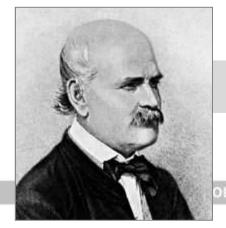
ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

Transfusion Complications

Rudiments of Blood Transfusion for IV. grade medical students

Dr. Csernus Zita National Blood Transfusion Service Regional Blood Transfusion Centre Pécs

www.ovsz.hu


Problems of Blood Transfusion

Technical problems

Harvay (1628) CirculatoryDevising of instruments, problems of infectionsHustin, Lewisohn (1914) HemostasisBlood collection in bottle (1940)

Serolgical incompatibility

Landsteiner (1900)ABO blood groupWiener(1940)Rh blood groupOther blood groups

Bacterial and viral contamination

Semmelweis (1847)

Sterile closed blood collection bag system (1963)

Virus inactivation of blood products

Ignác Fülöp Semmelweis (Hungary)

The most important symptoms of transfusion complications:

hemo	olysis, hemoglobinuria
fever	r, rigor, chills
short	tness of breath, dyspnoea
hypo	tension, hypertension, tachycardia
pain,	, malaise
skin	rash, angioedema
presl	nock

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

Transfusion reactions can develop early or late after transfusion

I. Incompatibility

Immunisation, immune reactions

II. Properties of blood products

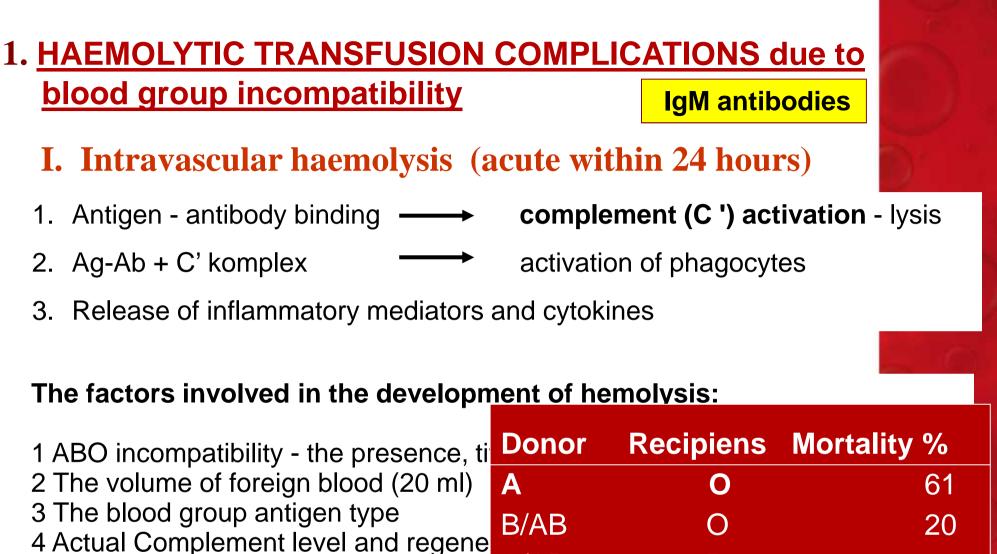
quality, quantity, administration, technics

III. Pathogen agents

transmission of pathogens (virii, bacteria, protozoa)

