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Abbreviations 
 
2D  two dimensional 
3D  three dimensional 
ABL  Abelson murine leukemia gene 
afu  arbitrary fluorescence unit 
BA  break-apart (or split) probe  
BCL-2  B-cell leukemia/lymphoma 2 gene 
BCR  breakpoint cluster region gene 
CCND1 cyclin D1 gene 
CIF  combined immunophenotyping and i-FISH 
CML  chronic myeloid leukemia 
DAPI  4′,6-diamidine-2-phenyl indole 
DF  dual-fusion probe 
ETV6  ETS variant 6 gene (formerly TEL) 
ES  fusion extrasignal probe 
F  fusion i-FISH signal 
FISH  fluorescence in situ hybridization 
FITC  fluorescein isothiocyanate 
FP  formalin-fixed, paraffin-embedded 
G  green i-FISH signal 
i-FISH  FISH on interphase nucleus 
IGH  immunglobulin heavy chain gene 
ISH   in situ hybridization 
kb  kilobase 
LSI  locus specific identifier 
Mb  megabase 
MRD  minimal residual disease 
pALL  pediatric acute lymphoblastic leukemia 
PB  peripherial blood 
Ph  Philadelphia-chromosome 
R  red i-FISH signal 
RUNX1 runt-related transcription factor 1 gene (formerly AML1) 
SD  standard deviation 
SF  single-fusion probe 
SFM  scanning fluorescence microscopy 
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1.  Introduction 
 

In the course of in situ hybridization (ISH) a complementary sequence (probe) becomes 
joined with a special region of the nucleic acid (DNA or RNA) of the sample. This probe can 
be visualized and identified as an ISH signal. The different ISH techniques form the base of 
molecular cytogenetics, which has several advantages compared to conventional cytogenetics: 
(i) cell culturing is not a requirement; (ii ) cryptic aberrations are detectable due to high 
sensitivity; (iii ) using appropriate processing and instruments, the genetic information can be 
associated with morphological, phenotypical and topographical parameters, at single cell 
level. 

Among all methods the fluorescence in situ hybridization (FISH) has become the most 
frequently used procedure, which allows a fast and safety labeling with multiple colors and 
high resolution. The FISH performed on interphase cell nuclei (i-FISH) is an adequate method 
to investigate numerical and structural chromosomal changes, furthermore cell line specific 
genetic aberrations are also detectable using digital image analysis. From the viewpoint of 
pathology it has a great importance that i-FISH is applicable on any cytological and 
histological samples. The investigation of formalin-fixed, paraffin-embedded material is also 
possible with this method. 

More than 50 % of currently known balanced genetic aberrations of human malignancies 
were recognized in different hematopoietic diseases. The nonrandom reciprocal translocations 
are the most frequent changes in lymphomas and leukemias. Using i-FISH for investigation of 
translocations, not only the number of signals but their spatial positions carry valuable 
information (Figure 1.). Random colocalization of signals of different colors is a major 
problem in this point of view, resulting 1 - 18 % false positivity or false negativity using dual-
fusion or break-apart probes, respectively. A diagnostic cut-off value for positivity has to be 
determined in the case of each i-FISH analysis. If the positivity exceeds this value, the 
material can be considered as an unambiguously carrying the given genetic aberration. The 
most frequently used establishment of this cut-off value is combining the mean false 
positivity of negative control samples with two or three times the standard deviation.  

Manual i-FISH analysis, which generally means the evaluation of 200 nuclei in routine 
diagnostics has several limitations: (i) when the ratio of positivity is very low a huge number 
of nuclei needs to be evaluated to insure statistical reliability, however, this is a time-
consuming; (ii ) bias of the investigator might cause over- or underestimation of positive 
events, especially at high or low concentrations of positivity, respectively; (iii ) an objective 
definition of translocation-related fusion-colocalization of signals is lacking, in spite of the 
crucial importance of this parameter. 

Due to the development of computer technique and digital image analysis, automated 
evaluation of i-FISH pattern has become available. This approach can circumvent the 
drawbacks of manual analysis. Objective criteria may be introduced, which are followed 
without bias of the investigator or reduction of efficiency due to fatigue. The number of cells 
detected may be increased without significantly increasing manual workload. 

