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1. Altalanos bevezetés

1.1. Transzgenikus allatok és sejtvonalak létrehozasa

Az emberi szervezet molekularis szintli fiziologias és patologias miitkodésének alaposabb
megértéséhez (alapkutatashoz) és az j gyogyszerek preklinikai kutatasahoz elengedhetetlen a
megfeleld modellorganizmusok kivalasztasa, amelyek megfeleld mértékben utdnozzak a
human fehérjék miikodését. Sok esetben még nem létezik a legalkalmasabb él6lény, de a
rohamosan fejléd6é molekularis biologiai eszk6zok segitségével egyre inkabb elérhetove valik,
hogy a kutatélaboratoriumok maguknak megalkossak a tervezett modellorganizmust. A
legegyszeriibb ¢€s legelterjedtebb modszer az emlds sejtek transzfekcidja, mint a kinai horcsog
petefészek epitél (CHO) és human embrionalis vese sejt (HEK293), hogy ezek a sejtek
expresszaljak az emberi fehérjét, és igy lehetové tegyék a human fehérje mitkodésének in vitro
vizsgalatat. Azonban az in vitro kisérletek nem adnak teljes képet a fehérjék komplex, é16
szervezetben mutatott miakodésérdl, ezért a kisérleti allatok nélkiilozhetetlenek a
mechanizmusok pontos megismerésében. Az egerek és patkanyok az emberekkel nagyfokt
homologiat mutatnak sok fehérje esetében, igy els6ként gyakran az egerek és patkanyok vad
tipust fehérjéinek mikodését vizsgaljak, majd ezt 6sszehasonlitjak a human eredményekkel.
Gyakori eszkdz a génhianyos (knockout - KO) allatok hasznalata, amelyeknél altalaban
valtozasokat tapasztalhatunk (tilnyomoéan sériilt funkciot) a vad tipusa (WT) allatokkal
szemben, amik alapjan kovetkeztetnek az adott fehérje miikodésére. Viszonylag 0j és még
kevéssé elterjedt modszer az ilyen allatokban helyettesiteni a hianyzo gént a human
homologjaval azért, hogy a human fehérje mitkdését allatokban vizsgalhassuk. Természetesen
ez sem képes tokéletesen tiikkrozni az emberi szervezetben valdo miikodését, hiszen tovabbra is
az allati szervezet kornyezetében mikodik az adott human fehérje. Azonban, ennek ellenére is
értekes informaciokat nyerhetiink az emberi és allati fehérje mikodése kozti faji
kiilonbségekrdl, illetve a gyogyszerkutatasban egy 0 hatdanyag tesztelése soran kdzelebbi
képet kaphatunk arrol, amit az human szervezetben varhatunk a klinikai tesztelések soran.

A Pécsi Tudoményegyetem, Altalanos Orvostudomanyi Kar, Farmakologiai ¢és
Farmakoterapiai Intézetben a kutatécsoportunk érdeklédésének kdzéppontjaban all a fajdalom
Szomatosztatin receptor 4 (SST4) receptorok mechanizmusanak vizsgalata. A PhD kutatasom
soran az ezekhez fiz6d6 aktualis kutatasi projektek szamara hoztam 1étre

modellorganizmusokat, és teszteltem a transzgén expresszidjat és a fehérje mitkodését.



1. Az SSTs4 receptor egy igéretes gyogyszercélpont a fajdalomcsillapitds és
gyulladascsokkentésben. Az 1) SSTs agonista gyogyszerjelolt molekuldk preklinikai
tesztelésére humanizalt SST4 egerekre volt sziikségiink. Erre a célra szomatosztatin
receptor 4 génhianyos (Sstr4 KO) egerekbe bevittilk @ human homolog gént (hSSTR4).
A projektben az els6 transzgenikus egerek mar 1étrejottek, mire megkezdtem a PhD
munkamat, igy én az egerek mélyrehato és alapos vizsgalataban tudtam részt venni.

2. A szerves poliszulfidok fajdalomcsillapité és gyulladascsokkentd hatasu TRPAL1
agonistak, és igéretes gyogyszerhatoanyagok. A hatasmechanizmusuk alaposabb
megértésére azonositani akartuk a kotohelytliket a human TRPAL receptoron. Erre a célra
PCR alapu helyspecifikus mutagenezissel szamos TRPA1 valtozatot hoztunk létre,
melyekben bizonyos ciszteineket alaninra cseréltiink. A TRPA1 valtozatokat CHO
sejtekben expresszaltattunk, a funkciojukat in vitro kisérletekkel vizsgaltuk. A szerves
poliszulfidok kotohelyét annal a mutacional azonositottuk, amelyben a szerves
poliszulfidok nem tudtak hatast kivaltani - tgyelve arra, hogy ezt ne globalis
funkcidvesztés okozza, amit pozitiv kontroll agonista hatasaval ellendriztiink.

3. Az asztrocitak szerepét vizsgaltuk a TPRA1 medialt kuprizon indukalt
demielinizacioban, egy Szkler6zis multiplex (SM) betegségmodellben. Erre a célra
specifikusan titottiik ki a Trpal gént az asztrocita sejtekb6dl Cre-loxP rendszerrel. A loxP
helyek kozotti Trpal génszakasz kivagodott és miikodésképtelenné valt azokban a
sejtekben, amelyekben a Cre-rekombinaz expresszalodott. A Cre-rekombinaz
expresszidjat pedig asztrocita specifikus génhez kotottiik (Gfap), ezzel biztositva, hogy
csak asztrocita sejtekben torténik meg a génkiiités. Az igy létrehozott egerekben

vizsgaltuk a kuprizon kezeléssel kivaltott demielinizacio jellegzetességeit.

1.2. Fajdalom és gyulladas

A Nemzetkozi Fajdalomkutatd Szovetség (International Association for the Study of Pain,
IASP) meghatarozasa szerint a fajdalom a potencialis vagy mar létrejott szoveti sériiléshez
kapcsolodo kellemetlen érzés. Elkiilonithetd a nocicepciotol, mivel a fajdalom nem kizardlag a
szenzoros neuronok miikddésébol adodik, hanem egy komplex szubjektiv élmény, amelyet a
biologiai, pszichikai és szocialis tényezok befolyasolnak. Habar a fajdalomnak elsédlegesen
adaptiv szerepe van, a kronikus fajdalom karos hatassal lehet a testi funkciokra, illetve a

szocialis €s pszichologiai jollétre (1).



A gyulladas egy fontos védekezési mechanizmus, mely soran a szervezet felismeri és
eltavolitja a karos és idegen stimulust (elsédlegesen korokozokat), majd megkezdi a gyogyulasi
folyamatot. A tartos gyulladas azonban karos hatassal van a szervezetre, és a legtobb kronikus
degenerativ betegség kulcstényezéje (pl. rak, diabétesz, reumatoid artritisz, allergias asztma,
Alzheimer-kor, szklerozis multiplex) (2). Kiilon figyelmet igényelnek azok az esetek, amikor
maga a gyulladas stulyosabb szoveti karosodast okoz, mint az eredeti stimulus, ilyen példaul a
tuberkulozis, szilikézis, érelmeszesedés, allergia és autoimmun betegségek. Bar szamos
mechanizmus van a gyulladas megsziintetésére, a természeténél fogva hajlamos egy
onfenntarté folyamatot létrehozni, ugyanis a gyulladas szovetkarosodashoz vezethet, a
sejtnekrozis pedig serkenti a gyulladast. Igy a gyulladas képessé valhat az eredeti stimulus
megsziinése utan is fennmaradni, és egy el nem mulo (non-resolving) gyulladast kialakitani (3).
A tartos gyulladés kezelése tehat elsddleges a velejaro tajdalom megsziintetésében, a karosodott
funkciok visszaallitasaban, tovabbi szovodmények megeldzésében vagy mérséklésében, €s a
gyogyulasi folyamatok akadalytalan miikkodésében.

A kronikus fajdalom és a tartds gyulladas kezelésére hasznalt hagyomanyos gyogyszerek
(pl. opioidok, szteroidok, nem szteroid gyulladascsokkentok - NSAID) azonban gyakran nem
elég hatékonyak, vagy sulyos mellékhatasokat okozhatnak a hosszatavu kezelés soran (4-8).
Ezért sziikséges megismerniink alaposabban ezeket a patomechanizmusoknak, hogy jobb
gyogyszercélpontokat azonosithassunk. fgy keriiltek a kutatasunk kozpontjaba a TRPAL és
SST4receptorok, amelyek igéretes gyodgyszercélpontok a kronikus fajdalom és tartos gyulladas

kezelésében.

1.3. TRPA1

A Tranziens Receptor Potencial Ankirin 1 (TRPAL) receptor egy nem-szelektiv, natrium
¢és kalcium-atereszté kation-csatorna, amely tulnyomoéan a kapszaicin-érzékeny peptiderg
nociceptiv primer szenzoros neuronokon expresszalodik, ezen sejtek tobb, mint 90%-aban ko-
lokalizalodik a Tranziens Receptor Potencial Vanilloid 1 (TRPV1) receptorral (4,9,10). A
TRPAL receptor az irritdciok széles valasztékat képes érzékelni, mint példaul a mechanikai
stimulust, széls6séges hideget €s meleget, savas kémhatast, reaktiv oxidativ gyokoket és a mar
azonositott agonistak ezreit (11). A TRPA1 receptor aktivacioja akut fajjdalomérzetet valt ki,
amely értagulatot és szoveti duzzanatot okoz, eldsegitve a neurogén gyulladas kialakuldsat.
Azonban a TRPAI aktivaciot kovetden a nociceptiv idegsejt ellenszabalyozast is végez azaltal,

hogy féjdalomcsillapito ¢és gyulladascsokkentd neuropeptideket is felszabadit, mint a
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szomatosztatin ~ (12-15). A  szomatosztatin  szisztémas  fajdalomcsillapitdo  és

gyulladascsokkent6 hatasat az SSTs receptor kozvetiti (16-25).

1.4. Szomatosztatin

A szomatosztatin egy ciklikus neuropeptid, melynek két izoformaja van: SST-14 és SST-
glukagon, inzulin, acetilkolin, glutamat és gamma-aminovajsav (GABA) (26). Széleskori
fiziologiai funkciot szabéalyoz, mint az alvast, motoros aktivitast, emociokat, tanulast és
memoriat; tovabba szerepe van kiilonb6zd patologias allapotok szabalyozasaban, mint a
fajdalom és gyulladas (16-25), neurodegeneracio (27—30), szorongas és depresszio (31-34). A
kozponti idegrendszerben talalhatdak hosszu nyulvanyt és rovid proximalis GABA-erg
interneuronok, melyek szekretaljak a szomatosztatint (35-37). A periférian a kapszaicin-
érzékeny peptiderg szenzoros neuronokon figyelték meg a szomatosztatin szekréciot, valamint

a szisztémas gyulladascsokkentd és fajdalomcesillapité hatasat, melyet “szenzokrin” hatasnak
neveztek el (38,39).

1.5. Szomatosztatin receptor 4 (SST.) receptor

A szomatosztatin széleskorti hatasait 6t gatlo hatasa (inhibitor) Gi-protein kapcsolt receptor
kozvetiti, melyek az SST1-SSTs jelolést kaptak. Ezeket a receptorokat két csoportra oszthatjuk,
a SRIF:-be tartozik az SST2, SSTs és SSTs, ezeket specifikusan aktivalja az oktreotid, mig a
SRIF2-be tartozdé SST1 és SST4 receptorokat a CGP 23996 agonista aktivalja specifikusan (40—
42). A kutatdcsoportunk korabbi eredményei bizonyitjak, hogy az SST4 receptor aktivacioja
fajdalomcsillapitos, gyulladascsokkentd, szorongascsokkentd és antidepresszans hatast valt ki
mas hormonok szekréciojanak befolyasolasa nélkiil (16-25,27-34,38,39,43,44). igy valt az
SST4 receptor egy igéretes Uj gyogyszercélponttd, és az utdbbi idében szamos gyogyszercég
elinditotta az SSTs agonistak fejlesztését (45-51). Az SSTs receptornak nincs ismert
antagonistaja, igy ez idaig in vivo funkcionalis vizsgalataihoz Sstr4 knockout allatokat
hasznaltunk negativ kontrollként (15,20-22,45).



2. Szomatosztatin receptor 4 (SST4) humanizalt egér l1étrehozasa és

az expresszio karakterizalasa

2.1. Bevezetés

Szamos kutatas folyik - koztiik az intézetiinkben is - az SST4 funkcidinak vizsgalatara. Mivel
nincs ismert SST4 specifikus antagonista, ezért a korabbi kutatasaink soran Sstr4 knockout és
vad tipust egereket hasznaltunk (15,20-22,45). Az Sstr4 KO egérmodell és a szintetikus SST4
receptor agonista J-2156 vizsgalataval kapcsolatban szamos kutatdcsoport, koztik a mi
intézetiink is igazolta, hogy az SST4 receptor egy egyedi és Ujszerii gyogyszercélpont lehet a
kronikus fajdalom és a depresszio kezelésére (16,24,52-56). Ezen korképek kezelésére
hasznalhatd jelenlegi gyogyszerek gyakran nem elég hatasosak és stlyos mellékhatasokat
okoznak a hosszatavi kezelés soran (4-8). Igy keriilt a gyogyszerfejlesztés érdeklédésének
kozéppontjaba az SST4 receptor, €s a gydgyszergyarak mar szamos nem-peptid SST4 agonista
fejlesztésébe kezdtek (51,54). Az agonistak tervezését jelentGsen segitette a human receptor
szerkezetének in silico 3D modellezése (57,58).

Célunk volt ezeket az uj agonistakat (J-2156 és pirrolo-pirimidin szarmazékok) SSTs
humanizalt egereken tesztelni. A human receptort expresszald egérmodell kifejezetten hasznos
a transzlacios gyogyszerkutatasban, mivel jobban eléremutatd eredményeket adhat a human
betegségekkel kapcsolatban és relevansabb modellallat a gyogyszerjelolt anyagok tesztelésében
(59,60). Humanizalt egereket tilnyomoéan human sejtek, szovetek vagy tumorok beiiltetésével
hoznak létre, féleg immunolédgiai és onkoldgiai kutatasi célokra (61-66), de a genetikali
modositas is egyre gyakrabban valasztott modszer (67—70). Genetikai modositassal mar
sikeresen kicserélték az egér bradikinin B receptor génjét a human megfeleléjével, hogy az in
vitro eredmények utan az NVP-SAA164 human B receptor specifikus antagonistat in vivo is
teszteljék. Az NVP-SAAL64 anti-hiperalgézias hatast valtott ki a humanizalt egerekben, de a
WT és a KO egerekben nem (71). Egy masik kisérletben kiilonbséget talaltak az egér €s a human
melanokortin receptorok kozott az MCIR humanizalt egerek hasznalataval, mint példaul az
erdsen ligandfiiggd eumelanogenezis a humanizalt egérben. Ezzel szemben az egér Mclr
receptor a WT egérben in vivo, tovabba transzfektalt sejtvonalakban az egér és human receptor
is ligandfiiggetlen szignalizaciot mutatott (72). Ezek is bizonyitjak, hogy az in vitro és in vivo
koriilmények kozott a fehérjék eltérd miikdodésérdl a humanizalt modellallatok értékes

informaciokkal szolgalhatnak.



2.2. Célkitizés

Az SST4 expresszio és funkcid viszonylag jol karakterizalt az egéragyban (73), de a human
receptorrol még keveset tudunk. Ezért a célunk volt, hogy olyan humanizalt egeret hozzunk
létre transzpozon vektorral, mely tartalmazza az human hSSTR4 gént a szabalyozo elemeivel
egyiitt, majd ennek a random inszercids helyeit feltérképezziik, karakterizaljuk az expresszigjat
(mintazatat és szintjét), azonositsuk az expresszalo idegsejt tipusokat az agyban, és kivalasszuk

a tovabbi funkcionalis kisérletekre legalkalmasabb transzgenikus egérvonalat.

2.3. Eredmények

A projekt legfontosabb eredménye, hogy sikeresen létrehoztunk SSTR4 humanizalt
egérvonalakat a PB transzpozon vektor random inszercidjaval, és karakterizaltuk a human
receptort expresszaldé neuronokat a fajdalom- ¢és hangulatszabalyozashoz kapcsolodo
agyteriileteken. Ezek az egerek hasznos modellallatok lehetnek az SST4 receptor preklinikai
kutatdsaban, ami egy 0j célpont a fajdalomcsillapito, gyulladascsokkentd és antidepresszans
gyogyszerek fejlesztésében (16,20,21).

A népszerli knock-in technika helyett azért valasztottuk a random inszerciot, hogy elkeriiljiik
az egér Sstrd gén szabalyozo elemeinek a befolyasat a transzgénen. A transzpozon vektorba az
human gén kodold szakaszan kiviil az humén szabalyoz6 elemeket is beillesztettiik, €és a
transzgén végein inszulatorokkal gatoltuk a pozicio effektust, hogy remélhetdleg a transzgén
minél inkabb az huméanhoz hasonld expresszids mintdzatot mutasson. A modszer hatranya
viszont, hogy a létrehozott transzgenikus egerekben az integracios hely feltérképezése
problémas lehet, tovabba az inszercio félbeszakithat egér géneket (81,82).

A PB transzpozon random inszercidja a mi esetiinkben tobb integraciés helyet
eredményezett az FO egér generacidban. Ezek koziil harom kopidnak a helyét sikeresen
meghataroztuk LM-PCR technika (75) segitségével (Chr3, Chrl0 és ChrX), de két kopia
elhelyezkedése még tovabbra is ismeretlen (U1 és U2). Az, hogy sikertelen volt az Ul és U2
integracios helyének meghatarozasa, arra enged kdvetkeztetni minket, hogy a transzgének a
genom ismétlodd szakaszaiba integralddhattak, ami jelentdsen neheziti a géntérképezést. A
Chr3 kopia helyének pontos ismeretében helyspecifikus PCR probat tudtunk tervezni, aminek
a segitségével nemcsak a transzgén jelenlétét tudjuk meghatdrozni, hanem a hetero- és
homozigota egereket is meg tudjuk kiilonboztetni.

Az FO generdcidban mindhdrom transzgenikus ndstény egér vemhességében és sziilésében

komplikaciok 1éptek fel, amibe végiil elpusztultak. Ez arra enged kovetkeztetni minket, hogy



mindhdrom esetben a transzgén tobbszordsen inszertalédhatott a genomba, és az ebbdl
kovetkezO SST4 overexpresszid okozhatta a problémat, mivel az egy-egy kopiat hordozd
utédokban ez nem fordult el6 tobbszor. Ez a megfigyelés alatamasztja, hogy az SST4 szerepet
jatszik terhességben, ugyanis a human placentaban tilnyomoan ezt a szomatosztatin receptort
talaltak meg (83,84).

A Dbiolumineszcens in vivo képalkotas a hSSTR4-kapcsolt luciferaz enzim expressziojat
mutatta a kiilonboz6 szervek tertiletén, a legerésebb lumineszcens jelet az agy teriiletén mutatta.
A Chr3 egerek a leger6sebb expressziot a nagyagy teriiletén mutattak, mig az U1 és U2 kopiak
gyengébbet mutattak itt, de er6sebbet a bulbus olfactorius és az agy hatso teriiletén. Az RT-
qPCR alatamasztotta ezeket az eredményeket, mivel ebben az esetben is az agykéregben és a
BO-ban mértiik a legmagasabb hSSTR4 expresszids szintet. Az egér Sstrd gén expresszidja
valamivel gyengébb volt, mint a hSSTR4 a Chr3 egérben, a tiid6 kivételével, ami a WT egérben
sokkal magasabb volt, tovabba a kisagyban és az agytorzsben joval alacsonyabb volt. Ezek az
eredményeink megegyeznek a korabbi atfogo expresszids vizsgalatok adatbazisaival az egér és
human receptor Osszehasonlitasaban (73,84-86). Ul és U2 kopiak expresszidja egymassal
hasonlésagot mutattak mind a luciferaz IVIS-ban, mint RT-qPCR eredményeiben, ami arra
enged kovetkeztetni minket, hogy esetleg ez a két kopia valdjdban azonos. Tovabb erdsiti ezt a
feltevést, hogy az U1l és U2 egérvonalak 6sszekeresztezésében genotipizaltunk 100 utédot az
F2 generacioban, és nem talaltunk hSSTR4 KO egyedet. A transzgén integracios helyétdl
fiiggetleniil, a hSSTR4 expresszids szint és mintazat is egyedenként valtozo volt a has és
medence teriiletén. Az adatbazisok szintén valtozé SSTs4 expresszids szintet (a nem
detektalhatotol a mérsékeltig) dokumentaltak mind az ember, mind az egér gasztrointesztinalis
¢és reproduktiv szervrendszerében (87-91). Ezeket az adatokat alatamasztja a Chr3 egerekben
RT-qPCR-ral mért viszonylag magas hSSTR4 expresszids szint iS. Az adatbazissal szemben
viszont a gyomorban és bélben alacsony hSSTR4 expressziot mértiink. Az agy teriiletén a Chr3-
ban volt a legerésebb luciferaz lumineszcens jel, kozel haromszor erésebb, mint az U1 és U2
egerekben. Tovabba, az Ul és U2 egerekkel ellentétben, a Chr3 egerek esetében
genotipizalassal meg tudtuk kiilonboztetni a hetero- és homozigdta egyedeket, amelyeket in
vivo képalkotasban Gsszehasonlitva azt tapasztaltuk, hogy a homozigétakban a lumineszcens
jelerdsség kétszer akkora, mint a heterozigotakban.

A tdTomato nem mutatott detektalhatd jelet semelyik egérvonalban, sem az in vivo
képalkotasnal, sem a fluoreszcens mikroszkopianal, valdszinilleg a transzgén altalanosan
alacsony expresszidja miatt. A fluoreszcens riporterfehérjéket altalaban valamilyen nagyon

erds viruspromoter (pl. citomegalovirus) vagy egy emlds héztartasi gén promotere (pl.
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elongacios faktor 1 alfa) hajtja meg, hogy megfelelé mennyiségben expresszalodjanak, és erds
jelet adjanak (92). Tovabba, bar a tdTomato toleransabb az N-terminalis fehérjemodositasokra,
mint az mRFP1 elédje (93), mégis azt tapasztaltuk, hogy a tdTomato fluoreszcenciaja
jelentdsen gyengiil a fuziosfehérje formaban a nativ tdTomato proteinhez képest, valdsziniileg
azért, mert a luciferaz kapcsolodasa akadalyozza a tdTomato fehérje folding-ot vagy a
tetramerizaciot (94,95).

A fajok kozotti és az SST receptorcsaladon beliili erds homoldgia miatt nincs megbizhatéan
hSSTR4-specifikus antitest, ezért immunhisztokémia helyett az RNS in situ hibridizacios
technikat, az RN Ascope-ot valasztottuk. A korabbi eredmények alapjan a Chr3 kopiat talaltuk
a legmegfeleldbbnek a tovabbi kisérletekre, ezért ezekben karakterizaltuk a hSSTR4 expressziot
RNAscope technikaval. A hSSTR4 a leger6sebb jelet a hippokampuszban (CA1l és CA2
régioiban) és az agykéregben (Pir, S1, PrL) mutatta, ami 6sszhangban van az egér és ember
expresszios adatbazisaval (87-91). A Chr3 egerekben a hSSTR4 féleg a Vglutl-pozitiv
glutamaterg excitacios neuronokban expresszalodik, hasonldéan az Sstr4-hez a WT egerekben,
de annal lathatéan gyengébb expresszios szinten. A hSSTR4 a GABA-erg interneuronokban is
expresszalodott ugyanezeken az agyteriileteken, mig az egér Sstrd4 expresszidja a centralis
amigdala magjaban talalhatd GABA-erg sejtekben volt megfigyelhetd. Az elsddleges
szomatoszenzoros kéreghen a hSSTR4 leger6sebb expresszioja II-11l. rétegekben volt, ami
jelentésen kiilonbozik az egér Sstrd expresszioval WT egerekben, mely legerésebben az V.
rétegben expresszalodik (73). Egy korabbi tanulmanyban az Sstr4 a WT egerek BO
glomerularis rétegében expresszalodtak, de a granularis rétegében nem (96), mig a
transzgenikus egerekben a hSSTR4 féleg a BO granularis rétegében expresszalodott.

Ezek az expresszios kiilonbségek az human SSTR4 és egér Sstrd kozott adodhatnak a fajok
kozotti kiilonbségbdl, de adodhatnak a humanizalt egérmodell limitacioibol is, mint a pozicid
effektus (82). Ezért ezeket a kiilonbségeket érdemes még tovabb vizsgalni.

Arra a kovetkeztetésre jutottunk, hogy a Chr3 hSSTR4 egérvonalban a transzgén elsésorban
a fajdalom- és hangulatszabalyozasért felels agyrégiok excitatorikus glutamaterg neuronjaiban
expresszalodik, szamos hasonlosagot és néhany kiilonbséget mutatva az Sstr4 expressziohoz
képest WT egerekben. A human receptor funkcidjanak tovabbi alapos vizsgalatat kdvetden a
Chr3 egérvonal alkalmas transzlacios kutatasi eszkoz lehet az SST4 receptor, mint analgetikus,
antidepresszans és gyulladascsokkentd gyogyszercélpont lehet6ségeinek feltarasaban, tovabba

az 1) SST4 agonista gydgyszerjeloltek preklinikai tesztelésében.



3. Szerves poliszulfidok kotohelyének azonositasa a human TRPAL

receptoron

3.1. Bevezetés

A kronikus fajdalom és tartds gyulladas komoly problémat jelentenek a modern
tarsadalomban, vilag szinten az emberek 20-45%-4t érintik (3,97-101). A kronikus fajdalom
kozvetlen hatasa az életmindség csokkenése és akar testi funkciok kiesése (1,102-104). Ha a
tartds gyulladast nem kiséri fajdalom, akkor konnyen rejtve maradhat, de még ugy is
hozzajarulhat sok mas kronikus betegség kialakuldsdhoz, mint példaul a 2-es tipusu
cukorbetegséghez, allergiakhoz, sziv- és érrendszerei betegségekhez és a rak tobb tipusahoz is
(2,105,106). A hagyomanyos fajdalomcsillapitd és gyulladascsokkentd gyodgyszerek, mint a
szteroidok, az NSAID-ok és az opioidok nem alkalmasak hosszatava kezelésre, mert
fokozatosan a mellékhatasaik keriilnek tulstlyba (4-8). Emiatt oOridsi az igény 1j
hatasmechanizmusti gyogyszerek fejlesztésére a kronikus fajdalom és tartdos gyulladas
kezeléséhez. A poliszulfidok igéretes hatdanyagok erre a célra, és a gyogyszerkutatasban egyre
tobbet tanulméanyozzak a hatasaikat. Korabban hidrogén-szulfidnak (H2S) tulajdonitottak a
fajdalomesillapité és gyulladascsokkentd hatdsokat, amely egy gaz halmazallapotu endogén
jelatvivd anyag. Ma mar tisztazott, hogy a gyulladaskor lokalisan felszabadulé H2S spontan
oxidalodik natrium-hidrogén-szulfidda (NaSH) és natrium-szulfidda (NaS), és spontan
polimerizaloédik szervetlen poliszulfidokka (pl. Na»S3). Ezek a hatdéanyagok elég reaktivak
ahhoz, hogy a Tranziens Receptor Potencial Ankirin 1 (TRPAL) receptor ciszteinjeihez
kovalensen kotddjenek és aktivaljak azt (12,107-109). A TRPA1 aktivacio hatdsara
szomatosztatin szabadul fel, ami az SST4 receptoron keresztiil szisztémas fajdalomcsillapitast
¢és gyulladascsokkentést valt ki (16-25). A poliszulfidok ezen a hatasait megsziinteti a Trpal
vagy Sstr4 gén kiiitése (12). Ezek alapjan feltételezhetjiik, hogy a poliszulfidok
fajdalomesillapitd és gyulladascsokkentd hatasat legalabb részben a TRPAI1 receptor
aktivalasaval fejtik ki. A jotékony hatasaik ellenére a szervetlen poliszulfidok nem alkalmasak
gyogyszernek, mivel nagyon reaktiv és instabil molekuldk. Adagoldsuk nagyon nehéz akar
kozvetlen bejuttatassal, akar endogén szintézis altal HoS donor bejuttatasaval (pl. GY'Y4137).
fgy fordult a figyelmiink a biologiailag hasonlé hatasti, de sokkal stabilabb szerves
poliszulfidok felé, mint a dimetil-triszulfid (DMTS), a diallil-triszulfid (DATS) és a diallil-
diszulfid (DADS) felé, amelyek a fokhagymaban természetes modon megtalalhatoak
(12,15,110-114).
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A szervetlen poliszulfidok molekularis hatasmechanizmusat mar széleskorben kutatjak, a
szervesekér6l azonban még nagyon keveset tudunk. Ezért a kutatdbmunkank soran az els6
1épésként azt thztiik ki célul, hogy azonositsuk a szerves poliszulfidok kotohelyét a TRPA1
receptoron helyspecifikus mutagenezis segitségével. A human TRPA1 28 ciszteinje koziil
megvizsgaltuk az elektrofil agonistak konvencionalis kotéhelyét alkotokat az N-terminalis
doménen (C621, C641 és C665) (115-118), illetve a transzmembran régioban elhelyezkedd
fehérjefelszini ciszteineket, amelyek feltételezhetden kotdhelyiil szolgdlnak az erésen hidrofob
agonistaknak (C727 és C834) (119,120). Sikeresen létrehoztunk olyan TRPA1 mutans
valtozatokat, amelyeknek csokkent vagy teljesen megsziint a szenzitivitdsa a szerves
poliszulfidokkal szemben, de mas funkciok sértetlenek maradtak (pl. a nem-elektrofil agonistak
¢s antagonistak hatdsa). A mutans receptorok kotési tulajdonsagait elézetesen in silico
molekularis dokkolasi technikaval vizsgaltuk. A funkcionalis valtozasokat in vitro
modszerekkel vizsgéltuk: kalcium-érzékeny fluoreszcens aramlési citometriaval, radioaktiv

Ca-45 folyadék szcintillacio szamolassal és whole-cell patch-clamp technikaval.

3.2. Célkitiazés

Az endogén, tilnyomoan szervetlen poliszulfidok (pl. Na-szulfid) kétdhelye mar ismert a
TRPAL1 receptoron (121), de az exogén szerves poliszulfidok kotéhelye még feltérképezésre
szorul. Ehhez olyan mutans TRPAL receptor valtozatot szeretnénk létrehozni, amelyet nem
aktivalnak a szerves poliszulfidok, de mas kotohelyi agonistak (pl. karvakrol, timol, mentol)
igen. A TRPA1 mutansok szerves poliszulfid kot tulajdonsagait els6ként szamitogépes

modellezéssel vizsgaljuk, az igy tervezett mutaciokat helyspecifikus mutagenezissel hozzuk

cres

3.3. Eredmények

A fokhagyma eredetli szerves poliszulfidok TPRA1 receptor aktivalo hatdsa jol ismert
(12,15,110,111,144,146-148), azonban kisérleteinkkel mi igazoltuk elséként a helyspecifikus
TRPA1 mutans valtozatokat a szerves poliszulfidok kotéhelyének azonositdsara. Az
eredményeinket a mutans TRPA1 valtozatok szamitogépes modellezése €s harom funkcionalis
tesztje alapjan kaptuk: kalcium érzékeny fluoreszcens aramlasi citometria, radioaktiv Ca-45
folyadék szcintillacio szamlalas és whole-cell patch-clamp. Az eredményeink jelentdsen
atfednek egymassal és alatdmasztjak egymast. Ebben a tanulmanyban bebizonyitottuk, hogy a
szerves poliszulfid DMTS, DADS és DATS kovalensen kotédik a C621, C641 és C665
aminosavakhoz, amivel aktivaljak a TRPA1 receptort. Ezek koziil a legfontosabb szerepe a
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C621-nek van, de a masik két cisztein is hozzajarul az elektrofil agonistak kotéséhez. Csak a
harom cisztein egyiittes mutdcidja vezetett a TRPA1 inszenzitivitdisdhoz a szerves
poliszulfidokkal szemben.

A harom szerves poliszulfid koziil a legnagyobb molekula, a DATS mutatta a legkedvezdbb
kalkulalt kotési szabad entalpiat, de —ahogyan a kisérleti eredmények is kiemelték — az a fontos,
hogy kialakuljon kovalens kotés a C621-gyel, és nem a kotés erdssége. Megjegyzendd, hogy a
TRPA1 apo konformacidoja nem kedvezd az elektrofil agonistak kotésére, ahogyan azt az
elézetesen sziikséges dokkolasi kalkulacioknal lattuk. Az el6zetes dokkolds soran a holo
szerkezeten a kovalens kotésben résztvevd atomok kozott kisebb volt a tavolsag. Ezt a
megfigyelést azzal tudjuk magyarazni, hogy az A-hurok fedi el a kotéhelyet a ligandok eldl az
apo strukturaban, de a holo strukturaban nem. Ahogyan azt mar korabbi cikkek bemutattak
(135,145), az A-hurok felemelkedik az eldzetesen sziikséges agonista kotés hatasara, amiben a
P666 és F669 aminosavak vesznek részt, és majd csak ezutan lesz elérhetd a kotohely.

A C621, C641 és C665 alkotjak az ismert kotdhelyét a legtobb elektrofil agonistanak, kivéve a
az AITC-nek, ami még a K710-es lizinhez is k6tédik az aktivalashoz, illetve a JTO10-nek, ami
egyediil a C621-hez kotédik a TRPA1 aktivaciojahoz (115-118,138).

A radioaktiv Ca-45 folyadék szcintillacios és whole-cell patch-clamp mérésekkel szemben a
Fluo-4 kalcium érzékeny fluoreszcens aramlési citometria nem mutatott kiilonbséget az
egyszeres TRPA1 mutansok kozott. Ennek valoszintileg az volt az oka, hogy a Fluo-4 festék
képes telitédni magas kalcium koncentracional, amit a szerves poliszulfidok viszonylag magas
koncentracidja (100 uM) eredményezhetett. Ezért a Ca-45 folyadék szcintillacié szdmolast és
whole-cell patch-clamp technikat pontosabb és megbizhatobb modszereknek itéltik, és ezeket
tudtuk hasznélni a hdrom cisztein funkciobeli kiilonbségeinek feltarasara.

A héarom cisztein koziil a C621 fontos szerepét a szerves poliszulfidok kotésében a
szamitogépes modellezés eldrevetitette a szamunkra, majd ezt a radioaktiv Ca-45 folyadék
szcintillacid szamolas és whole-cell patch-clamp eredményei megerdsitették. A C621
kulcsszerepe ismert szamos elektrofil TRPAL agonista, mint a JT010, jodacetamid, BODIPY -
jodacetamid, AITC és BITC kotésében (116,138,149-151).

A whole-cell patch-clamp kimutatta, hogy a C665 a masodik legfontosabb cisztein a szerves
poliszulfidok kdotésében, mig a C641-nek van a legkisebb szerepe. A C665 szerepe mar
bebizonyosodott mas elektrofil agonistak esetében is, mint a jodacetamid, BODIPY-
jodacetamid, N-etilmaleimid és BITC (125,138,150,151).

Habar az egyszeres cisztein mutaciok csak csokkentették a szerves poliszulfidok hatasat a

TRPAL-ben, addig a JTO10 hatasa teljesen elveszett a C621A egyediili mutacio esetében. Tobb
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bizonyiték is arra mutat, hogy a JT010 nem kotédik kovalensen a tobbi ciszteinhez, csak a
C621-hez (138,152,153). A mi kalcium érzékeny fluoreszcens aramlési citometria
eredményeink mégis azt mutattak, hogy a C641A és C665A egyszeres mutaciok csokkentették
a JTO10 hatasat, ami arra enged kovetkeztetni benniinket, hogy ezeknek az agonista kovalens
kotése helyett mas szerepiik van. Feltételezhetéen a C641 és C665 segitenek fenntartani a
kotézseb miikodoképes struktarajat vagy segitenek kialakitani egy attraktiv kornyezetet az
elektrofil agonistak szamara, esetleg mindkettdben részt vesznek.

Mivel a C621 egyszeres mutacidja nem volt elég, hogy teljesen megsziintesse a szerves
poliszulfidok hatasat, ebbdl arra kovetkeztethetiink, hogy a C641 és C665 is részt vesznek
ezeknek a hatdanyagoknak a kovalens kotésében. A szerves poliszulfidok hatasat csak a harom
cisztein egyiittes tripla mutacidja volt képes teljesen megsziintetni. Mas elektrofil agonistakrol
is ismert, hogy ennek a harom ciszteinnek a tripla mutansaban elveszitik a hatasukat, kivéve az
AITC, ami intakt K710 lizin mellett képes egy minimalis hatast megtartani (115-118). A
kalcium érzékeny fluoreszcens aramlasi citometriai eredményeink sordn az AITC erdsebb
hatast mutatott a WT ¢és egyszeres mutans TRPAL valtozatokban, mint a karvakrol. Ezzel
szemben a tripla mutdnsban mar csak minimalis hatdsa volt az AITC-nem, mig a karvakrol
hatasa megmaradt.

A C727 és C834 aminosavaknak sem az egyszeres, sem az egyiittes dupla mutacidja nem
okozott valtozast a DMTS hatasaban a WT TRPA1-hez képest. Ez az eredményliink céafolja azt
a feltevést, hogy a C727 és C834 alkotna az erésen hidrofob elektrofil agonistak kotéhelyét a
transzmembran doménen (119,120).

Az egér Trpal receptort expresszald6 HEK293 sejtekben kimutattdk, hogy a C415 és C422
aminosavak részt vesznek a szervetlen poliszulfidok (dinatrium-triszulfid) és mas elektrofil
agonistak kotésében (108,149,154). Az, hogy ezeknek a human megfeleli (C414 és C421)
vagy esetleg a maradék 21 cisztein a 28-bdl jatszik-e szerepet a szerves poliszulfidok ktésében,
még tovabbi vizsgalatra szorul.

Az altalunk hasznalt szerves poliszulfidok koziil a gyarilag késziilt DMTS majdnem teljesen
tiszta volt (>98%), de az altalunk szintetizalt DADS és DATS elvalaszthatatlan kisér6i voltak
egymasnak, a DADS 90%-o0s volt, a DATS pedig 63,5%-0s. Ezek a természetes forrasukban, a
fokhagymaolajban is allandé szennyezései egymasnak. A whole-cell patch-clamp
eredményeiben a DADS hatasa er6sebbnek mutatkozott a masik két szerves poliszulfidnal a
WT TRPAI1-ben, ugyanakkor ezt befolyasoltak legjobban az egyszeres cisztein mutaciok.
Ameddig a C621A és C665A egyszeres mutaciokban csokkent a DMTS és DATS hatasa, addig
a DADS hatésa teljesen megsziint. A C641A egyszeres mutacio csokkentette a DADS hatésat,
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de a DMTS és DATS hatasat nem. Ezek a felfedezések azt sugalljak, hogy a harom szerves
poliszulfid koziil a DADS a leghatékonyabb TRPA1 agonista, 4&m ezt nem tdmasztottak ala a
tobbi mérési modszereink eredményei, amelyek esetében a harom szerves poliszulfid azonos
hatast mutatott, igy ez még tovabbi kivizsgalasra szorul.

A whole-cell patch-clamp kimutatta tovabba, hogy a C621A/C641A/C665A tripla mutans
inszenzitiv volt a HC-030031 antagonistara, aminek az okat még tisztdzni kellene, hogy a tripla
cisztein mutacid okozta, vagy esetleg egy rejtett véletlen mutacido. A tripla mutans
inszenzitivitasa a szerves poliszulfidokra és a HC-030031 antagonistara a mutacidok hatasara
kialakult globalis funkciovesztés kovetkeztében is létrejohetett volna, de a karvakrol hatasa
intakt maradt, ami bizonyitja, hogy a receptor megfeleléen mitkkodoképes maradt, és alkalmas
volt a kisérleteink elvégzésére.

Harom kiilonboz6 funkciondlis teszt segitségével bizonyitottuk, hogy a TRPAl
aktivalasahoz a szerves poliszulfidok a C621, C641 és C665 ciszteinekhez kotédnek
kovalensen, és ezeknek kizarolag az egyiittes tripla mutacidja volt képes teljesen megsziintetni
a szerves poliszulfidok hatasat. Azonositottuk tovabba ebben a C621 kulcsszerepét, illetve,
hogy a C655 a masodik legfontosabb cisztein. Ez jelentdsen atfed mas elektrofil agonistak
ismert kotéhelyével, igy az eredményeik mas elektrofil agonistak kotési mechanizmusanak
megértését is jobban eldsegitheti.

Ebben a tanulmanyunkban nemcsak bemutattuk, hogy a TRPAL egy fontos célpontja a
szerves poliszulfidoknak, hanem azonositottuk a pontos kot6helyiiket is mutans receptor

valtozatok segitségével.
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4. Asztrocita specifikus TRPA1l kondicionalis knockout egér

létrehozasa és az expresszio vizsgalata

4.1. Bevezetés

A szklerdzis multiplex (SM) egy kozponti idegrendszeri, stlyos neurodegenerativ
autoimmun betegség, amely soran a tartos gyulladas és tomeges sejtpusztulas kovetkeztében a
neuronok axonjait burkolé mielinhiively szétesik, ezaltal romlik az idegi miikodés (157,158).
Az SM modellezésére széleskoriien alkalmazott modszer az egerek kuprizonnal torténd tartds
kezelése, amely egy oligodendrocita specifikus sejttoxikus szer, és hatisara demielinizacid
alakul ki elsésorban a corpus callosum teriiletén, amely makrofag invazioval és asztrocita
reakcioval tarsul (159,160). Korabbi kutatasok kimutattak, hogy a kuprizon-indukalt
demielinizacioval szemben sokkal ellenallobbak a TRPA1 KO egerek (160,161). Arra a
kovetkeztetésre jutottunk, hogy a TRPA1 szabalyozza a mitogén-aktivalt protein kinaz
utvonalat, ami a sejtek apoptozisdhoz vezet, ezért a TRPA1 hidnyaban sokkal kisebb a kifejlett
oligodendroglia pusztulas kuprizon hatasara. TRPA1 gatlas egy 0j gyogyszermechanizmus
lehetdségét jelenti a SM kezelésében.

A TRPAI1 receptor elsdsorban a kapszaicin érzékeny nociceptiv szenzoros neuronokban
expresszalodik (4,9,10), de alacsonyabb szinten expresszalodik nem neuron sejtekben is, mint
a keratinocitakban, endotél sejtekben és a gasztrointesztinalis mukoza sejtekben (162—165),
tovabba az agy teriiletén az oligodendrogliakban (166) és asztrocitakban (167-169). Az egér
agykéregben kimutattdk az alacsony szintli TRPA1 expresszidt a neuronokban, asztrocitakban,
oligodendrogliakban és mikrogliakban (170). Kisérleteinkben az asztrocitak szerepét vizsgaltuk
az SM patomechanizmusaban, ugyanis a reakiv asztrocitakrol mar ismert, hogy hozzajarulnak

a neurodegenerativ betegségek neuroinflammacios folyamataihoz (171,172).

4.2. Célkitiizés
Jelen kutatasunk soran szeretnénk igazolni a kuprizon indukalt oligodendrocita apoptdzishoz
vezetd TRPA1 medialt folyamatokban az asztrocita sejtek kulcsszerepét. Erre a célra olyan
egérmodell 1étrehozasat céloztuk meg a Cre-Lox rekombinacids rendszer segitségével, melynek

az asztrocita sejtjeib6l specifikusan ttjiik ki a Trpal gént (kondicionalis knockout - cKO). Az
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igy létrehozott egerekben vizsgaljuk majd a kuprizon demielinizal6 hatasat, és Trpal WT és

globalis KO egerekhez viszonyitjuk kapott eredményeket.

4.3. Eredmények

A TRPA1 receptor hozzajarul a neurodegeneracios betegségek neuroinflammacios
folyamataihoz. Korabbi kutatasunk kimutatta az SM betegségmodellben, hogy a Trpal globalis
KO egerek ellenallobbak a kuprizon indukalt demielinizaciéval szemben (160,161). Arra a
kovetkeztetésre jutottunk, hogy a TRPA1 szabdlyozza a mitogén-aktivalt protein kindz
utvonalat, ami a sejtek apoptozisdhoz vezet, ezért a TRPA1 hidnyaban sokkal kisebb a kifejlett
oligodendroglia pusztulds kuprizon hatasara. TRPA1 gatlas egy 0j gyogyszermechanizmus
lehetdségét jelenti a SM kezelésében.

Mivel a reaktiv asztrocitakrol ismert, hogy hozzajarulnak a neurodegenerativ betegségek
neuroinflammacios folyamataihoz (171,172), ezért az asztrocitak szerepét akartuk vizsgalni az
SM patomechanizmusaban részt vevd TRPA1 medialt folyamatokban, a kuprizon indukalt
demielinizacios SM betegségmodelljében. Erre a célra asztrocita specifikus TRPAL1 cKO
egereket terveztiink, amit Cre-loxP rendszerrel akartunk létrehozni. A legszéleskoriibben
alkalmazott asztrocita marker a Gfap gén, igy olyan egeret valasztottunk, amelyben a Cre

+/-

rekombinaz génjét a Gfap promoter hajtja meg. A Gfap-Cre”” egereket elézetesen gy
teszteltiik, hogy kereszteztiik tdTomato riporter egerekkel. Az igy kapott utddokban a tdTomato
voros fluoreszcens fehérje azokban a sejtekben expresszalddott, ahol a Cre rekombinaz is. A
tdTomato fluoreszcenciat egész testen in vivo képalkotassal, az agy teriiletén pedig fluoreszcens
mikroszkopiaval vizsgaltuk. Kimutattuk, hogy elsdsorban az agy teriiletén, az asztrocita
sejtekben expresszalodik a Cre rekombinaz, de kis részben aktivitast mutatott neuronokban is.
Ezt megfelelden specifikus expresszionak itéltiik, és ha ennek megfelelden deletalodik a Trpal
a kisérletre szant Gfap-Cre”~ Trpal™F egerekben, akkor a varhaté funkcio kiesést valoban az
asztrocitakhoz kothetjiik. Mas kutatocsoportok is tapasztaltak a Gfap-Cre egerekben, hogy az
asztrocitak tilnyomo tobbségében végbemegy a rekombindacio, de kis aranyban a neuronokban
és oligodendrogliakban is megfigyelheté volt (176-178). Feltételezhetden ez a sejtek kozotti
anyagtranszfernek és a kis mértéki aspecifikus génexpresszionak koszonhetd. A Gfap-Cre
transzgén ismeretlen inszercidos helyét az egér genomban ligalas medialt és inverz PCR
technikakkal igyekeztiink azonositani, de sajnos sikerteleniil. Arra a kovetkeztetésre jutottunk,
hogy valoszintileg hosszl ismétlédo szekvenciaba épiilt be.

A kisérletre szant egereket Gfap-Cre™™ és Trpal™" egerek keresztezésével hoztuk létre. A

Trpal™™ egerekben a loxP helyeket PCR technikaval és szekvenaldssal azonositottuk. Ezt
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kovetden olyan  genotipizalo  primereket  tudtunk tervezni ra, amelyekkel
megkiilonboztethetokké valtak a sejtek csak egy részébdl (kondicionalis), és az Gsszes sejtbol
(globalis) kiiitott Trpal gént hordozo egerek. igy a kisérletre keresztezett allatokat mar tudtuk
szlirni a Cre rekombinaz véletlen aspecifikus miikodése kovetkeztében 1étrejott Trpal globalis
KO genotipusra. A keresztezés végén létrehozott Gfap-Cre”~ Trpal™™ egerekben RT-qgPCR
segitségével mértiik az intakt Trpal csokkent expresszios szintjét. A vizsgalatokat 6sszesitve a
létrehozott Gfap-Cre”~ Trpal™" egereket megfelelének talaltuk a kuprizon indukalt
demielinizacios kisérletre. Kontroll csoportoknak, Gfap-Cre”™ Trpal™" (loxP kontroll, ami
gyakorlatilag Trpal WT fenotipust mutat) és Gfap-Cre™~ Trpal®™~ egereket (hetero kontroll)
biztositottunk.

Dr. Kriszta Gabor vezette funkcionalis kisérletekben az asztrocita specifikus Trpal cKO
egerek a Trpal WT egerekhez képest szignifikansan ellenallobbak voltak a kuprizon indukalt
demielinizacidval szemben a legintenzivebb patofizioldgias elvaltozasok iddszaka alatt, azaz a
kezelés 3-5. heteiben, majd a 6. hétre mindkét csoportban mérséklédtek a tiinetek és a csoportok
kozott tapasztalhato kiilonbségek. A korabban vizsgalt globalis Trpal KO egerekhez képest az
asztrocita specifikus Trpal cKO egerek kevésbé voltak ellenallobbak a kuprizon indukalt
demielinizacidval szemben, ami arra utal, hogy az asztrocitdknak nem egyediili szerepe van a
szklerdzis multiplex soran a TRPA1 medialt demielinizacidban (179). A TRPAL receptorok
expressziodja €s mikodése az agy mas sejtjeiben (oligodendrocitdk, mikroglia, neuronok)

tovabbi vizsgalatot igényel (166,180).
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5. Osszefoglalas

A Pécsi Tudomanyegyetem Altalanos Orvostudomanyi Kar Farmakologiai és
Farmakoterapiai Intézetben a kutatocsoportunk érdeklédésének kdzéppontjaban all a fajdalom
vizsgalata. A PhD kutatdsom sordn az ezekhez fiiz6d6 aktualis kutatasi projektek szdmara
hoztam Iétre modellorganizmusokat, ¢és teszteltem a transzgén expresszidjat és a fehérje
mikodését.

Sikeresen 1étrehoztuk a humanizalt SSTR4 egereket, melyek alkalmasak lesznek a human és
egér homoldg SST4 receptorok kozotti faji kiillonbségek alaposabb feltarasara, a human SST4
receptor fiziologids és patologids miitkodésének alaposabb vizsgélatara, tovabba az SSTs
agonista 0j gyogyszerjeloltek preklinikai vizsgalatara. Ezeket az egereket ugy hoztuk Iétre,
hogy készitettiink egy olyan transzpozon vektort, amely hordozza a human hSSTR4 gént az
Osszes expresszios szabalyozoelemével egyiitt, majd a transzgént véletlenszerii helyre
inszertaltuk Sstr4 génhianyos egerekbe. Ezeknek a kdpidknak az elhelyezkedését az egér
genomban ligalas medialt PCR-ral azonositottuk. A luciferaz riporter fehérje lumineszcenciaja
alapjan in vivo képalkotassal kimutattuk, hogy a hSSTR4 transzgén legfoképp az agy teriiletén
expresszalodik. RT-qPCR technikdval megerdsitettiik, hogy az agyban és még néhany
periférias szervben expresszalodik a hSSTR4 transzgén, ami megegyezett az in Vivo
képalkotasban kapott eredményekkel. RNAscope in situ hibridizacioval kimutattuk, hogy a
hSSTR4 transzgén expresszalodik a glutamaterg excitacios neuronokban a hippokampusz CA1
és CA2 teriiletén, a GABA-erg interneuronokban a bulbus olfactorius szemcsés rétegében,
illetve mindkét fajta neuronban az elsddleges szomatoszenzoros kéregben, a piriform kéregben,
prelimbikus kéregben és az amigdalaban.

Sikeresen létrehoztunk humén TRPA1 egyszeres €s tobbszords mutans valtozatokat, mellyel
sikeriilt azonositanunk, hogy a szerves poliszulfidok a C621, C641 és C665 ciszteinekhez
kovalensen kapcsolodva aktivaljak a receptort. Csak ezek egyiittes tripla mutacioja okozza a
TRPAL inszenzitivitasat a szerves poliszulfidok irant, mely megegyezik az elektrofil agonistak
altalanos kotéhelyével. A transzmembran régioban a C727 és C834 ciszteinek, melyek
feltételezett kotOhelyei az erdsen hidrofob elektrofil agonistdknak, nem vesznek részt a szerves
poliszulfidok indukalta TRPA1 aktivacioban. A kisérletekhez hasznalt TRPA1 mutans
valtozatokat human TRPAL cDNS-t expresszaldé plazmid vektor PCR alapu helyspecifikus
mutagenezisével hoztuk 1étre. A mutans receptorok kotési tulajdonsagait elézetesen in silico

molekularis dokkolasi technikaval vizsgaltuk. A funkcionalis valtozasokat in vitro
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modszerekkel vizsgaltuk: kalcium-érzékeny fluoreszcens aramlasi citometriaval, radioaktiv
Ca-45 folyadék szcintillacio szamolassal és whole-cell patch-clamp technikaval.

Sikeresen létrehoztuk az asztrocita specifikus Trpal cKO egereket az asztrocitak szerepének
vizsgalatara a TRPAI medialt kuprizon indukalt demiclinizacioban, egy SM
betegségmodellben. Ezeket az allatokat Gfap-Cre™ és Trpal™ egerek keresztezésével hoztuk
létre. Elézetes vizsgalat soran tdTomato riporter egér segitségével Kimutattuk, hogy a Gfap
promoter altal meghajtott Cre rekombindz gén elsdsorban az agy teriiletén, az asztrocita
sejtekben expresszalodik, de kis részben aktivitast mutatott neuronokban is. A Gfap-Cre
transzgén elhelyezkedését nem sikeriilt kimutatnunk az egér genomjaban. A Trpal™H
egerekben azonositottuk a loxP szekvenciak elhelyezkedését, melyhez rutin genotipizalasi
modszert alakitottunk ki. Ezaltal a kuprizon indukalt demielinizacids kisérletre 1étrehozott
Gfap-Cre™™ Trpal™" egereket tudtuk ellendrizni, hogy ne alakuljanak ki Trpal globalis KO
egerek a Cre rekombinaz nem asztrocita specifikus mitkodésének kovetkeztében. A Gfap-Cre*~
Trpal™H egerek agyaban mértiik az intakt Trpal gén expresszios szintjének véltozasat.

Funkcionalis allatkisérletek soran kimutattadk, hogy az asztrocita specifikus Trpal
kondicionalis KO egerek a Trpal globalis KO egerekhez képest kevésbé voltak ellenallobbak
a kuprizon indukalt demielinizécioval szemben. Ezaltal arra kovetkeztethetlink, hogy a
szkler6zis multiplexben az asztrocitdknak nem egyediili szerepe van a TRPA1 medialt
demielinizacioban, hanem feltételezhetéen az agyban mas TRPAI1 expresszald sejtjeinek
(oligodendrocitak, mikroglia, neuronok) (166,180). Ez tovabbi vizsgalatot igényel.