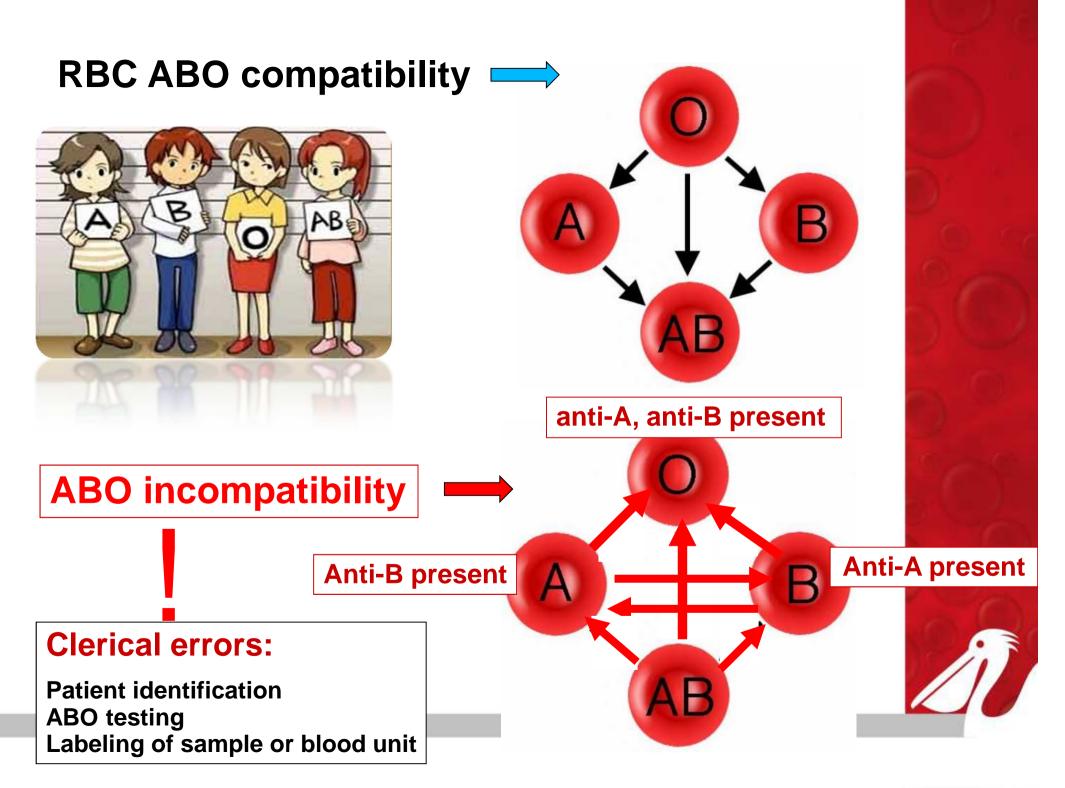
I. Immunological Complications

complications


causes

I. In vivo antigen-antibody reactions

1. Hemolysis Immediate, intravasal (IgM)	Antibodies against Red Cell antigens
Late, majority of extravasal (IgG)	
2. Post-transfusion purpura	Antibodies against Platelet antigen
	/ Anti-HPA-1a or HLA class I /
3. TRALI	Antibodies against Granulocyte antigens / HLA or anti-HNA /
4. Allergy, anaphylaxis	Antibodies against Plasma Protein antigens


II. Immune cells in vivo effects

5. TA-GVDH	Viable donor lymphocytes	9
6. Immunomodulation	Difference in white blood cells HLA antigens	
ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT		

5 The Ag-Ab-Complement 'complex forr

rogono	B/AB	Ο	20
regene blex forr	A/AB	В	9
	В	А	4,6
	O plasma	A/AB	4,6
	B plasma	AB	0,8

In vivo effects of antigen-antibody reaction:

1. Neuroendocrine response

Immune Complex - activation of factor Hagemann (F XII) - Bradykinin

hypotension - catecholamines, epinephrine vasoconstriction (kidneys, intestines, lungs, skin)

damage of tissue oxygenation, kidney damage

2. Complement activation

C3-C5 (anaphylatoxins) release - mast cell and basophil degranulation histamine release - eosinophil degranulation platelet aggregation, release of hydrolytic enzymes from neutrophils mast cell and basophil degranulation cytokine release(TNF, IL-8, MCP, etc.) from monocytes fever, hypotension, bronchospasm

3. Blood coagulation activation

Hageman factor activation due to-Ag-Ab-C ' complex and RBC stroma

DIC - intravascular thrombus formation

- utilisation of Clotting factors and platelets
- Increased fibrinolysis

bleeding, shock

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

ANNUAL SHOT REPORT 2022

Intravascular haemolysis

Intravascular haemoly	ysis	HSE	272	12,7%
C1 IgM Anti-A or Anti-B	HSE: Handling & storage errors	ADU Anti-D 59	3 <u>7</u> 7 3.3 %	16,1% 6,6%
all the the	ADU: Avoidable,	BCT	296	13,9%
	delayed or undertransfusion	TA-GvHD	0	0
C1esterase C3 convertase	Anti-D: Anti-D	TTI	2	0,1%
	errors	🛛 PTP	1	0.05
	IBCT: Incorrect	CS	20	0.9%
C3 C3b	blood component transfused		13	0,6%
Membrane attack komplex		TAD	52	2.4%
C5b6789	C3b		160	7.5%
		TRALI	0	0%
LYSIS	ANNU	JAL SHOT	REPO	RT 2017
ACUT ST	AGE	HTR 64	8 %	2.3%
SZOLGÁLAT		ATR	296	13.9%
Schistocytes		TOTAL	2133	100%

Symptoms:

- Chills and fever
- Hypotension
- Back Pain
- Tight chest pain
- Suffocation, cyanosis
- Fullness of neck veins
- Burning and itching pain running along in the infused vein
- Anxiety
- Renal impairment: oliguria, anuria (36%)
- Unusual bleeding (DIC!) (10%)
- Shock

Symptoms in anesthetized, unconscious, non-communicative patients!

- diffuse bleeding in the surgical area
- hypotension

It could be caused by adminisrtation of

- 5 -15 ml incompatible blood
- ABO incompatibility is usually the most severe

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

Laboratory findings:

- 1. haemoglobinaemia (Hb binding capacity of haptoglobin!)
- 2. LDH increase
- 3. hyperbilirubinemia
- 4. haptoglobin decrease
- 5. Urea, creatinine increase in patients with renal impairment
- 6. haemoglobinuria

Blood fromtype A donor

> Type B (anti-A) recipient

Donor RBCs agglutinated by recipient plasma

 Agglutinated RBCs block small vessels

Treatment:

- transfusion should be stopped immediately
- At-Ag-reaction should be braked with Steroid
- antishock terapy electrolytes, plasma substitutes albumin
- restoration of tissue oxygenation selected blood transfusion
- Renal impairment management diuretics hemodialysis (10-15%)
- Fluid balance maintenance loss and intake rate
- Metabolism recovery hyponatremia, hyperkalemia
- **DIC** treatment
- Exchange transfusion (in the first 12-24 hours)

<u> Tasks:</u>

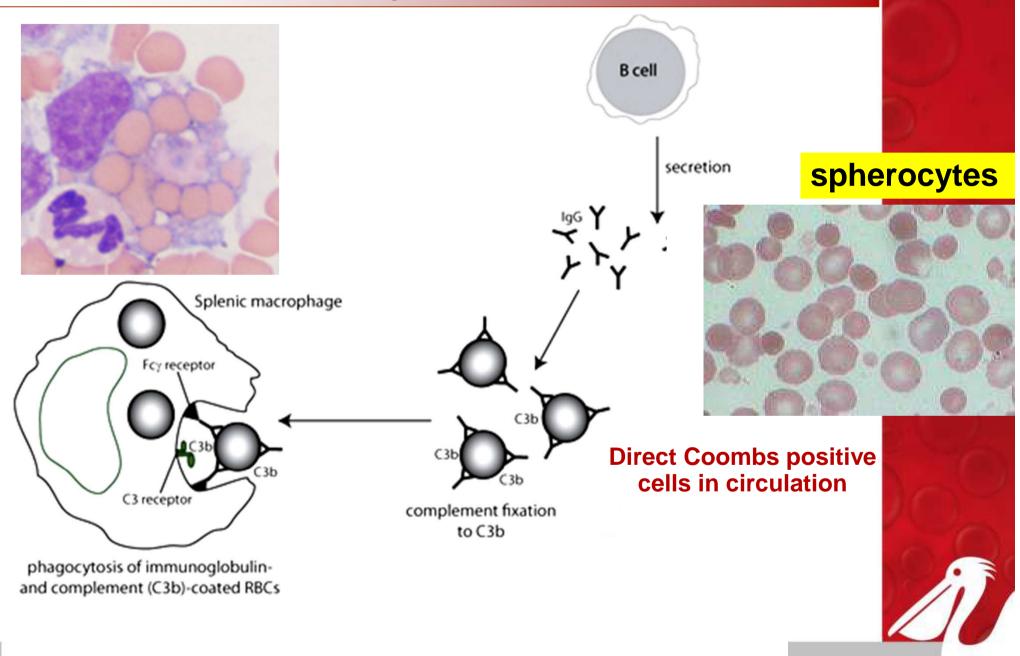
- Check data
- Consultation
- Laboratory tests blood groups, serological investigation of complications, urinanalysis, free hemoglobin, renal function tests, coagulation tests, LDH, Hp
- Sepsis investigation
- Continue monitoring of patient

II. Delayed extravascular hemolysis (5-10 days after transfusion)

- mostly occurs as a result of secondary immunization

IgG antibody

The antigen - antibody reaction consequences:


- 1 C 'activation-depends on subclasses of IgG antibody (IgG3, IgG1, IgG2, IgG4)
- 2 Extravascular lysis Immune Complex macrophage activation
- 3 Phagocytosis fragmentation lysis release of cytokines (IL-1, IL-6,TNF,IL-8)
 - ADCC (antibody dependent cellular cytotoxicity)

Influencing factors:

- The actual amount of the antibody
- The individual immunoglobulin synthesis rate
- The current saturation of the phagocytic cell receptors
- The blood group antigen type
- The amount of transfused incompatible blood

rarely fatal

Extravascular haemolysis

II. Delayed extravascular hemolysis

Symptoms:

(from 24 hours to 3 weeks)

- Fever
- Ineffectiveness of transfusion
- Hemolysis, hemoglobin decrease, mild icterus, hemoglobinuria
- Hypotension
- Renal impairment (6%) treatment necessary only for these cases
- May be asymptomatic Late serological transfusion reaction

Laboratory findings:

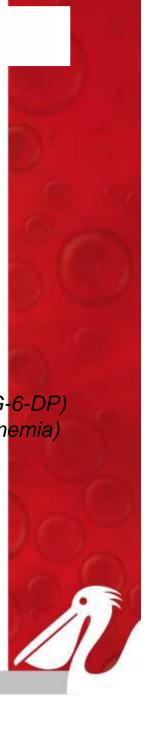
- Positive Direct Coombs antibody-coated red blood cells
- Antibody appearance or sudden increase
 - A history of previous immunizations

Therapy:

- generally not necessary
- close monitoring

The antibodies involved in hemolytic transfusion reactions and types of hemolytic transfusion reactions

Blood group	AcuteHTR	Delayed HTR		
system	(intravascular)) (extravascular)		
ABO,H	A,B,H			
Rh		all types	34,4%	
Kell	K	<mark>K</mark> ,k,Kp ^{a+b} ,Js⁵	^{a+b} 13,3%	
Kidd	Jk ^a	Jk ^{a+b+3}	30,0%	
Duffy		Fy ^{a+b}	14,4%	
MNS		M,S,s,U	4,4%	
Lutheran		Lu ^b		
Lewis	Le ^a			
Vel		Vel	other 3,3%	
Colton		Co ^{a+b}		
Dombrock		Do ^{a+b}		


Other acute intravasal hemolysis

Immune hemolysis

- ABO incompatible **plasma** transfusions
- **AIHA** (autoimmune haemolytic anaemia) patients transfusion
- Cold agglutinin disease

Non-immune haemolysis

- Red blood cell **enzyme defects (***Glucose-6-phosphate dehydrogenase (*G-6-DP) deficiency, Hereditary spherocytosis, Sickle cell anemia)
- Infections
- Drugs
- Diseases associated with hemolysis (PNH, microangiopathic hemolytic anemia)
- Haemolytic blood transfusion

2. FEBRILE REACTIONS

- Haemolysis blood group incompatibility
 - bacterial contamination (endotoxin, cell debris)

• No Haemolysis - NHFTR - non haemolytic febrile transfusion reactions

- Infection (malaria, bacterial contamination)
- TRALI
- Other transfusion independent reason

1. Non haemolytic febrile transfusion reactions (Acute within 4 hours)

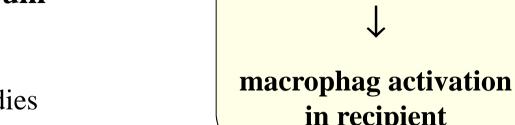
<u>Cause:</u> white blood cell content of blood products – cytokine effect

Symptoms: fever (during or after transfusion temperature increases ≥1.5 ℃) flushing tachycardia shaking, chills

Occurrence: (6.8%) RBC products – to immunized patients (37.5%) platelet products – to non-immunized patients

common complication - 0,5 - 6%

1. NHFTR – CAUSING FACTORS:


- antibodies in the recipient serum
 - Anti-HLA antibodies
 - Anti-granulocyte antibodies
 - Anti-platelet antibodies
- stored PLT products
 - destroyed granulocytes

Treatment:

- mild: interrupt the transfusion antipyretic –
- severe: antipyretic differential diagnosis !

Unit causing complications should not be administered.!

Prevention:- removal of white blood cells before blood product storage (removal buffy coat, **filtration**)

Release of pyrogens

Ag-At-C' complex

in recipient

(TNF-α, IL-1, IL-6)

2. PTP – post transfusion purpura

acut complication – one weak after transfusion

Prior immunization - especially women

Cause: 80-90% **anti-HPA-1a** other: anti- HPA-1b, -3a, -4a, -5b

Symptoms: - bleeding -severe thrombocytopenia -! Intracranial bleeding

- fever - NHFTR (+ anti-HLA antibodies)

Differential diagnosis: ITP, drug induced trombocytopenia, TTP, DIC

Treatment: - immediately !

- high-dose IVIG (2g/ kg bw for 2-5 days)
- steroid
- plasma exchange
- blood products (RBC or PLT) only from antigen negative donor

Anti-platelet

antibody

After PLT administration both administered and own PLT destruction occur! <u>Cause:</u> donor HPA-1a antigen or recipient Ag-Ab complex binding to the recipient's platele or cross-reactive antibody production

3. TRALI - transfusion related acut lung injury severe **acute** reaction within 6 hours

<u>Cause</u>: - anti –granulocyte antibodies (HLA/HNA)

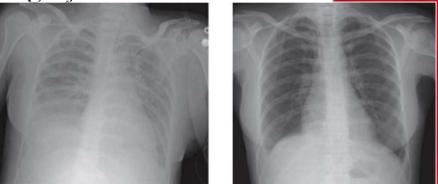
- Antigranulocyte antibody
- often in blood products (multipara women plasma
- rarely in recipient's serum

Symptoms:

- Dyspnea (respiratory distress)
- Severe hypoxia, cyanosis, hypotension
- Severe bilateral pulmonary edemaFever

Factors responsible for developing TRALI

Neutrophyl activation


- Ab-Ag komplex leucoembolus C'mediated WBC activation
 - pulmonar endothelial damage
- leukocyte activation in blood components during storage

Therapy: - respiratory support immediately – **mechanical ventilation** - **steroid**

Predisposing factors:

- Active infection
- Cytokine therapy
- Surgery or massive transfusion

4. Allergy, anaphylaxis: - acut reaction /may be life threatening/

within 24 hours <u>Etiology:</u> antibody against donor blood proteins / IgA content!

transfusing of allergens nutrients, drugs (Aspirin, ACE inhibitor) passive transfer of IgE (to drugs, food), or complement

Symptoms:

Mild reactions - malaise

- Itchy, burning red spots / neck, thorax /
- local urticaria
- low-grade fever, fever

The transfusion can be continued after treatment

Severe reactions - Swollen mucosa / laryngeal edema - shortness of breath - Anaphylactic shock - no fever

The transfusion should be stoped

- Treatment: antipyretic, fluid replacement - antihistamines, Ca- preparations
 - Steroids (Cortisone, Prednisolone)
 - Epinephrine (Adrenaline)

Prophylaxis: - IgA-free blood to IgA deficient patient - no (or IgA deficient) plasma transfusion - washed blood products

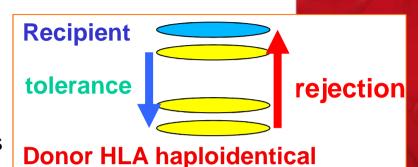
5. TA-Graft versus host reaction

complex immune process which is caused by immunocompetent donor lymphocytes against immunocompromised or immunocompetent recipient

Etiology: transfusion of haploidentical blood products

blood transfusion from relatives

Symptoms: fever, rash, liver dysfunction, diarrhea commencing in 1-2 weeks post-transfusion followed by pancytopenia later


<u>Risk factors</u>: Any condition with impaired cellular immunity, or not developed immunological competence / premature babies and newborns/

- transplantation, leukaemia, lymphoma
- intrauterin transfusion, exchange transfusion, extracorporeal circulation

<u>Therapy:</u> Largely ineffective immunosuppressive therapy, high dose steroids?

_Prevention: For patients at risk (e.g., imunocompromised patients), it is critical to irradiate cellular blood components (RBC and platelets).

few cases, high mortality >90%

6. Transfusion-related immunomodulation (TRIM)

Transient immunosuppression (delayed (>24 hours) transfusion reaction)

Etiology: Allogeneic leucocyte-containing RBC transfusions

the presence of foreign HLA class II. antigens (the role of HLA DR 3 is suspected) Cellular effects:

Decreased T helper reaction Increased T cell suppressor activity Increased B cell antibody production Impaired NK cell function Defective antigen presentation

Clinical signs:

reduced graft rejection decreased recurrence in Crohn's patients increased risk of cancer recurrence increased postoperative infection rate potential risk of tumorous disease in adult age

Prophylaxis: leucodepletion of blood products in question

II. Early non immune complications

Complication	Etiology
Heart failure	volume overload / Whole blood, FFP /
High fever and shock	bacterial infection
Hypothermia	Too rapid administration of cold blood
	/ Massive transfusion /
Hemolysis	physical or chemical damage of the the blood administered
Air embolism	Transfusion uder uncontrolled high pressure or priming
Hypocalcemia	Massive transfusion of citrate- containing blood products / plasma ! /
Hyperkalemia	massive transfusion of old blood

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

1. Transfusion-related circulatory overload (TACO)

acute - may develop within 1 to 2 hours of transfusion

Symptoms: acut pulmonary oedema

(dispnoea, cyanosis, head ache, hypertension, heart failure)

Frequency: about 1% children and elderly patients

cardiac and/or pulmonary decompensation chronic anemia (plasma) chronic renal failure

Ethiology: - high volume transfusion (whole blood, plasma) - high (20-25%) concentration albumin infusion

- rapid or massive transfusion
- Therapy:Stop transfusion immediatelyPrevention:upright position, diuretics, oxygen

Slow rate transfusion!

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

Normal urine output 0,5 – 2 ml/min

Transfusion related death

Fatality Complication Breakdown by Imputability

ANNUAL SHOT REPORT 2017

UK

Figure 3.3: Deaths related

ANNUAL SHOT REPORT

Figure 3.2: Deaths related

to transfusion Table 3: Transfusion-Associated Fatalities by Complication, FY 2016 – FY 2020

	Complication	FY16 No.	FY16 %	FY17 No.	FY17 %	FY18 No.	FY18 %	FY19 No.	FY19 %	FY20 No.	FY20 %	Total No.	Total %
	Anaphylaxis	5	12%	3	8%	2	6%	2	5%	6	21%	18	10%
	Contamination	5	12%	7	19%	7	23%	1	2%	4	14%	24	13%
	HTR (ABO)	4	9%	1	3%	2	6%	4	9%	2	7%	13	7%
	HTR (Non-ABO)	1	2%	6	16%	4	13%	11	25%	2	7%	24	13%
LIN	Hypotensive Reaction	1	2%	0	0%	0	0%	0	0%	0	0%	1	0%
	TACO	19	44%	11	30%	12	39%	12	27%	8	27%	62	34%
	TRALI ^{**}	8	19%	9	24%	4	13%	12	27%	6	21%	39	21%
	Transfusion Reaction, Type Not Determined	0	0%	0	0%	0	0%	2	5%	1	3%	3	2%

Note: FY 2016-FY 2020 only includes cases with an imputability of definite, probable, or possible

**FY 2016-FY 2020 numbers combine both TRALI and Possible TRALI cases

PCC=prothrombin complex concentrates

HTR=haemolytic transfusion reaction; TAD=transfusion-associated dyspnoea; TACO=transfusion-associated circulatory over

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

<u>2. Massive transfusion</u> syndrome

Mortality about 60%

Transfusion of severe shock patients (10-15 U blood in 24 hours or replacement of 1 blood volume(TBV))

Symptoms:

bleeding - dilution and consumption of platelets and clotting factors (DIC) severe hypoxia in tissues

Multiplex complications: Coagulation, biochemistry (hypocalcaemia, hyperkalaemia), acid base abnormality, hypothermia

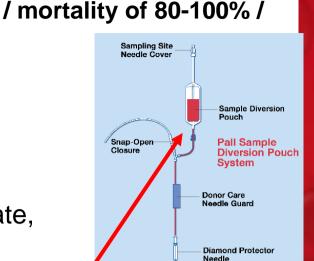
Therapy: fluid replacement, blood (fresh warmed blood!), cardiac support

3. Cold blood transfusion

Decrease in tissue oxygenation

hypotermia

Symptoms:ventricular arrhythmiasimpaired blood coagulationworsen of hypokalcemia and hyperkalaemia symptomsperipheral vasoconstrictionincreased calorie needPrevention:Use of blood Warmer


4. Transfusion of infected blood: rare acute

Sources of infection:

- donor arm or donor granulocytes
- poor venipuncture technique foamy blood
- storage temperature, inappropriate storage
- opened blood bag, not cleaned water bath

Signs in blood product:

hemolysis, clots, cloudy plasma - white-gray precipitate, bacterial or fungal colonies on surface

- Prevention: donor skin desinfection, removal of first aliquot of donor blood good product collecting and manufacturing (closed system!) controlled blood product storage opened products management to appropriate standards
- Symptoms:fever, chills, RR decrease, severe rapid shock, DIC,
intavascular hemolysis, heart, liver, kidney failureTreatment:stop transfusion immediately
shock therapy, resuscitation
 - i.v. broad-spectrum antibiotics

Bacteriological examination

blood culture test of blood product and patient blood samples

5. Transfusion of haemolytic blood:

several liters of old stored blood conteins harmful amount of hemoglobin

• large amounts of Hb appears as a cylinder in renal tubular causing **renal failure**

/ Renal disease patients, shock, dehydration /

Reasons for the development of hemolysis in blood product:

- Expired RBCs
- Drugs or infusion solutions mixing with blood product.
- Thermal effects Heat or freezing (temperature above 38°C)
- Bacterial contamination
- **Mechanical** damage shaking, harsh handling and transport (Thin needle, artificial heart valves, extracorporeal circulation, high pressure transfusion, etc.).

Prevention: - high quality blood products

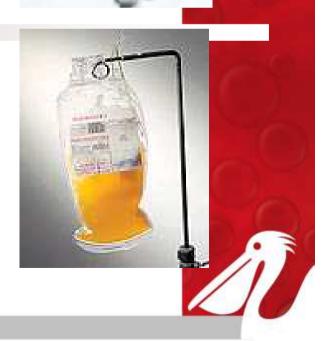
- considering of transfusion indication

Treatment:

- remove Hb / infusions, diuretics /
 - Urine alkalinisation
 - desferroxamin

6. Air embolism: very rare since using plast blood bags the foamy blood is transferred into right ventricle Causes: inadequate priming of transfusion set transfusion with overpressure Symptoms: Cough • Dyspnea • Chest pain • Arrhytmia Prevention: the appropriate use of technology Treatment: : > Laying the patient on the left side Rhythmic compression of the chest Aspiration of the frothy blood with catheter

- Resuscitation


7. Citrate intoxication

massive transfusion with plasma

Infants, patients with heart disease or liver disease

Symptoms: - Neuromuscular disorders / tetany - Cardiac arrhythmia

Treatment: Ca support

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

8. Transfusion of hyperkalemic blood:

High risk in hyperkalemic conditions / uremia, heart disease, massive transfusion, acidosis / or in infants

Symptoms: arrhythmia, cardiac arrest

Prevention: - exchange transfusion with blood less than 7 days

- massive blood transfusion with blood less than 10 days
- RBC washing
- use of in-line potassium adsprotion filters

Treatment: - 10% NaCl, NaHCO₃ or Ca composition

- Hypertonic glucose / + insulin/
- Ion exchange resin / Resonium /
- Dialysis, hemofiltration

Potassium adsorption filter

Non immune late transfusion complications

III. Infection transmission

Complications	Causes
Hemosiderosis	Politransfusion / > 100 U RBCs /
Hepatitis	HBV /±DELTA/, HCV, HGV/?/, HAV, HEV,CMV
AIDS	HIV-I, HIV -II / after years? /
CLL /adult T-cell/	HTLV -I
TSP tropical spasticus paraparesis	HTLV-II (human T lymphotrope virus)
Zoonosis	Malaria, kala-azar, babesiosis
Syphilis	Treponema Pallida
Aplastic anaemia	Parvovírus B 19
Fetal damage	CMV

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

1. <u>Hemosiderosis:</u>

accumulation of iron in organs (> 100 U RBCs)

1U blood transfusion - 200 mg iron intake

Cause: 50 - 100 U RBC transfusion transfusion of large amount hemolyzed blood

Symptoms: RES – organs failure - heart, liver, endocrin organs

bronze skin, liver cirrhosis, heart failure

Treatment:

chelation therapy - iron removal desferoxamine, deferiprone, deferasirox

exchange transfusion phlebotomy

ORSZÁGOS VÉRELLÁTÓ SZOLGÁLAT

2. Pathogen transmission

Transmissible pathogenic agents with the different blood fractions

Blood Fraction		Pathogens		
	Virus	Bacteria	Protozoa	
Plasma	Hepatitis A virus	Treponema		
	Hepatitis B virus	pallidum (s	syphilis)	
	Hepatitis C virus			1 . S
	Hepatitis D virus			
	Hepatitis G virus ¹			
	HIV			1
	Parvovirus B 19			100
	(Prions)			13
Red blood cells			Plasmodium	0
			(malaria)	1
			Babesia microti	- (
			(babesiosis)	
White blood cel	Is HIV I and II		Toxoplasma gondii	2
	Epstein Barr vírus		(toxoplasmosis)	
	Cytomegalovirus			-
	virii as with plasma			

Virus transmission

Table 2 Estimated residual risk of HIV, HCV and HBV

HIV	HCV	HBV		
1 in 21.4 million donations	1 in 12.6 million donations	1 in 7.5 million donations		

Australian red cross blood service

Table 10: Residual risk estimates calculated on Blood Service data

Agent and testing standard	Window period	Estimate of residual risk 'per unit' (a)
HIV (antibody/p24Ag + NAT)	5.9 days	Less than 1 in 1 million
HCV (antibody + NAT)	2.6 days	Less than 1 in 1 million
HBV (HBsAg + NAT)	15.1 days	Less than 1 in 1 million
HTLV 1 and 2 (antibody)	51 days	Less than 1 in 1 million
vCJD [No testing]		Possible, not yet reported in Australia
Malaria (antibody)	7–14 days	Less than 1 in 1 million

For infectious diseases where there is no effective testing, donor health screening is important to recognise those at risk and defer donation, for example, Zika virus and travel deferrals.

NZ BLOOD SERVICE 2016

0.04

0.00

UCT

Paediatrics

Ve

TABLE 26.2 RESIDUAL RISK PER MILLION DONATIONS IN FIVE COUNTRIES

0.04

0.72

	HI	V	Hepati	tis C	Hepatitis B
NZ	0.1	0	0.1	3	1.18
UK ⁵	0.1	6	0.0	4	0.63
			HBV	HCV	HIV
Number per m	illion donations		0.81	0.02	0.04
95% confiden	5% confidence interval		(0.28-1.75)	(0.00-0.14)	(0.01-0.10)
	donations per year, ally infectious wind y: 1.05		6 months	22 years	14 years
	Mortality	Major morbidity	Total cases	Table 3.1: Risks	0,000
All errors	0.40	0.44	47.4	per 100,000	
ATR	0.00	3.06	10.2	components issued	
HTR	0.04	0.28	1.4	components issuer	N. E.K
	0.00	0.00	0.0		
TRALI	0.00	0.00	0.0		
TRALI TACO	0.56	0.00	3.5		
	120200			SHOT UK	6
TACO	0.56	0.72	3.5	SHOT UK	
TACO TAD TA-GvHD	0.56	0.72	3.5 0.4	SHOT UK	A
TACO TAD	0.56 0.00 0.00	0.72 0.24 0.00	3.5 0.4 0.0	SHOT UK	A
FACO FAD FA-GvHD PTP	0.56 0.00 0.00 0.00	0.72 0.24 0.00 0.00	3.5 0.4 0.0 0.0	SHOT UK	Í

0.4

5.5

Transmissible pathogens in the stored donor's blood

Virus transmission:

Problems:

- new mutants and new virii
- expansion of vector-borne diseases dengue fever,

chikungunya, WNV, Zika

- Screening tests do not detect fresh infection
- Virus inactivation procedures are at experimental state for labile blood products or not available for all countries
- prions

Transmissible pathogens in the stored donor's blood

Sepsis by bacteria transfer :

RBC transfusion: Storage temperature : (+ 4C°

Yersinia enterocolitica (51%) Pseudomonas fluorescens (26,5%)

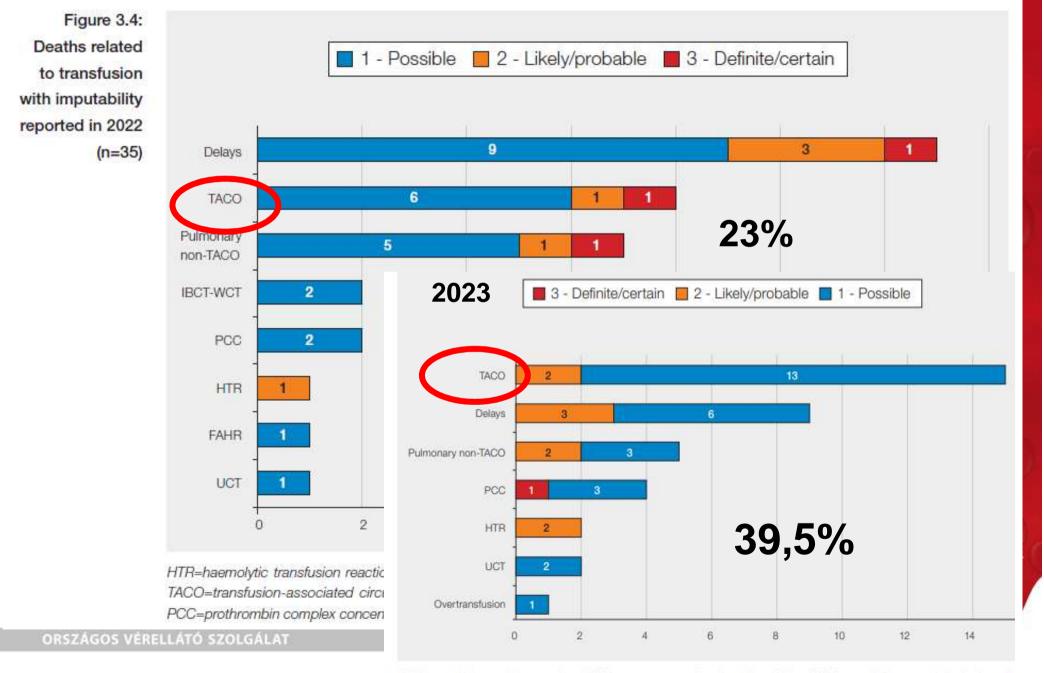
Treponema pallidum (4,1%)

Pseudomonas putida (4,1%

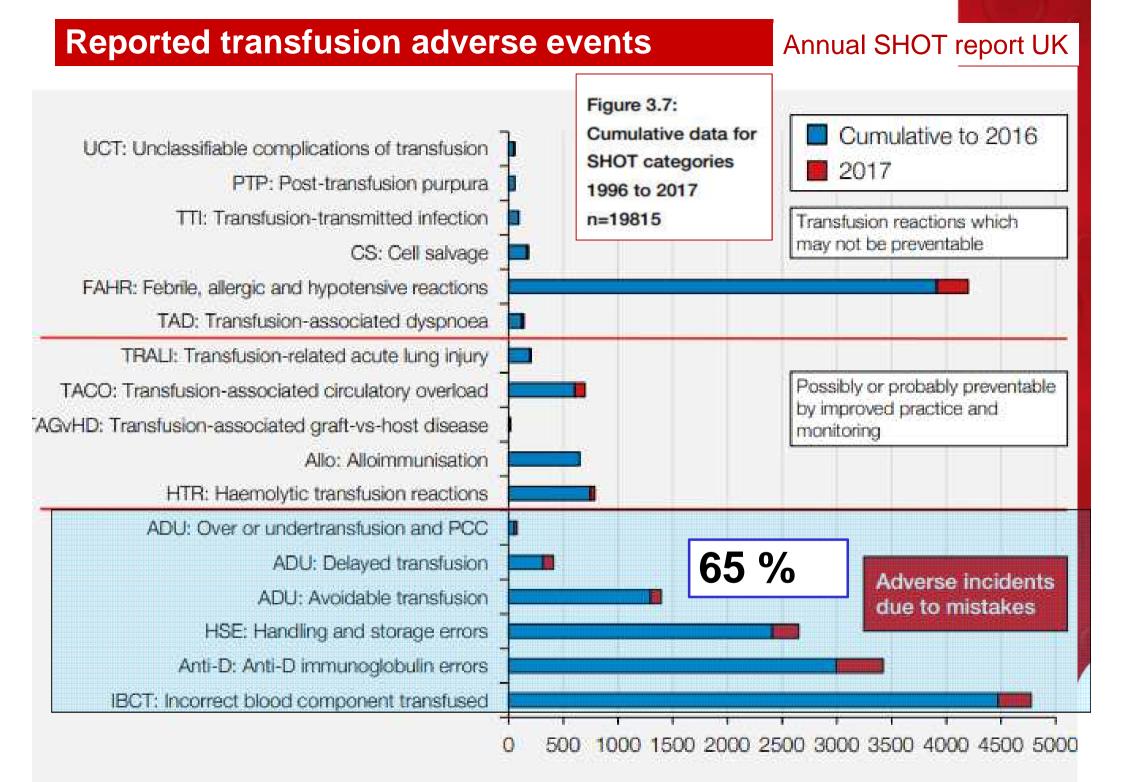
Endotoxin formation is during storage!

PLT transfusion: Storage temperature (+20 C°)

Staphylococus epidermidis (25%) Salmonella coholerae-suis (13,5%) Serratia marcescens (9,6%) Staphylococcus aureus (5,8%) Bacillus cereus (5,8%) Streptococcus viridans (3,8%)


Deaths due to transfusion complications

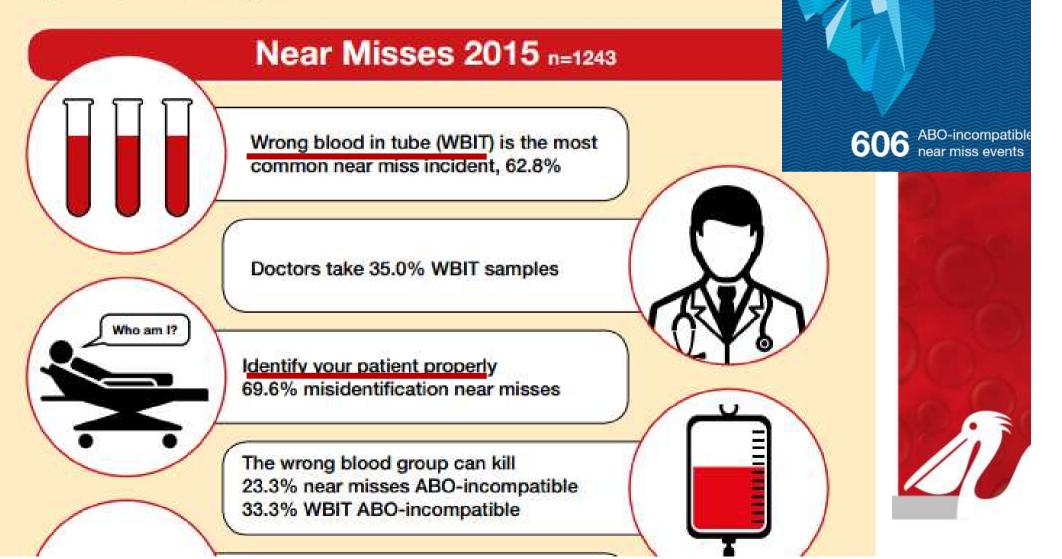
Hemovigilance is a "quality process" which aims to improve quality and increase safety of blood transfusion, by surveying all activities of the blood transfusion chain, from donors to recipients. Haemovigilance means a set of organised surveillance procedures relating to serious adverse or unexpected events or reactions in donors or recipients, and the epidemiological follow-up of donors incluing obligation of adverse events reporting.


Cause of complications	SHOT (n=169)	RBTC Pécs (n=134)	Ę
Wrong blood group	47%	59%	
Acut transfusion reaction	13%	18%	
Late transfusion reaction	13%	16%	Į
PTP	1%	0,8%	ĸ
GVHD	1%	0	
TRALI (or respiratory	7%	6%	

symptoms)

Deaths due to transfusion complications

HTR=haemolytic transfusion reactions; UCT=uncommon complications of transfusion; TACO=transfusion-associated circulatory or PCC=prothrombin complex concentrates



A 'near miss' event refers to any error which, if undetected, could result in the determination of a wrong blood group or transfusion of an incorrect component, but was recognised before the transfusion took place.

Near miss reports continue to increase, n=1243 in 2015 from n=1167 in 2014.

ABO-incompatible red cell transfusions

Key SHOT messages

ABO-incompatible red cell transfusions n=3 clinical (2 resulting in major morbidity)

ANNUAL SHOT REPORT 2016

IBCT n=331

Case 10.2: Failure to complete the administration check at the bedside correctly leads to an ABO-incompatible red cell transfusion

Summary: Types of transfusion complications

Immediate complications

Within 10 – 15 minutes

ABO – incompatibility

Anaphilaxis

Air embolism

Late complications

1 – 7 after transfusion

Delayed immunohemolysis

Immunisation

Immunodeficiency

TA-Graft versus host disease

Hemosiderosis (months, years)

Transmission of pathogens

Early complications

Within 1 – 24 hours

Allergy

Febrile non-hemolytic complications

Haemolytic complications of immunised patients

Haemolytic complication of anesthetized patients

Circulatory overload Citrate intoxication Endotoxin shock Hypothermia Coagulation disorders Trombembolia

Weeks, month, years after transfusion

Hepatitis (B,C stb.) CMV HIV and other virii (EBV, Parvovísus B19)

Lues and other bacteria

Malaria, babesiosis and other protozoa