Most publications regarding automated i-FISH analysis reported assessment of 
amplification of genes or enumeration of large centromeric probes. Only a few described 
analyses of translocations applying locus specific probes until the beginning of our work. 
Potential causes are follows: (i) automated detection of signals created by these probes is a 
great challange due to their small size; (ii ) in contrast to i-FISH patterns created by other 
probe types, enumeration of signals is not enough the precise determination of spatial 
distances between the signals is also required. 
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Figure 1. Practical applications of i-FISH to detect translocations. A. The spanning probe of the order of one Mb overlaps the entire breakpoint cluster 
region. It is useful in cases of a particularly long breakpoint cluster region. If a chromosome breaks, one of the signals representing the chromosome will split 
into two distinct signals. B. Using a break-apart (BA) probe set the green and red probes hybridize to sequences which straddle the breakpoint cluster region 
of one of the chromosomes affected by translocation. If the breakpoint cluster region is longer than 200 kb, a fusion (yellow) signal or a separated, but 
colocalizing signal pair will visualize the normal chromosome depending on the spatial orientation of signals. Spatial disjunction of signals from each other 
indicates chromosome breaking. C. Using a single fusion (SF) probe set, the red and green probes hybridize to sequences which move to juxtaposition 
because of the translocation. If the breakpoint cluster region is not longer than 200 kb, a fusion (yellow) signal will appear in the case of translocation because 
of the limit of optical resolution. D. The mechanism of the fusion extrasignal (ES) probe set is similar to the SF probe set, but in this case the probe spans the 
breakpoint cluster region of one of the chromosomes affected by translocation, resulting a fusion (yellow) signal and an additional smaller extrasignal. E. The 
dual-fusion (DF) probe set spans the breakpoint cluster region of both chromosomes affected by the rearrangement. Two fusion signals will appear as the 
result of the translocation. One green and one red signal represent the unaffected alleles. 
n1, n2: normal chromosomes; t1, t2: rearranged chromosomes. The blue circles represent the cell nuclei, the smaller red and green circles symbolize the i-FISH 
signals. Under the blue circles are the typical signal patterns of the probe sets, however, complex rearrangements may also create other patterns. F,R,G: Count 
of fusion, red and green signals, respectively. 
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2.  Aims 
 

In our methodological work, different automated i-FISH pattern evaluating methods that 
have an important role in pathology were introduced and standardized. The possibilities and 
the limits of these techniques were assessed. A commercially available scanning fluorescence 
microscope (SFM) system was used for our investigations. 
 
2.1. Genotyping of cytological samples 
 

The classical example of reciprocal translocations is the t(9;22)(q34;q11) (fusion of BCR 
and ABL genes). This rearrangement produces the so-called Philadelphia chromosome (Ph) 
that is characteristic of chronic myeloid leukemia (CML). Quantitative detection of this 
translocation is vital in monitoring the disease, since the degree of tumor load reduction is an 
important prognostic factor in the course of therapy. 

First, our automated microscope system was applied to detect BCR/ABL translocation in 
peripheral blood leukocytes. The SFM system’s capabilities have been determined (i) in 
identifying cell nuclei in cytological samples, (ii ) detecting i-FISH signals, and (iii ) measuring 
distances of spots. We have compared the overall false positive and false negative rates of the 
automated analysis with manual investigation.  
 
2.2. Combined immunophenotyping and genotyping of cytological samples 
 

There has been an increasing demand for the proper determination of minimal residual 
disease (MRD) in, among others, pediatric acute lymphoblastic leukemia (pALL). Research 
on various approaches to measure MRD has thus received much attention recently. MRD 
methods can determine the dynamics of the response to the first induction therapy, which has 
an important prognostic role. In addition, MRD measurements may define distinct subgroups 
of pALL with differing biological behavior, allowing further stratification of therapy.  

In our second work the i-FISH analysis was combined with a previous, likewise 
automated immunophenotyping as an improvement of the method. Decreasing of false 
positivity enabled the automated monitoring of the residual tumor load. The method was 
designed to detect residual leukemic cells in pediatric patients, with t(12;21)(p13;q22) 
resulting in ETV6/RUNX1 fusion and positivity for CD10 antigen being the most common 
phenotype and genotype among pALL patients. The sensitivity, specificity, diagnostic 
threshold value and quantitative reliability of this method were determined. 
 
2.3. Genotyping of histological samples 
 

Frequently, only formalin-fixed, paraffin-embedded (FP) material is available for demon-
strating cytogenetic abnormalities in cases of hematological malignancies. Several recent 
reports suggest that i-FISH is the most reliable for detecting translocations in FP samples. 

In the third phase of our work the automated i-FISH analysis was applied to test 
histological FP samples. The efficiencies of commercially available dual-fusion and break-
apart probes were compared using automated evaluation of FP sections. The retrospective 
experiments were made on archival samples of mantle cell lymphoma and follicular 
lymphoma cases which were positive for t(11;14)(q13;q32) (IGH/CCND1) and 
t(14;18)(q32;q21) (IGH/BCL-2) translocation, respectively, based on previous manual 
evaluation.
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3.  Materials and methods 
 
3.1. Samples 
 

Peripherial blood (PB) samples of healthy adults were used as negative controls for the 
investigation of BCR/ABL rearrangement and for the combined CD10+ETV6/RUNX1 
analysis. The Ph-chromosome positive (Ph+) cell line, SD-1, and PB samples of CML patients 
in accelerated phase were used as Ph+ samples. The CD10+ and ETV6/RUNX1+, REH cell line 
was used as positive control for the combined immunopheno- and genotyping. The BCR/ABL 
analysis was carried out on PB samples of additional CML patients. The quantitative 
reliability of MRD analysis was confirmed by evaluating of dilution series. Tissue sections of 
non-neoplastic lymph node biopsies were used as negative histological controls. Lymph node 
FP tissue sections of follicular lymphoma and mantle cell lymphoma patients were analyzed 
for standardization of the method. Only cases that were found to be (IGH/CCND1) or 
(IGH/BCL-2) positive were chosen for the study. The performance of the standardized 
method was validated using additional negative and positive test samples. 
 
