE:1 x 10 10 granulocyte / day= (10 - 15 E buffy coat)1 apheresisWBC product1 apheresisWBC productINFUSION:very slowly, in several portions

high lymphocyte content – GVHD – **irradiation!** RBC content – crossmatch not required

Donor stimulation

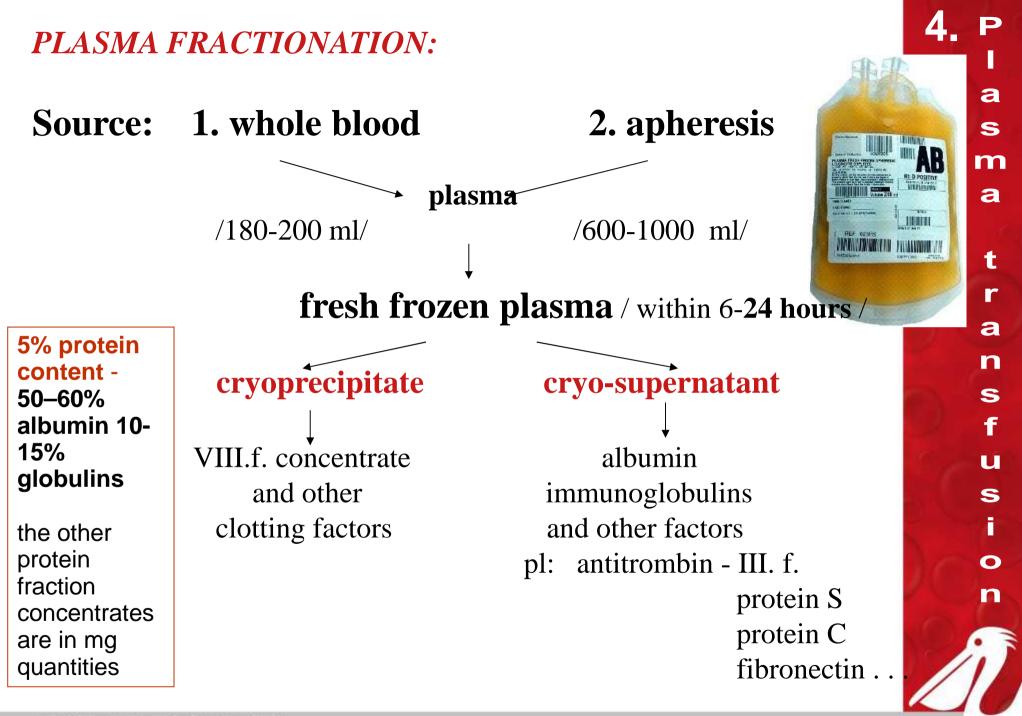
before apheresis:

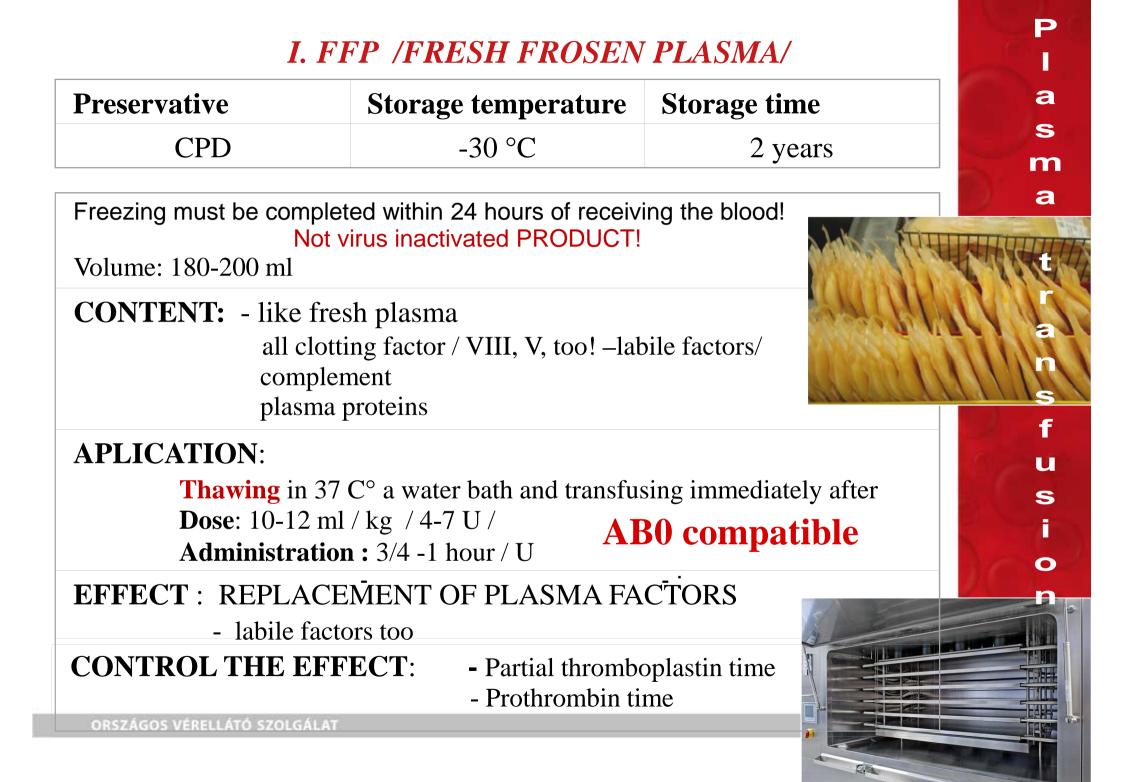
steroid or growth

factors

LIFETIME IN CIRCULATION: some hours

SURVIVAL: shortened by antibodies against HLA and/or granulocyte anigens


INDICATION: rare ALWAYS INDIVIDUALLY


- SEVERE BACTERIAL OR FUNGAL INFECTION with antibiotic/antimicotic resistence even after 48 - 72 hours treatment with WBC count: 0.2 x10⁹ /l
- 2. NEONATAL SEPSIS / irradiated, CMV, toxoplasma negative!

<u>COMPLICATIONS</u>: FREQUENT !

- 1 febrile nonhemolytic reaction / 5 10% /
- 2 anaphylaxis
- 3 RDS
- 4 Multiple immunizations / TCT. RBC. contamination /
- 5 Infections transmission / CMV, toxoplasma, HTLV-I ... /
- 6 GVHD / correlation with the lymfocyte count/

Remains in the background against haemopoetic growth factors – G-CSF, GM-CSF

INDICATIONS of FFP:

- severe bleeding in **unknown factor definery** 1
- **complex** coagulation factor deficiency / DIC, severe liver lesions, 2 liver transplantation, massive transfusion, blood replacement after bleeding /
- **congenital** factor deficiency, if not available the missing factor 3 concentrate
 - /Antithrombin III, C1-esterase inhibitor, Factor V /
- 4 **TTP** plasma exchange / 3 L / day /

LEUCODEPLETED /FILTERED PLASMA

PREPARATION specific plasmafilter, repeated centrifugation, aferesis Patients on immunosuppressive state INDICATIONS: prophylaxis of complications due to WBC

IRRADIATED PLASMA

PRODUCTION: fresh product - 2000-5000 rad γ irradiation prevention of GVHD

INDICATIONS:

II. CRYOPRECIPITATE

Cryoprecipitate is a precipitate formed from plasma frozen at $-30 \,^{\circ}$ within 4 - 6 hours, when that to + 4 $^{\circ}$ C.

MAIN INDICATIONS: fibrinogen and factor VIII substitution, but in Hungary only raw material of clotting factors included in precipitate, recently. UMATION

NON VIRUS INACTIVATED PRODUCT

Prepared from 4-6 U whole bloods Volume: 100 ml

Row material

CONTENT:

1. factor VIII. / 2 - 4 U/ml t 1/2: 8-12 hours / 3. factor von Willebrand t 1/2: 12 hours 4 fibronectin

