Molecular Cell Biology 1

Data

Official data in SubjectManager for the following academic year: 2019-2020

Course director

Number of hours/semester

lectures: 42 hours

practices: 12 hours

seminars: 30 hours

total of: 84 hours

Subject data

  • Code of subject: OAA-MB1-T
  • 6 kredit
  • General Medicine
  • Basic modul
  • autumn
Prerequisites:

-

Exam course:

yes

Course headcount limitations

min. 1

Topic

To provide molecular and cellular biological basis for the teaching of anatomy, biochemistry, physiology, pathology, pathophysiology, microbiology and pharmacology. To teach students molecular cell biology facts essential for clinical subjects. The course covers cellular and molecular characteristics of the structure and functions of the cell. Main topics: functional morphology of eukaryotic cells; mechanisms of the storage, replication and expression of genetics information.
The detailed list of topics will be available on the first seminar for each group.

Lectures

  • 1. Educational objectives - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 2. Comparison of prokaryotic and eukaryotic cells - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 3. Modern morphological techniques I - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 4. Methods of molecular biology I: Restriction endonucleases - Dr. Szeberényi József
  • 5. Methods of molecular biology II: DNA cloning. Genomic libraries - Dr. Szeberényi József
  • 6. Methods of molecular biology III: Polymerase chain reaction - Dr. Szeberényi József
  • 7. Methods of molecular biology IV: DNA sequencing - Dr. Szeberényi József
  • 8. Methods of molecular biology V: Transgenic organisms - Dr. Szeberényi József
  • 9. Methods of molecular biology VI: Inhibition of gene function - Dr. Szeberényi József
  • 10. Methods of molecular biology VII: DNA chips - Dr. Szeberényi József
  • 11. Methods of molecular biology VIII: Immunologioal methods - Dr. Barthóné Dr. Szekeres Júlia
  • 12. Modern morphological techniques II - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 13. The cell nucleus - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 14. Genome organisation - Dr. Szeberényi József
  • 15. The structure and chemical composition of chromatin - Dr. Sétáló György
  • 16. The phases of cell cycle. - Dr. Sétáló György
  • 17. The regulation of cell cycle. - Dr. Sétáló György
  • 18. Cell division. Mitosis, meiosis. - Dr. Sétáló György
  • 19. DNA replication in prokaryotes - Dr. Sétáló György
  • 20. DNA replication in eukaryotes - Dr. Sétáló György
  • 21. DNA repair - Dr. Sétáló György
  • 22. Transcription in prokaryotes - Dr. Pap Marianna
  • 23. The synthesis and processing of pre-rRNA in eukaryotes - Dr. Pap Marianna
  • 24. The synthesis of pre-mRNA in eukaryotes - Dr. Pap Marianna
  • 25. The pre-m RNA processing in eukaryotes - Dr. Pap Marianna
  • 26. Translation I: The components of protein synthesis - Dr. Pap Marianna
  • 27. Translation II: The mechanism of protein synthesis - Dr. Pap Marianna
  • 28. Translation III: The genetic code - Dr. Pap Marianna
  • 29. Regulation of gene expression in prokaryotes - Feketéné Dr. Kiss Katalin
  • 30. Regulation of gene expression in eukaryotes I: Levels of gene regulation - Dr. Szeberényi József
  • 31. Regulation of gene expression in eukaryotes II: Transcription factors I. - Dr. Szeberényi József
  • 32. Regulation of gene expression in eukaryotes III: Transcription factors II. - Dr. Szeberényi József
  • 33. Rough endoplasmic reticulum - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 34. Golgi complex. Protein glycosylation and sorting - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 35. Endocytosis. Vesicular transport - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 36. Cell defense mechanisms I: lysosomes, smooth endoplasmic reticulum - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 37. Cell defense mechanisms II: oxygen free radicals, membrane damage - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 38. Mitochondria I: Structure and function - Dr. Sétáló György
  • 39. Mitochondria II: Genetic apparatus - Dr. Sétáló György
  • 40. Cytoskeleton I: Microfilaments - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 41. Cytoskeleton II: Intermediate filaments and microtubules - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 42. Closing lecture. The cell membrane. - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella

Practices

  • 1. Light microscope. Tracing of biological molecules inside the cell.
  • 2. Light microscope. Tracing of biological molecules inside the cell.
  • 3. Centrifugation, chromatography
  • 4. Centrifugation, chromatography
  • 5. Plasmid isolation
  • 6. Plasmid isolation
  • 7. Protein electrophoresis and Westerm blotting
  • 8. Protein electrophoresis and Westerm blotting
  • 9. Isolation of nucleic acids
  • 10. Isolation of nucleic acids
  • 11. Restriction endonuclease digestion of DNA
  • 12. Restriction endonuclease digestion of DNA