3.2. Immunocytochemistry 
 

The mononuclear cell suspensions were used for cytospin preparation (5 x 105 cells / 
slide). Unconjugated mouse anti-CD10 was applied as primary antibody and the reaction was 
developed using biotinylated anti-mouse antibody and avidin-FITC. The slides were covered 
with Vectashield medium containing DAPI nuclear stain (0.005 mg/mL). 
 
3.3. Flow cytometry 
 

Counting the CD10+cells in dilution series was performed by labeling the samples with 
FITC conjugated monoclonal mouse anti-CD10 antibody. Fluorescent intensity was detected 
and evaluated using a FACSort flow cytometer (BD Immunocytometry Systems). 
 
3.4. Scanning fluorescence microscopy (SFM) 
 

The system used for automated scanning and analysis of slides was composed of a 
motorized epifluorescence microscope (Zeiss Axioplan2ie MOT) and a microcomputer 
(Pentium IV). The Metafer 4.0/MetaCyte and the Isis - In situ imaging system (MetaSystems) 
softwares were used for digital capturing, processing and cytometric measuring.  
 
3.5. Immunophenotyping by SFM 
 

For cell identification and CD10 detection, a Fluar 10x/0.5 objective were used. After the 
autofocusing, close-fitting, none-overlapping digital images were captured of the total area of 
the cytospin preparations. Images containing DAPI objects were evaluated for cells based on 
preset parameters. The exact coordinates of the positions were stored, thus making subsequent 
relocation possible. Next, mean pixel intensities representing CD10 labeling of cells were 
measured, using a fixed integration time of 0.58 seconds in the signal channel (FITC-CD10). 
Pixel intensities detected in a control channel (SpectrumOrange) were measured to correct for 
autofluorescence. DAPI, FITC and SpectrumOrange images of the cells were stored and 
displayed in a gallery in combined RGB (red-green-blue) format, along with distribution of 
pixel intensities for both FITC and SpectrumOrange. CD10+ cells were separated from CD10- 
cells and autofluorescent events based on these two intensity values. 
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3.6. I-FISH labeling 
 

The t(9;22)(q34;q11) and the t(12;21)(p13;q22) were visualized with the LSI BCR/ABL 
dual color, single-fusion (SF) probe set (Vysis) and with the LSI ETV6/RUNX1 dual color, 
fusion extrasignal (ES) probe set (Vysis), respectively, according to the manufacturer’s 
instructions.  

Three to 5 µm thick tissue sections of FP tissue blocks were deparaffinized, rehydrated 
and pretreated. The LSI IGH/CCND1-XT dual-fusion (DF) probe, the LSI IGH/BCL-2 DF 
probe and the LSI IGH break-apart (BA) probe (Vysis) were applied as labeling. The slides 
were covered in all cases with Vectashield medium containing DAPI nuclear stain (0.005 
mg/mL). 
 
3.7. Manual i-FISH analysis 
 

Manual i-FISH analysis was performed on a Zeiss Axioskop 50 and/or a Nikon Microphot 
3A microscope equipped with a 100x/1.3 oil objective, and an appropriate dual band filter 
(SpectrumOrange/SpectrumGreen). Analysis of at least 200 nuclei on each cytological 
preparation was performed. In cases of histological preparations representative, homogeneous 
areas of the tissue sections containing lymphoma were investigated. 
 
3.8. Automated i-FISH analysis 
 

Automated i-FISH analysis of translocations consists of three logical steps similar to 
manual evaluation. The first step is the selection of cell nuclei based on the segmentation of 
digital images captured in counterstain channel. Since cell nuclei cannot be correctly 
segmented in most histological samples because of touching and overlapping of their contour, 
automated i-FISH analysis uses regions of interest. There are two methods of sampling. The 
tile sampling aims at identifying non-overlapping nuclei while the grid sampling lays a 
regular squared grid on every image field and investigates each grid unit, separately. The 
second step is the signal detection, the third is the measurement of distances between signals 
of different colors. The cell nuclei are 3D objects. The 3D measurement is essential to 
decrease false positivity/false negativity because of the overlapping of signals in 2D. 
 