2. fibrinogen / 6 - 10 g/l t1/2: 3 - 5 days/ 250 mg/U plasma t 1/2: 1 - 3 days

RANSFUSION INSTRUCTIONS

NUMBER OF AND A DESCRIPTION OF A DESCRIP

Specific indication of cryosupernatant : TTP

Thrombotic Thrombocytopenic Purpura

III. CLOTTING FACTOR CONCENTRATES

1. FACTOR VIII. CONCENTRATE

virus-inactivated lyophilized preparation from THOUSANDS OF pooled donor plasma

Volume: 10 ml Benefits: – high content of actives substance in small volume - suitable for home treatment CONTENT:. VIII.f 150 IU / mg protein Half-life: 12 hours

ADMINISTRATION: intravenously in more portions / accident, surgery /

EFFECT: stops the bleeding, prevents haemorrhage and articular lesions

INDICATIONS: Hemophilia A

HUNGARIAN **PRODUCT** / Behring License / HUMAFAKTOR – 8 **Others:** HAEMOCTIN 500 NE, RECOMBINATE 500 NE, KOGENATE BAYER 500 NEADVATE 500 NE, BERIATE 100 NE/m

THERAPEUTIC DOSE CALCULATION IS INDIVIDUAL:

f. VIII volume to be administered = plasma volume x (Expected f. VIII - Starting f. VIII /

2. PROTEIN S and PROTEIN C

EFFECT: - F V. and F VIII anticoagulant factor inactivating proteins

- Plasminogen activator - fibrinolytic effect

Storage: + 4 ° C Expiry: several years <u>INDICATION</u>: - congenital factor deficit

Symptoms

* deep vein thrombosis

* Massive neonatal venous thrombosis - purpura fulminans

3. FACTOR IX. CONCENTRATE

HUNGARIAN PRODUCT / Behring License / HUMAFAKTOR – 9

INDICATION: hemofilia B / congenital F. IX.f./

Alphanine® SD : Monoclonal : Grifols BeneFix® : Recombinant : Pfizer Mononine® FS : Monoclonal : CSL Behring Immunine Human : Baxter Haemonine Human Biotest

Dose (units) = (factor IX desired - factor IX baseline) x total body weight (kg)

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

FACTOR VIIa RECOMBINANT indicated – haemophylia A or B patients with inhibitor

4. PROTHROMBIN COMPLEX CONCENTRATE PCC content II,VII,IX,X

Indication: acquired deficiency of the prothrombin complex coagulation factors – vitamin K deficit, liver disease overdose of vitamin K antagonists congenital deficiency of vitamin K dependent coagulation factors II and X when purified specific coagulation factor product is not available

Products:

Octaplex PCC II,VII,IX,X + protein S and protein C

Prothromplex TIM 3 (Baxter, Vienna, Austria) (II, IX and X) TOTAL (II, VII, IX, X)

Confidex® (CSL Behring, Marburg, Germany) (II,VII,IX,X protein S and protein C + AT+ heparin)

Adverse events:allergic reactionHIT (heparin induced trombocitopenia)thromboembolism

IV. ALBUMIN (5% and 20%)

Viral inactivated, virus free blood fraction Plasma concentrations of albumin: 40 - 50 g / I Half life time: approx. 14 days blood-derived albumin is only 12-16 hours

Heat stabilized

Storage temperature: 2-25 ℃ Storage time: several y ears

PRODUCTS:

- 1 5% the same as the plasma oncotic pressure volume expansion effect lasts for 48 hours
- 2 20% (oncotic effect four times that of blood plasma)

EFFECT: - extravascular compartment mobilization - water suction effect 1g albumin binds 18 ml water movement of fluids from the interstitial space to the circulation

DOSE: 5%: 250-500 ml 20% < 200-300ml/ day

dose (g) = (2.5g/dl – actual albumin concentration) x (kg x 0.8)

2.5 g/dL: desired concentration of albumin; kg: body weight;0.8: coefficent to calculate the volume of plasma

Administration: intravenously, infusion set for single use

INDICATIONS: Albumin is used as a **second choice** when **solutions of crystalloids or non-protein colloids don't produce** a clinically adequate response and in cases in which non-protein colloids are contraindicated

