Molecular Cell Biology for Students of Dentistry 2

Data

Official data in SubjectManager for the following academic year: 2020-2021

Course director

  • György SÉTÁLÓ Dr.

    associate professor,
    Department of Medical Biology and Central Electron Microscope Laboratory

Number of hours/semester

lectures: 28 hours

practices: 14 hours

seminars: 0 hours

total of: 42 hours

Subject data

  • Code of subject: OSA-MF2-T
  • 3 kredit
  • Dentistry
  • Basic modul
  • spring
Prerequisites:

OSA-MF1-T completed

Exam course:

yes

Course headcount limitations

min. 1

Available as Campus course for . Campus-karok: ÁOK

Topic

To teach students aspects of molecular cell biology that are essential for clinical subjects, with special respect to the cell membrane and the extracellular matrix, intracellular signal transduction, cellular and molecular mechanisms of carcinogenesis and molecular medicine.

Lectures

  • 1. Opening lecture - Dr. Sétáló György
  • 2. Passive transport - Dr. Kemény Ágnes
  • 3. Active transport - Dr. Kemény Ágnes
  • 4. The extracellular matrix - Dr. Berta Gergely
  • 5. Types of chemical signaling - Dr. Sétáló György
  • 6. Heterotrimeric G-proteins in signaling - Dr. Sétáló György
  • 7. Signal by catalytic receptors - Dr. Sétáló György
  • 8. Signaling of cellular stress - Dr. Sétáló György
  • 9. Cytokine and integrin signaling - Dr. Sétáló György
  • 10. General features of signal transduction - Dr. Sétáló György
  • 11. The molecular basis of development - Dr. Sétáló György
  • 12. Types of cell death: necrosis and apoptosis - Dr. Bátor Judit
  • 13. The mechanism of apoptosis - Dr. Bátor Judit
  • 14. The tumor cell - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 15. DNA tumor viruses - Dr. Bátor Judit
  • 16. RNA tumor viruses - Dr. Bátor Judit
  • 17. Retroviral oncogenes - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 18. Cellular oncogenes I - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 19. Cellular oncogenes II - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 20. Cellular oncogenes III - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • 21. Tumor suppressor genes I - Dr. Sétáló György
  • 22. Tumor suppressor genes II - Dr. Sétáló György
  • 23. Oncogenes and the cell cycle - Dr. Sétáló György
  • 24. The multistage mechanism of carcinogenesis I: Experimental carcinogenesis - Dr. Sétáló György
  • 25. The multistage mechanism of carcinogenesis II: Tumor invasion and metastasis formation - Dr. Sétáló György
  • 26. Molecular diagnostics - Dr. Berta Gergely
  • 27. Gene therapy - Dr. Bátor Judit
  • 28. Closing lecture - Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella

Practices

  • 1. Introduction
  • 2. Light microscopy
  • 3. Isotopes
  • 4. Centrifugation and chromatography
  • 5. The magnification of micrographs
  • 6. Protein electrophoresis and Western blotting
  • 7. DNA isolation
  • 8. Histochemistry of macromolecules, immune and enzyme histochemistry
  • 9. Phase contrast microscopy, polarisation microscopy
  • 10. The tumor cell I
  • 11. The tumor cell II
  • 12. Apoptosis I
  • 13. Apoptosis II
  • 14. Exam consultation

Seminars

Reading material

Obligatory literature

Literature developed by the Department

Szeberényi, J., Komáromy, L.: Molecular Cell Biology Syllabus
M. Pap and G. Sétáló Jr. (editors): Molecular Cell Biology Laboratory Manual for Students of Dentistry

Notes

Recommended literature

Gerald Karp: Cell and Molecular Biology
Cooper, G.M.: The Cell. A Molecular Approach.
Lodish et al.: Molecular Cell Biology
Alberts et al.: Molecular Biology of the Cell
Szeberényi J.: Experiments in Molecular Cell Biology

Conditions for acceptance of the semester

Maximum of 25 % absence allowed

Mid-term exams

Mid-term tests

Making up for missed classes

It is not possible to make up for missed lectures.

Exam topics/questions

Theoretical examination questions
1. Proteins
2. Lipids
3. Carbohydrates
4. Nucleosides, nucleotides
5. The DNA molecule
6. DNA as the genetic material (experimental evidences)
7. Types of RNA
8. Pro- and eukaryotic cells
9. Methods of immunocytochemistry
10. Restriction endonucleases
11. Southern blotting
12. Determining the sequence of DNA
13. DNA chips
14. Genomic libraries
15. Polymerase chain reaction
16. Transgenic organisms
17. Targeted gene inactivation
18. Inhibition of gene expression at the level of mRNA
19. cDNA libraries
20. Northern blotting
21. Immunoprecipitation and Western blotting
22. The structure of the nucleus
23. Multilevel chromatin organization
24. Unique and repetitive sequences
25. The chemical composition of chromatin
26. Phases of the cell cycle
27. Regulation of the cell cycle
28. Mitosis
29. Meiosis
30. General features of replication
31. Mechanism of replication in prokaryotes
32. Eukaryotic replication
33. DNA repair
34. The mechanism of prokaryotic transcription
35. General features of eukaryotic transcription
36. Synthesis and processing of eukaryotic pre-rRNA
37. Synthesis of pre-mRNA in eukaryotes, modifications at the 5’ and 3’ ends
38. Pre-mRNA splicing
39. Synthesis of aminoacyl-tRNA
40. The structure and function of ribosomes
41. The genetic code
42. Initiation of translation
43. Elongation and termination of translation
44. General features of translation
45. The lactose operon
46. The tryptophan operon
47. Cloning by nuclear transplantation
48. Regulation of pre-mRNA synthesis and processing in eukaryotes
49. Regulation of mRNA transport, translation and degradation in eukaryotes
50. Regulation of protein activity and degradation in eukaryotes
51. Eukaryotic transcription factors
52. The mechanism of action of steroid hormones
53. Rough endoplasmic reticulum
54. Golgi complex and the glycosylation of proteins
55. The mechanism of secretion
56. Endocytosis
57. The mechanism of vesicular transport
58. Lysosomes and the smooth endoplasmic reticulum
59. Oxygen free radicals and membrane damage
60. The structure and function of mitochondria
61. The genetic apparatus of mitochondria
62. Mitochondrial diseases

63. Microtubules
64. Microfilaments
65. Intermediate filaments
66. The cell membrane
67. Cell junctions
68. Passive transport
69. Active transport
70. The extracellular matrix
71. Types of chemical signaling
72. cAMP-mediated signal transduction
73. Phospholipid-derived second messengers
74. Growth factor signaling
75. Cytokine signaling
76. Stress signalling
77. Cell-matrix connections, integrin signaling
78. TGF-beta, Wnt, Notch, Hedgehog signaling
79. The role of protein kinases in cell regulation
80. Signal amplification. Signal termination. Signaling networks
81. The molecular basis of embryonic development
82. The physiological and pathological role of apoptosis
83. The mechanism of apoptosis
84. General features of the tumour cell
85. Oncogenic DNA viruses
86. Retroviruses
87. Retroviral oncogenes
88. Identification of cellular oncogenes by gene transfer
89. Oncogenesis by weakly transforming retroviruses
90. Mechanisms of cellular oncogene activation
91. General features of tumour suppressor genes
92. Rb and p53 proteins
93. The role of tumour suppressor genes in Wilms tumour, neurofibromatosis, colon and breast cancer
94. The role of oncogenes in cell cycle regulation
95. Phases of experimental carcinogenesis
96. Steps of carcinogenesis in naturally occurring tumors
97. Molecular diagnosis of inherited diseases
98. Molecular diagnosis of tumors and infectious diseases
99. Methods of gene transfer
100. Human gene therapy

Laboratory exam questions:
Theoretical questions
1. Structure and operation of the light microscope
2. Sample preparation for light microscopy
3. Radioactive isotopes in molecular cell biology
4. Homogenisation
5. Cell fractionation
6. Hypopycnic gradient centrifugation
7. Isopycnic gradient centrifugation
8. Gel filtration
9. Ion exchange chromatography
10. Affinity chromatography
11. Protein electrophoresis
12. Isolation of mammalian DNA
13. Structure and operation of the polarisation microscope
14. Structure and operation of the phase-contrast microscope
15. Histochemistry of the cytoplasm
16. Immune cytochemistry und enzyme histochemistry
17. Analysis of apoptotic processes
18. Structure and operation of the electron microscope
19. Sample preparation for electron microscopy, from fixation through sectioning
20. Contrasting methods for electron microscopy


Practical tasks
21. Observation of prokaryotic cells by immersion objective, Gram staining
22. Determination of the cell diameter by light microscopy
23. Analysis of human peripheral blood smear, May-Grünwald-Giemsa staining
24. Analysis of a light microscopic autoradiographic preparation
25. Analysis of bromodeoxyuridine labeling
26. Preparation of a linear density gradient
27. Analysis of the result of gel filtration
28. Steps of protein elelctrophoresis, detection of proteins in the gel and on the membrane
29. Steps of Western blot, analysis of the result
30. Operation of the photometer - determination of DNA and RNA concentrations
31. Operation of the polarisation microscope
32. Centring adjustment and operation of the phase-contrast microscope
33. Analysis of a nucleic acid histochemistry preparation, chromosomes stained by Giemsa dye
34. Analysis of a cytoplasm histochemistry preparation
35. Analysis of immune histochemical preparations
36. Comparison of normal and Burkitts lymphoma lymph nodes, identification of mitotic cells
37. Identification of normal and cancer cells in Papanicolau smears
38. Identification of normal and apoptotic cells
39. Identification of nuclear components on micrographs
40. Identification of cytoplasmic organelles on micrographs

Examiners

  • Balogh Bálint
  • Csabai-Tanics Tímea Judith
  • Dr. Bátor Judit
  • Dr. Berta Gergely
  • Dr. Czéh Boldizsár
  • Dr. Fekete Zsuzsanna
  • Dr. Kemény Ágnes
  • Dr. Pap Marianna
  • Dr. Rimayné Dr. Ábrahám Hajnalka Gabriella
  • Dr. Sétáló György
  • Dr. Tarjányi Oktávia
  • Feketéné Dr. Kiss Katalin
  • Les Hajnalka
  • Németh Marica
  • Schipp Renáta
  • Varga Judit

Instructor / tutor of practices and seminars

  • Dr. Bátor Judit
  • Dr. Pap Marianna
  • Feketéné Dr. Kiss Katalin