3.8.1. Evaluation of cytological samples 
 
Nucleus selection 
 

During scanning, which was performed with a Plan-Neofluar 40x/0.75 objective, the SFM 
system used the DAPI channel to search for cell nuclei suitable for i-FISH analysis. In the 
case of simple i-FISH analysis the boundaries of the search windows were set manually while 
in the case of previous immunophenotyping, only the pre-selected nuclei were relocalized 
based on saved coordinates. After autofocusing and image capture, the DAPI image fields 
were segmented using a contour following algorithm. From the resulting list of objects, 
overlapping nuclei forming large clusters and small nuclear debris were removed based on 
previously optimized parameters. 
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Detection of i-FISH signals and evaluation of signal patterns 
 

After background correction and sharpening of images captured in signal channels 
(SpectrumOrange, SpectrumGreen), signals were recognized based on their contrast and 
intensity value, their area, and their minimum distance from the other signals in the same 
color channel. The merging of images captured in different focus planes resulted in 3D 
representation the signals. 

In order to evaluate the translocation-related i-FISH patterns, it is important to define the 
fusion signal as a selection parameter. Using SF and ES probes, the shortest distance between 
red and green signals has the greatest significance from this point of view. The 3D distance 
was determined in pixels (1 pixel = 0.168 µm). The optimal cut-off value that can separate 
most reliably the normal nuclei from translocation positive ones was identified based on the 
distribution of this shortest distance measured in negative and positive controls. The 
diagnostic cut-off value was calculated from the mean false positivity measured in negative 
controls and the standard deviation (mean false positivity + 2SD). 
 
3.8.2. Evaluation of histological samples 
 
Grid sampling 
 

The SFM system used the 40x objective and the DAPI channel for sampling. 
Representative areas of the tissue sections containing lymphoma were marked by the 
operator. After the autofocusing and 3D image acquisition the segmentation was performed 
with grid sampling. Every image field was separated into 15 x 12 equal grid units, measuring 
146.3 µm2. All subsequent analysis was performed within each grid unit separately. 
 
Detection of i-FISH signals and evaluation of signal pattern 
 

After background correction the DAPI objects were used as a counterstain mask. I-FISH 
signal-like artifacts that appeared outside of DAPI objects were disregarded. The i-FISH 
signals were identified as above. 

Using the DF probes, grid units without at least two red and two green signals were 
excluded from further analysis. Grid units with 8 or more red or green signals were also 
excluded due to the high risk of false signal recognition and accidental colocalization of 
signals. Grid units with at least two fusion signals were defined as positive. In the case of BA 
probe only grid units with at least one red and one green signal were considered for analysis. 
Grid units with 8 or more red or green signals were also excluded. A grid unit was considered 
positive, if the number of red signals was higher than that of fusion signals. Only red signal 
numbers were considered, since the red signals appeared more reliable, than green signals. 

The distance which led to the greatest difference between the positivity of grid units in 
positive and negative samples was chosen as optimal cut-off distance to define fusion signals 
in the case of each probe. The threshold value of positive grid units differentiating positive 
and negative samples was determined using a dichotomous linear logistic regression. 
 
Comparing of sampling methods 
 

The performance of tile sampling and grid sampling were compared using the same 
captured images. The number of tiles/grid units and the relative area of the images analyzed 
by the different sampling methods were compared. The tile sampling was carried out based on 
an approach published in the literature (Reichard et al. Mod Pathol 2006). 
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4.  Results 
 
4.1. Automated i-FISH analysis of BCR/ABL translocation 
 
4.1.1. Results 
 
Nucleus selection 
 

The sensitivity of cell recognition was 88.7 %. On average, 10.4 % (± 8.3 %) of detected 
DAPI objects recognized as cell nuclei were in fact clusters of smaller nuclei. The rejection of 
these was possible based on scatter plot diagrams using morphological parameters (object 
area, eccentricity), since these objects represented a unique population. Following the manual 
gating-out of this population, only 0.07 (± 0.06) % of the remaining objects were clusters of 
overlapping nuclei. 
 
I-FISH signal detection and signal distance measurement 
 

Red signals (ABL) were correctly counted in 84.9 % and green signals (BCR) in 80.9 %. 
According to the assumption that errors in the red and green channels are independent, the 
total rate of cells with correct signal counts in both channels was 68.7 % (84.9 x 80.9 %). The 
average percentage of nuclei lost for analysis did not differ significantly among the negative 
and positive control samples, thus, exclusion of nuclei with inadequate signal recognition did 
not bias the overall result of the analysis. 

To determine an optimal cut-off value, we calculated the distribution of shortest distances 
of translocation negative and positive cells. The lowest number of errors in discrimination 
between the two cell population was found when using 5 pixels (0.84 µm) as cut-off value. 
 