- 1 Acute plasma volume replacement albumin <25 g / l
- 2 Burns plasma protein replacement
- 3 Ascites not responsive to diuretics diuretic resistant edema,

hypoproteinemia 20% albumin + diuretics

4. Haemorrhagic shock of infants

safe and can be used without blood group properties

<u>RISK:</u> overdose

Tissue hypoxia - dehydration Circulatory overload - pulmonary edema Protein Allergies - Anaphylaxis

Albumin

CONTRAINDICATED in patients with **Parenteral nutrition Treatment of immunodeficiencies**

no better and more specific effects than other colloidal solutions not contain essential amino acids and immunoglobulins

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

albumin

V. IMMUNOGLOBULINS

VIRUS FREE lyophilized plasma fraction extracted from about 1000DONOR plasma poolPRODUCED BY FRACTIONATION

STORAGE: + 4 °C. **IgG, T 1/2**: 21 days

- **Indication:** restoration of te specific antibody response enhance the body's resistance (prophylaxis)
- Dose:200-400mg/kgprophylactic: 2 4 weeks to yearstherapeutic:3 5 days

Types:

- Non-specific polyvalent human serum globulin (IgG and few IgA,IgM)
 - includes antibodies to the pathogens in the average infected population
- **Specific** vaccines / anti-D, -HBs, -CMV, -varicella, -tetanus etc /
 - contains substantially higher concentrations of specific antibodies
 - active or passive immunization
 - gene technological methods
 - hyperimmune gamma globulin / anti-D, anti-HBV etc /

IMMUNOGLOBULINS

COMPLICATIONS: anaphylactic reactions, hemolysis

Absolute contraindications: Selective IgA deficiency with anti-IgA ADMINISTRATION: slowly - recognition of possible complications

SCIG: primer immunodeficiency - self-administration at home IMIG: measles, gram negative sepsis IVIG: most effective - high dose - standard blood administration set

Main areas of INDICATION - still evolving

primary immunoglobulin deficiency (X linked low immunoglobulin, familiar variable immune deficiency, immunoglobulin G secondary deficiency) secondary immunoglobulin deficiency – infection, newborn sepsis, CLL with hypogammaglobulinaemia, toxins, drogs autoimmune deficiency diseases - ITP, Kawasaki disease immunocytopenia – PTP

Effect: passive immunization, immunomodulation, anti-inflammatory

Products: Intragam P, Octagam, Flebogamma, Intratect, Humaglobin etc.

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

Characteristics of coagulation factor products Virus inactivated blood products

1 Safe: virus-inactivated, disinfected

extreme rare virus transmission

- 2 Lyophilized solvent included
- 3 **Storage:** 2-6 ° C.
- 4 Expiry date: several years
- 5 **Dosage:** Strict adherence to instructions
 - The half-life taking into account factors
 - Overdose thrombosis

6 Disadvantage: - expensive

Recommendations:

- **1.** Macroscopic control before administration
- 2. Dosage and administration manufacturer's instructions
- 3. After resolution should be given immediately
- 4. In case of using clotting factors **hematology consultation** is needed!

The future of transfusiology

Increase of **storage time**: red blood cells, platelets **Virus inactivation** of all plasma products and cellular blood products

Red Blood Cell Transfusion

1. **EPO** : chronic kidney disease, treated HIV patients, carcinoma patients, allogeneic and autologous bone marrow donors

- 2. Autologous blood transfusions
- 3. Enzymatic **modification** of red blood cells (converted,,0"group) or camouflaged red blood cells with mPEG, RBC culture from stem cells
- - ➡ Perfluorinated compounds
 - rightarrow Hemoglobin solutions
 - ➡ Recombinant hemoglobin

Platelet transfusion:

- 1. **TPO** (thrombopoietin)
- 2. Artificial blood platelets

White blood cell transfusion:

- 1. **G-CSF**
- 2. Leukocyte depletion in all blood products

Plasma and plasma product transfusion: Rekombinant proteins (F VIII, anti-D, etc.)

lenograstim (Granocyte) filgrastim (Neupogen, Zarzio, Nivestim) long acting (pegylated) filgrastim (pegfilgrastim, Neulasta, Pelmeg, Ziextenco) lipegfilgrastim (Lonquex)

Thank you for listening!

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT