Molecular Cell Biology 2

Data

Official data in SubjectManager for the following academic year: 2020-2021

Course director

Number of hours/semester

lectures: 28 hours

practices: 12 hours

seminars: 16 hours

total of: 56 hours

Subject data

  • Code of subject: OAA-MB2-T
  • 4 kredit
  • General Medicine
  • Basic modul
  • spring
Prerequisites:

OAA-MB1-T completed

Exam course:

yes

Course headcount limitations

min. 1

Topic

To provide molecular and cellular biological basis for the teaching of anatomy, biochemistry, physiology, pathology, pathophysiology, microbiology and pharmacology. To teach students molecular cell biology facts essential for clinical subjects. Main topics: cell membrane and extracellular matrix; intracellular signal transduction; cellular and molecular mechanisms of carcinogenesis; introduction to medical genetics; molecular medicine.
The detailed list of topics will be available on the first seminar for each group.

Lectures

  • 1. Opening lecture. Cell-cell junctions - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 2. Passive transport processes - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 3. Active transport processes - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 4. Extracellular matrix - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 5. Signal transduction mechanisms I: Types of chemical signaling - Dr. Szeberényi József
  • 6. Signal transduction mechanisms II: The role of G-proteins in signaling - Dr. Szeberényi József
  • 7. Signal transduction mechanisms III: Growth factor signaling - Dr. Szeberényi József
  • 8. Signal transduction mechanisms IV: Stress signaling - Dr. Szeberényi József
  • 9. Signal transduction mechanisms V: Cytokine and integrin signaling - Dr. Szeberényi József
  • 10. Signal transduction mechanisms VI: General features of signal transduction - Dr. Szeberényi József
  • 11. The molecular basis of development - Dr. Sétáló György
  • 12. Apotosis - Dr. Szeberényi József
  • 13. The tumor cell - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 14. DNA tumor viruses - Dr. Sétáló György
  • 15. RNA tumor viruses - Dr. Sétáló György
  • 16. Retroviral oncogenes - Dr. Sétáló György
  • 17. Cellular oncogenes I - Dr. Sétáló György
  • 18. Cellular oncogenes II - Dr. Pap Marianna
  • 19. Cellular oncogenes III - Dr. Pap Marianna
  • 20. Tumor suppressor genes I - Dr. Pap Marianna
  • 21. Tumor suppressor genes II - Dr. Pap Marianna
  • 22. Oncogenes and the cell cycle - Dr. Pap Marianna
  • 23. The multistage mechanism of carcinogenesis I: Experimental carcinogenesis - Dr. Pap Marianna
  • 24. The multistage mechanism of carcinogenesis II: Tumor invasion and metastasis formation - Dr. Pap Marianna
  • 25. Closing lecture of tumor biology - Dr. Pap Marianna
  • 26. Molecular diagnostics - Dr. Berta Gergely
  • 27. Gene therapy I. - Dr. Bátor Judit
  • 28. Gene therapy II. Closing lecture - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella

Practices

  • 1. Phase contrast microscopy. Polarisation microscopy
  • 2. Phase contrast microscopy. Polarisation microscopy
  • 3. Histochemistry and cytochemistry of macromolecules
  • 4. Histochemistry and cytochemistry of macromolecules
  • 5. Membrane, transport, extracellular matrix
  • 6. Membrane, transport, extracellular matrix
  • 7. Signal transduction. Functional imaging of the cell
  • 8. Signal transduction. Functional imaging of the cell
  • 9. Tumor biology
  • 10. Tumor biology
  • 11. Apoptosis
  • 12. Apoptosis

Seminars

  • 1. Cytoskeleton
  • 2. Membrane
  • 3. Transport
  • 4. Extracellular matrix
  • 5. Types of chemical signaling. Receptors.
  • 6. Signal transduction mechanism: The cAMP pathway
  • 7. Signal transduction mechanisms: the phospholipase C pathway. Growth factor and cytokine signaling
  • 8. Developmental biology. Apoptosis.
  • 9. The tumor cell
  • 10. Tumor viruses
  • 11. Retroviral oncogenes. Cellular oncogenes
  • 12. Tumor suppressor genes. Oncogenes and the cell cycle.
  • 13. The multistage mechanism of carcinogenesis
  • 14. Molecular medicine
  • 15. SEMESTER TEST
  • 16. SEMESTER TEST

Reading material

Obligatory literature

Cooper, G.M.: The Cell. A Molecular Approach.

Literature developed by the Department

Notes

M. Pap (editor): Molecular Cell Biology Laboratory Manual
Szeberényi, J., Komáromy, L.: Molecular Cell Biology Syllabus

Recommended literature

Conditions for acceptance of the semester

Maximum of 25 % absence allowed

Mid-term exams

Tests (multiple choice) on weeks 4, 7, 10 (mid-term) and 14 (end-semester test). Topics of the test are the topics of lectures, seminars and practicals discussed and performed until the date of the test. Make up of tests performed on weeks 4, 7 and 10 is possible in canse of 1 test, if student provide official certificate of the absence and has written the two other mid-terms. Make up of end-semester test is not possible.