Comparison of automated and manual results 
 

The 6 samples used as controls and the 18 samples of CML patients were analyzed 
manually, by three independent investigators. The false positive rate of the manual analysis 
was 5.8 (± 1.5) % based on the results of Ph- samples. The automated analysis had a higher 
false positive rate of 7.0 (± 2.7) % (diagnosic cut-off value: 12.4 %). Manual evaluation of 
SD-1 cells revealed a false negative rate of 2.7 (± 7.3) %. The false negative rate of automated 
analysis was slightly higher, 5.5 (± 8.0) %. While 200 cells were detected during manual 
analysis by each observer, the automated analysis detected 1,177 cells on average (580 - 
3,520). The automated and manual results showed strong linear correlation (R2 = 0.9892). The 
average difference between the two methods was 3.7 (± 7.4) %. To achieve better statistical 
comparability, the cells analyzed by the automated analysis were separated into three parts 
each containing 200 consecutive cells in the order of their detection. These parts were 
analyzed separately, and the results were combined just as the results of the three independent 
investigators were combined. The mean difference of the results of these from their average 
was 0.0 %. The range of differences was 8.3 (-3.5 - 4.8) %, which represented the variability 
of the concentration of positive cells caused by random selection of 200 cells. The mean 
difference of the independent investigators from the manual average results was 0.7 %, the 
range 32.2 (-16.8 - 15.4) %. This large range represented interobserver variability. 

The speed of the automated analysis showed great variability depending on the density of 
cells on the slide and the intensity of the i-FISH signals. The average time required to analyze 
200 cells was 36.5 minutes, which is similar to the mean workload for microscopy reported in 
a multicenter investigation regarding manual i-FISH analysis of the BCR/ABL translocation 
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(Dewald et al. Cancer Genet Cytogenet 2000). The speed of manual analysis in our laboratory 
is approximately two times this fast, not including the capturing and storing of every image, 
which would take several hours. 
 
4.1.2. Discussion 
 

I-FISH analysis of interphase nuclei of peripheral blood leukocytes has been proposed as 
an alternative method of monitoring the number of cells showing the BCR/ABL rearrangement 
in the course of therapy in CML patients. The specificity of manual i-FISH analysis is limited 
by the inevitable false positives due to random signal colocalization, the rate of which 
depends on the criteria of positivity, preparation conditions, and experience of the 
investigator. To accurately detect low concentrations of positive cells, a large number of cells 
must be analyzed, which is time consuming and laborious. 

In our work, the capabilities of an automated i-FISH analysis system have been assessed 
and compared with the results of manual evaluation. The accuracy of cell nucleus selection, i-
FISH signal detection, and signal distance measurement was determined. 

In the literature, we found two detailed descriptions of automated i-FISH analysis similar 
to the one reported in this work. In the work of Lukasova et al., 3D measurements of distances 
between BCR and ABL signals were described (Lukasova et al. Hum Genet 1997). The 
distance cut-off value used in that study was 0.5 µm, which is less than the one established in 
this work. This may be attributed to the fact that the nuclei analyzed by Lukasova et al. were 
smaller than the nuclei in this work (4.7 µm vs. 8.0 µm average nuclear radius). The false 
negative rate and the frequency of false signal detection were not reported. The false positive 
rate was 17.6 %. In the work of Kozubek et al., 2D automated i-FISH analysis to detect 
t(9;22)(q34;q11) was reported (Kozubek et al. Cytometry 1999). A distance cut-off value of 
0.5 µm was used. The false positive rate amounted to 5 %. Error rates of cell or signal 
detection and the false negative rate were not specified. A comparison of automated and 
manual results was not presented in either publications. 

The automated analysis in our experiments was designed to detect t(9;22)(q34;q11) by 
means of the LSI BCR/ABL SF probe set. Criteria may be set similarly for other genetic 
aberrations and for other probe sets resulting in different signal patterns. Automation provides 
the analysis of larger number of cells without increasing the manual workload of the analysis, 
further reducing sampling errors and increasing the likelihood of detecting very low 
concentrations of positivity. The sample size analyzed is only limited by the hardware 
specifications of the automated system, which allows at present the analysis of tens of 
thousands of nuclei; a significant achievement compared to the 200 nuclei of routine manual 
analysis. Using automated analysis, interobserver variability is avoided, and since images of 
cell nuclei are stored, documentation of the sample material is also provided. Additionally, 
because of the automatic storage of the exact coordinates of all cell nuclei, relocation is 
possible, and so immunophenotyping and consecutive multiple i-FISH investigations are 
feasible, resulting in a combined morphologic, immunophenotypic, and genotypic analysis at 
single cell level. 
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4.2. Automated detection of residual leukemic cells by consecutive immunolabeling for 
CD10 and i-FISH for ETV6/RUNX1 rearrangement in childhood acute lymphoblastic 
leukemia 
 
4.2.1. Results 
 
Cell recognition and detection of CD10 intensity 
 

Depending on the density of cells within samples, approximately 4 - 5 % of cells were lost 
because objects touched the outlines of a particular image field or were partially outside of it. 
The proportion of cells not detected by the automated system as an object according to the 
predefined criteria was 0.62 %. On average, 7.22 (± 5.64) % of objects detected by the 
automated system were overlapping cells. Separate cells and overlapping cells could be 
identified as distinct populations on the two-parameter scatter plot of eccentricity and object 
area; thus, the unwanted overlapping cell population was excluded from further analysis by 
interactive gating. Based on manual validation of 2,000 gallery images per sample processed 
as described, the specificity of cell recognition proved to be 99.71 %. 