Seminars

  • 1. General information. Preview of lab cycle I
  • 2. Biological macromolecules
  • 3. Light microscopy
  • 4. Comparison of pro- and eukaryotic cells
  • 5. Separation methods
  • 6. Methods of molecular biology I
  • 7. Methods of molecular biology II
  • 8. Methods of molecular biology III
  • 9. Methods of molecular biology IV.
  • 10. Cell nucleus. Genome organisation
  • 11. Chromatin
  • 12. The cell cycle
  • 13. Electron microscopy (demonstration)
  • 14. DNA replication
  • 15. DNA repair.
  • 16. Cell division. Preview of lab cycle II
  • 17. Transcription in prokaryotes
  • 18. Transcription in eukaryotes
  • 19. RNA processing
  • 20. Translation I
  • 21. Translation II
  • 22. Gene regulation I
  • 23. Gene regulation II
  • 24. Rough ER. Golgi complex. Vesicular transport
  • 25. Cell defense mechanisms
  • 26. Mitochondria I
  • 27. Mitochondria II
  • 28. End- of semester discussion
  • 29. SEMESTER TEST
  • 30. SEMESTER TEST

Reading material

Obligatory literature

Cooper, G.M.: The Cell. A Molecular Approach.

Literature developed by the Department

Notes

M. Pap (editor): Molecular Cell Biology Laboratory Manual.
Szeberényi J., Komáromy L.: Molecular Cell Biology Syllabus.

Recommended literature

Conditions for acceptance of the semester

According to the Code of Studies and Examinations

Mid-term exams

Making up for missed classes

Extra lab programs at the end of each practical cycle.

Exam topics/questions

1. Proteins
2. Lipids
3. Carbohydrates
4. Nucleosides, nucleotides
5. The structure of DNA
6. Experiments proving that DNA is the genetic material
7. The structure and types of RNA
8. Comparison of pro- and eukaryotic cells
9. Methods of immunocytochemistry
10. Restriction endonucleases
11. Southern blotting
12. DNA sequencing
13. DNA chips
14. Genomic libraries
15. Polymerase chain reaction
16. Transgenic organisms
17. Targeted gene inactivation
18. Inhibition of gene expression at the level of mRNA
19. cDNA libraries
20. Northern blotting
21. Immunoprecipitation and Western blotting
22. The structure of cell nucleus
23. The organisation of chromatin
24. Unique and repetitive sequences
25. The chemical composition of chromatin
26. The phases of cell cycle
27. The regulation of cell cycle
28. Mitosis
29. Meiosis
30. General features of replication
31. The mechanism of replication in prokaryotes
32. Eukaryotic replication
33. DNA repair
34. The mechanism of prokaryotic transcription
35. General features of eukaryotic transcription
36. Synthesis and processing of eukaryotic pre-rRNA
37. Synthesis of pre-mRNA in eukaryotes. Cap-formation and polyadenylation.
38. Pre-mRNA splicing
39. Synthesis of aminoacyl-tRNA
40. The structure and function of ribosomes
41. The genetic code
42. Initiation of translation
43. Elongation and termination of translation
44. General features of translation
45. The lactose operon
46. The tryptophan operon
47. Cloning by nuclear transplantation
48. Regulation of pre-mRNA synthesis and processing in eukaryotes
49. Regulation of mRNA transport, translation and degradation in eukaryotes
50. Regulation of protein activity and degradation in eukaryotes
51. Eukaryotic transcription factors
52. The mechanism of action of steroid hormones
53. Rough endoplasmic reticulum
54. Golgi complex. Protein glycosylation
55. The mechanism of secretion
56. Endocytosis
57. The mechanism of vesicular transport
58. Lysosomes. Smooth endoplasmic reticulum
59. Oxygen free radicals. Membrane damage. Lipid peroxidation
60. The structure and function of mitochondria
61. The genetic apparatus of mitochondria
62. Mitochondrial diseases

Examiners

  • Dr. Bátor Judit
  • Dr. Berta Gergely
  • Dr. Fekete Zsuzsanna
  • Dr. Kemény Ágnes
  • Dr. Mikó Éva
  • Dr. Palkovics Tamás
  • Dr. Pap Marianna
  • Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • Dr. Sétáló György
  • Dr. Szeberényi József

Instructor / tutor of practices and seminars

  • Balassa Tímea
  • Balogh Bálint
  • Brandt Barbara
  • Dr. Bátor Judit
  • Dr. Berta Gergely
  • Dr. Bogdán Ágnes
  • Dr. Fekete Zsuzsanna
  • Dr. Kemény Ágnes
  • Dr. Pap Marianna
  • Dr. Rauch Tibor Attila
  • Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • Dr. Seress László Antal
  • Dr. Sétáló György
  • Dr. Tarjányi Oktávia
  • Feketéné Dr. Kiss Katalin
  • Les Hajnalka
  • Németh Marica
  • Schipp Renáta
  • Stayer-Harci Alexandra