Making up for missed classes

Extra lab programs at the end of each practical cycle.

Exam topics/questions

Theoretical examination questions
1. Proteins
2. Lipids
3. Carbohydrates
4. Nucleosides, nucleotides
5. The structure of DNA
6. Experiments proving that DNA is the genetic material
7. The structure and types of RNA
8. Comparison of pro- and eukaryotic cells
9. Methods of immunocytochemistry
10. Restriction endonucleases
11. Southern blotting
12. DNA sequencing
13. DNA chips
14. Genomic libraries
15. Polymerase chain reaction
16. Transgenic organisms
17. Targeted gene inactivation
18. Inhibition of gene expression at the level of mRNA
19. cDNA libraries
20. Northern blotting
21. Immunoprecipitation and Western blotting
22. The structure of cell nucleus
23. The organisation of chromatin
24. Unique and repetitive sequences
25. The chemical composition of chromatin
26. The phases of cell cycle
27. The regulation of cell cycle
28. Mitosis
29. Meiosis
30. General features of replication
31. The mechanism of replication in prokaryotes
32. Eukaryotic replication
33. DNA repair
34. The mechanism of prokaryotic transcription
35. General features of eukaryotic transcription
36. Synthesis and processing of eukaryotic pre-rRNA
37. Synthesis of pre-mRNA in eukaryotes. Cap-formation and polyadenylation.
38. Pre-mRNA splicing
39. Synthesis of aminoacyl-tRNA
40. The structure and function of ribosomes
41. The genetic code
42. Initiation of translation
43. Elongation and termination of translation
44. General features of translation
45. The lactose operon
46. The tryptophan operon
47. Cloning by nuclear transplantation
48. Regulation of pre-mRNA synthesis and processing in eukaryotes
49. Regulation of mRNA transport, translation and degradation in eukaryotes
50. Regulation of protein activity and degradation in eukaryotes
51. Eukaryotic transcription factors
52. The mechanism of action of steroid hormones
53. Rough endoplasmic reticulum
54. Golgi complex. Protein glycosylation
55. The mechanism of secretion
56. Endocytosis
57. The mechanism of vesicular transport
58. Lysosomes. Smooth endoplasmic reticulum
59. Oxygen free radicals. Membrane damage. Lipid peroxidation
60. The structure and function of mitochondria
61. The genetic apparatus of mitochondria
62. Mitochondrial diseases
63. Microtubules
64. Microfilaments
65. Intermediate filaments
66. The cell membrane
67. Cell junctions
68. Passive transport
69. Active transport
70. The extracellular matrix
71. Types of chemical signaling
72. cAMP-mediated signal transduction
73. Phospholipid-derived second messengers
74. Growth factor signaling
75. Cytokine signaling
76. Stress signalling
77. Cell-matrix connections. Integrin signaling
78. TGF-beta, Wnt, Notch, Hedgehog signaling
79. The role of protein kinases in cell regulation
80. Signal amplification. Signal termination. Signaling networks
81. Molecular basis of development
82. The physiological and pathological role of apoptosis
83. The mechanism of apoptosis
84. General features of the tumour cell
85. Oncogenic DNA viruses
86. Retroviruses
87. Retroviral oncogenes
88. Identification of cellular oncogenes by gene transfer
89. Oncogenesis by weakly transforming retroviruses
90. Mechanisms of cellular oncogene activation
91. General features of tumour suppressor genes
92. Rb and p53 proteins
93. The role of tumour suppressor genes in Wilms tumour, neurofibromatosis, colon and breast cancer
94. The role of oncogenes in cell cycle regulation
95. Phases of experimental carcinogenesis
96. Steps of carcinogenesis in naturally occurring tumors
97. Molecular diagnosis of inherited diseases
98. Molecular diagnosis of tumors and infectious diseases
99. Methods of gene transfer
100. Human gene therapy

Examiners

  • Dr. Bátor Judit
  • Dr. Berta Gergely
  • Dr. Kemény Ágnes
  • Dr. Mikó Éva
  • Dr. Palkovics Tamás
  • Dr. Pap Marianna
  • Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • Dr. Sétáló György
  • Dr. Szeberényi József

Instructor / tutor of practices and seminars

  • Balassa Tímea
  • Balogh Bálint
  • Brandt Barbara
  • Csabai-Tanics Tímea Judith
  • Dr. Bátor Judit
  • Dr. Berta Gergely
  • Dr. Bogdán Ágnes
  • Dr. Boros Melinda
  • Dr. Fekete Zsuzsanna
  • Dr. Kemény Ágnes
  • Dr. Pap Marianna
  • Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • Dr. Sétáló György
  • Dr. Szeberényi József
  • Dr. Tarjányi Oktávia
  • Feketéné Dr. Kiss Katalin
  • Les Hajnalka
  • Németh Marica
  • Schipp Renáta
  • Stayer-Harci Alexandra