The mean signal intensity (CD10-FITC) of >260,000 positive control cells was 0.49 (± 
0.19) arbitrary fluorescence units (afu), and >195,000 negative control cells represented a 
value of 0.19 (± 0.07) afu. These values proved to be statistically different (P < 0.001, 
Student-test). Despite the significant difference in fluorescence intensities between the 
positive and negative cell populations, there was some overlap between them. Because we 
intended to measure MRD, we wanted to get rid of these few but not (for an MRD study) 
negligible events. These objects were in fact highly autofluorescent, not only in the green but 
also in the control SpectrumOrange channel. This made it possible to discriminate these 
events, which made up an average 1.07 (0.44 - 3.77) %. 

To discriminate positive and negative cells, an arbitrary threshold (0.18 afu) was 
determined, a value that led to the lowest sum of false positivity and negativity. Using this 
value, the sensitivity of detecting CD10+ cells proved to be 99.78 %, with specificity of 99.79 
%. The cut-off for detectable positivity was determined as 0.51 % (mean false positivity + 
2SD). 

The reliability of CD10 immunophenotyping was assessed using dilution series in 
triplicates. On average, >49,000 cells were analyzed per sample. The measured and the 
theoretical values exhibited a strong correlation (R2 = 0.9831); the average difference was 
only 0.74%. Samples of the dilution series were also analyzed with flow cytometry, and the 
results correlated well with those obtained with the automated fluorescent microscopic 
analysis (R2 = 0.9895). The speed of scanning for CD10 positivity using scanning 
fluorescence microscopy was a function of the cell density in different samples; on average, 
the system could detect, analyze, and store 33 cells per second. 
 
I-FISH pattern evaluation 
 

To discriminate the translocation positive and negative nuclei, sum of false positivity and 
negativity was minimalized. Using 1.18 µm  (7 pixel) as a cut-off value, the sensitivity and 
specificity were  98.00 % and 82.70 %, respectively. The relatively low specificity was the 
result of the exclusion of the presence of the extrasignal as a requirement of positivity. We 
had to disregard the extrasignal as one of the criteria of translocation, because (due to its 
highly variable size and fluorescence intensity) it could not be detected reliably in every case. 
The specificity of the analysis then decreased, but the sensitivity increased. 
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Combined immunophenotyping and i-FISH (CIF) 
 

Using coordinates obtained during scanning, the CD10+ cells were relocated and the i-
FISH signal patterns were analyzed on negative and positive control samples as well as on the 
dilution series. With this approach, i-FISH analysis was performed only on CD10+ cells, 
allowing discrimination of the surface marker positive, i-FISH positive leukemia type of cell, 
as well as the normal hematogone type of cell (surface marker positive, i-FISH negative). The 
sensitivity of the combined immunophenotyping and i-FISH analysis proved to be 98.67 %, 
with specificity of 99.97 %. The diagnostic cut-off value was defined as the mean false 
positivity + 2SD: that is, 0.03 % + 0.06 % = 0.09 %. 

In the dilution series, the correlation between the theoretical dilution values and those 
defined by CIF was stronger in comparison with the immunofluorescence detection alone (R2 
= 0.9983 versus R2 = 0.9831). The overall differences between the CIF derived as well as 
theoretical values were 0.26 % on average among the various dilution samples, but in the 
lower range (0.1 - 0.5 %) being most important in the MRD detection, it proved to be only 
0.01 %. 

Relocation of an object positive for the immunofluorescent marker, capturing of FISH 
images and evaluation of the signal pattern altogether took 15 seconds per cell on average. 
 
4.2.2. Discussion 
 

The therapeutic modalities of pediatric acute lymphoblastic leukemia have dramatically 
improved, leading to the current complete remission and final cure rate of ~80 %. Based on 
several studies, however, it seems that a fraction of the patients are likely to be overtreated 
and other patients might be undertreated or improperly treated, leading to therapy failure. This 
underscores the need for further stratification of therapeutic strategies based on new 
prognostic factors. 

One such prognostic factor is the accurate determination of residual tumor load, what is 
called minimal residual disease (MRD). Detecting very low amounts of residual leukemia (at 
10-5 - 10-6 level) is of uncertain clinical significance, but determining whether a 10-3 tumor 
cell reduction has been achieved is of great significance, as is accurately monitoring the 
dynamics of clearance of leukemic cells during the cytoreduction phase. 

The molecular genetic methods have high sensitivity. None of these are cell-based, 
however, and these techniques require a reference gene sequence or transcript to quantitate 
data. The sensitivity of cell-based methods is lower, but these methods do estimate the 
number of leukemic cells directly. Flow cytometry can identify leukemic cells by 
combination of various light scatter and immunofluorescence (IF) properties at a remarkably 
high speed; however, a pathological phenotype other than that of normal hematogones (which 
is a prerequisite for discrimination from normal precursor elements) is not always present. 

For the reasons above, we have introduced a combined cell- and microscope-based 
automated scanning technique wherein a particular phenotype and the genotype of a given 
leukemia are detected by consecutive immunofluorescence and i-FISH, respectively. 

With this standardized method it is possible to detect target cells positive for CD10 and 
t(12;21)(p13;q22), the most common phenotype and genotype among the pALL. Using this 
approach we have reached 98.67 % sensitivity and specificity of 99.97 %. The diagnostic cut-
off value of 0.09 % represents a possibility for identifying leukemic cells with high accuracy 
even a bit below 10-3, a threshold having been reported to be critical in clinical decision 
making. 
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4.3. Automated i-FISH pattern analysis using dual-fusion and break-apart probes on 
paraffin-embedded tissue sections 
 
4.3.1. Results 
 
Hybridization efficiency, thickness of tissue sections and speed of analysis 
 

Hybridization was successful in all of the cases, although the quality of the i-FISH signals 
was variable influenced greatly by the thickness of the tissue sections. We have measured the 
average thickness of tissue sections in 26 cases. The values were based on four different 
measurements. The thickness was on average 4.42 (3.03 - 8.03) µm. Optimal results were 
achieved with 3.6 - 5.0 µm thickness, in this range, the ratio of excluded grid units was below 
35 %. 

At least 1000 grid units were analyzed in the case of each sample. Completing the analysis 
of a sample including evaluation of results took approximately 9 minutes. 
 
Defining fusion signals and determination of diagnostic threshold value 
 

The optimal cut-off values of fusion signal for the IGH/CCND1, IGH/BCL-2, and IGH 
probes were 0.5, 1.0, and 1.2 µm, respectively. 

In the case of the LSI IGH/CCND1 probe, the mean percentage of grid units with two or 
more fusion signals was 5.3 (1.5 - 10.2) % in 10 negative samples. The same percentage in 10 
mantle cell lymphoma samples was 36.7 (26.6 - 52.0) %. In the case of the LSI IGH/BCL-2 
probe, negative samples contained two or more fusions in 11.4 (4.0 - 17.3) % of the grid units, 
while follicular lymphoma samples had 65.2 (39.9 - 79.6) % of grid units with two or more 
fusions. 

Based on the above distributions, the diagnostic cut-off value was defined as the value 
best discriminating the positive and negative samples using dichotomous linear logistic 
regression. The threshold was 18.5 % grid units with two or more fusions in the case of 
IGH/CCND1, and 28.8 % in the case of IGH/BCL-2. 

When all grid units with at least one red and one green signal were analyzed using the 
IGH probe, negative samples had on average 48.2 (26.8 - 69.1) % positive grid units, while 
positive samples had 77.7 (67.8 - 93.6) %. This made reliable separation of negative from 
positive samples impossible. Errors of signal detection frequently led to additional signals or 
to the loss of a signal, thus it frequently resulted in different numbers of red and green signals. 
When only those grid units that had as many red, as green signals were analyzed, correct 
discrimination of positive and negative samples became possible, as 28.1 (7.0 - 41.7) % of 
negative sample grid units were positive, while the same value was 74.2 (64.5 - 93.9) % in the 
case of positive samples. Using these criteria, the threshold for false positivity was 52.9 %. 

After standardization of the method, further 37 samples were blindly analyzed to validate 
the automated i-FISH analysis system. The results of the automated analysis showed 
agreement with manual investigation in every sample tested. The range of positive grid units 
in all of  the negative samples studied was 0.8 - 10.2 %, 4.0 - 17.3 %, and 7.0 - 41.7 % for the 
IGH/CCND1, the IGH/BCL-2, and the IGH, respectively. The same ranges on positive 
samples were 23.5 - 52.0 %, 38.3 - 79.6 % and 64.5 - 93.9 %, respectively. 
 
Effects of signal numbers per grid unit on false positivity and comparing sampling methods 
 

The false positivity of grid units increased as the number of i-FISH signals per grid unit 
increased. This percentage was 3.4 % and 7.5 % at the average signal number in the cases of 
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the IGH/CCND1 and the IGH/BCL-2 DF probes, respectively, while it was 56.5 % when the 
IGH BA probe was used. In the last case, this value was reduced to 38.5 %, when only grid 
units with equal numbers of red and green signals were analyzed. The increase of signal 
numbers had a greater effect on the percentage of positive grid units in the case of the BA 
probe compared with the DF probes. False positivity was between 2.5 - 11.6 % and 1.5 - 9.9 
% within the range of mean ± SD of signal numbers in the case of the two DF probes, 
respectively. These values were between 42.7 - 77.1 % in the case of the BA probe, and 10.2 - 
60.8 % when only grid units with equal numbers of red and green signals were analyzed. 

On average, 16.7 tiles were analyzed per image field with tile sampling, while 61.0 grid 
units were analyzed using grid sampling of the exact same images. Considering the size of an 
average tile (91.6 µm2) and a grid unit (146.3 µm2), on average, 33.8 % of the entire scanned 
area was analyzed by grid sampling and only 5.8 % using tile sampling. 
 
4.3.2. Discussion 
 

I-FISH is a powerful method for detecting cytogenetic aberrations on formalin-fixed, 
paraffin embedded samples. The aim of this study was to investigate the possibilities of an 
automated analysis using grid sampling on tissue sections of non-neoplastic lymph nodes and 
lymphoma samples. Furthermore we compared the performance of the IGH break-apart probe 
with the IGH/CCND1 and the IGH/BCL-2 dual-fusion probes. 

The optimal cut-off distance values of red and green signal pairs for defining fusion 
signals were determined separately for each probe. Our values were quite similar to 0.8 - 1.2 
µm, the values reported in the literature (Reichard et al. Mod Pathol 2006). The differences 
between the different probe sets may be explained by the different physical distances between 
the DNA probes in fusion signals. This value was 2 - 3 times higher using the BA probe, 
compared with the DF probes. It was calculated with binary linear logistic regression instead 
of conventional way (mean false positivity + 2SD). We used this more stringent statistics 
because of grid sampling is a novel, uncommon, non-cell-based technique and we could not 
use a sample with 100 % positivity. The additional 37 test samples were correctly diagnosed. 

An increase of the number of signals per grid units greatly effected the false positivity of 
the BA probe, while had only a minor impact on the false positivity of the DF probes. This 
inferior performance may seem somewhat surprising, since the BA probes are reported to be 
more efficient for translocation detection on tissue section, because only a single red or green 
signal is sufficient for indicating positivity. However, this increased efficiency makes BA 
probes more prone to false positivity, since false recognition of even one signal may lead to 
false positivity, while in the case of DF probes, false signal recognition rarely produces two 
fusion signals. 

Using grid sampling, the area analyzed was five times greater than with tile sampling. It 
was mentioned above that loss of a proportion of the sample objects had no significant effect 
on the final result. However, this difference is considerable, furthermore, the topographical 
distribution of positive cell nuclei can be extremely variable in tissue sections as opposed to 
cytological samples. 

In conclusion, we report a reliable and fast automated i-FISH pattern evaluation procedure 
for the detection of translocations in tissue sections. 
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5.  Summary of new findings  
 
1. We introduced the automated i-FISH analysis of t(9;22)(q34;q11) using LSI BCR/ABL SF 

probe on cytological samples. We described for the first time the complete specifications 
of this approach. Not only the specificity and cut-off level of detectable positivity were 
presented same to other publications, but also the sensitivity and parameters of cell 
selection and signal recognition were exactly defined.  

2. The standardized, automated method was compared with manual scoring. We found that 
the high interobserver variability is avoided using automated evaluation, leading to 
increased statistical accuracy even when only 200 cells are analyzed. 

3. The i-FISH analysis was combined with a previous, likewise automated 
immunophenotyping as an improvement of the method. We standardized a method which 
is capable for detecting target cells positive for CD10 and t(12;21)(p13;q22), the most 
common phenotype and genotype among the pALL. The diagnostic cut-off value 
represent a possibility for identifying leukemic cells with high accuracy even a bit below 
10-3, a threshold having been reported to be critical in clinical decision making. The 
complete specifications of this method were described and the quantitative reliability was 
determined. 

4. We introduced the use of grid sampling for the automated evaluation of translocation i-
FISH patterns on tissue sections. This sampling method avoids the problems of tile 
sampling, such as (i) heterogeneous counterstain intensity; (ii ) variable size of nuclei; (iii ) 
multiple detection of the same signal. 

5. We described automated i-FISH analysis using break-apart probes on histological samples 
for the first time. 

6. We compared the efficiency of break-apart (IGH) and dual-fusion (IGH/CCND1, 
IGH/BCL-2) probes using automated i-FISH analysis on tissue sections. We found that 
both probe types are eligible for discrimination of negative and positive samples, although 
the break-apart probe requires more strict analytic criteria and is more prone to false 
positivity. 
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