Kijelenthetjiikk, hogy a jelenleg elérheté molekularis biologiai ¢és genetikai eszkdzoknek
koszonhetden képesek voltunk 1étrehozni a kutatasunkhoz sziikséges minden tervezett egyedi
modellorganizmust. Szerencsére a molekularis technologia tovabbra is folyamatosan és

rohamosan fejlodik, ami egyre tobb lehetdséget biztosit az gyodgyaszati célu kutatdsok szamara.
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6. Uj eredmények

e Sikeresen létrehoztuk az SSTR4 humanizalt egereket.

e Azonositottuk a Iétrehozott SSTR4 humanizalt egerekben a véletlenszeriien
inszertalodott 3 transzgén elhelyezkedését. Ezekre rutin genotipizalasi modszert
alakitottunk ki.

e Meghataroztuk a hSSTR4 transzgének expresszids szintjét a humanizalt egerek
agyaban és a bels6 szerveiben.
egér agyaban. Kiilonbségeket talaltunk a WT egerek Sstr4 expressziojahoz

képest, ami a homolog gének kozotti faji kiillonbségekre utalnak.

e Aszerves poliszulfidok kovalens kotésében részt vesznek a C621, C641 és C665
ciszteinek a TRPA1 receptor aktivalasdhoz. Csak ezek egyiittes, tripla mutacidja
okoz teljes inszenzitivitast a TRPA1 receptorban a szerves poliszulfidok irant.

e A szerves poliszulfidok kotéhelye megegyezik az elektrofil agonistak altalanos
kotohelyével.

e A transzmembran régidban elhelyezkedd C727 és C834 ciszteinek nem részei a

szerves poliszulfidok kotohelyének.

o Gfap-Cre és STOP-loxP egerek keresztezésével sikeresen szemléltettiik a Cre
rekombinaz asztrocita specifikus expressziojat, és kis részben az atjutasat ¢s
miikodését neuronokban is.

e Gfap-Cre ¢és Trpal-loxP egerek keresztezésével Ilétrehoztunk olyan
transzgenikus egereket, amelyeknek az asztrocitaikbol specifikusan titottiik ki
az egér Trpal gént.

e Bizonyitottuk az intakt Trpal gén expresszios szintjének csokkenését a Trpal
cKO egerek agyaban.

e A Trpal globalis KO egerekhez képest az asztrocita specifikus Trpal cKO
egerek kevésbé voltak ellenallobak a kuprizon indukalt demielinizacioval
szemben, ami arra utal, hogy ebben a patomechanizmusban az asztrocitaknak

nem egyediili szerepe van.
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8. Az értekezés alapjaul szolgalé publikaciok

Nemes Balazs, Bolcskei Kata, Kecskés Angéla, Kormos Viktéria, Gaszner Balazs, Aczél Timea,
Hegediis Daniel, Pintér Erika, Helyes Zsuzsanna és Sandor Zoltdn: ,,Human Somatostatin SST4
Receptor Transgenic Mice: Construction and Brain Expression Pattern Characterization”. International
Journal of Molecular Sciences, két. 22, sz. 7 (2021. januar): 3758.
https://doi.org/10.3390/ijms22073758

Nemes Balazs, Laszlo Szabolcs, Zsido Balazs Zoltan, Hetényi Csaba, Fehér Adam, Papp Ferenc, Varga
Zoltan, Széke Eva, Sandor Zoltan, Pintér Erika: ,,Elucidation of the binding mode of organic
polysulfides on the human TRPA1 receptor”. Frontiers in Physiology: Insights in Redox Physiology:
2022, kot. 14 (2023. janius).

https://doi.org/10.3389/fphys.2023.1180896

Kriszta Gabor, Nemes Balazs, Sandor Zoltan, Acs Péter, Komoly Samuel, Berente Zoltan, Bolcskei
Kata és Pintér Erika: ,JInvestigation of Cuprizone-Induced Demyelination in MGFAP-Driven
Conditional Transient Receptor Potential Ankyrin 1 (TRPA1) Receptor Knockout Mice”. Cells, két. 9,
sz. 1 (2020. januar): 81.

https://doi.org/10.3390/cells9010081

9. Egyéb publikaciok és konferencia részvételek

9.1. Egyéb publikaciok
Batai Istvan Zoard, Papainé Sar Cecilia, Horvath Adam, Borbély Eva, Bolcskei Kata, Kemény Agnes,
Sandor Zoltan, Nemes Balazs, Helyes Zsuzsanna, Perkecz Aniko, Mocsai Attila, Pozsgai Gabor és
Pintér Erika: ,,TRPAI Ion Channel Determines Beneficial and Detrimental Effects of GYY4137 in
Murine Serum-Transfer Arthritis”. Frontiers in Pharmacology 10 (2019).
https://doi.org/10.3389/fphar.2019.00964.

Pintér Erika, Bocskei Kata, Kriszta Gabor, Sandor Zoltan, Nemes Balazs, Acs Péter, Komoly Samuel,
Berente Zoltan: ,,[Examination of the demyelination process in mGFAP-driven conditional transient
receptor potential ankyrin 1 (TRPA1) receptor knockout mice”. The FASEB Journal, két. 34, sz. S1
(2020).

https://doi.org/10.1096/fasebj.2020.34.51.04614
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9.2. Hazai és nemzetkozi konferencia részvételek

II1. Pécsi Tudomanyegyetem Idegtudomanyi Centrum PhD és TDK konferencia, Pécs

2018.11.22-23.

El6éadas cime: Humanizalt szomatosztatin receptor 4 (hSSTR4) hordoz6 transzgenikus egerek létrehozasa
idegrendszeri kutatasok céljara

Eléad6: Nemes Balazs

Témavezetok: Pintér Erika, Helyes Zsuzsanna, Sandor Zoltan

MITT, Magyarorszagi Idegtudomanyi Tarsasag 2019. évi Konferencidja, Debrecen

2019.01.17-18.

Poszter prezentacio cime: Transgenic mice expressing human somatostatin receptor 4 (hNSSTR4): A humanized
model for pharmacological research

Balazs Nemes, Kata Bolcskei, Timea Aczél, Adnan Ahmad Alkurdi, Erika Pintér, Zsuzsanna Helyes, Zoltan

Sandor

Remedicon, Gydgyszer Innovacié 2019 Konferencia, Gardony

2019.04.01-03.

Poszter prezentacié cime: Humanizalt szomatosztatin receptor 4 expresszalo transzgenikus egerek: Egy j modell
a transzlacios medicinaban

Nemes Balazs, Bolcskei Kata, Aczél Timea, Adnan Ahmad Alkurdi, Dinnyés Andras, Kobolak Julianna, Pintér

Erika, Helyes Zsuzsanna, Sandor Zoltan

1st Pécs-Osijek Ph.D. Symposium, Pécs

2019.05.10.

Poszter prezentacié cime: Human somatostatin receptor 4 expressing transgenic mice generation for
pharmacological research

Balazs Nemes, Kata Bolcskei, Timea Aczél, Adnan Ahmad Alkurdi, Andras Dinnyés, Julianna Kobolak, Erika

Pintér, Zsuzsanna Helyes, Zoltan Sandor

FAME 2019 - MET, MFT, MAT, MMVBT kézos vandorgyiilése, Budapest

2019.06.05-08.

Poszter prezentacié cime: Humanizalt szomatosztatin receptor 4 expresszald transzgenikus egerek: egy 1j modell
a transzlacios medicindban

Nemes Balazs, Bolcskei Kata, Aczél Timea, Adnan Ahmad Alkurdi, Dinnyés Andrés, Kobolak Julianna, Pintér

Erika, Helyes Zsuzsanna, Sandor Zoltan
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7th Summer School on Stress, Szentpétervar

2019.06.25-28.

Poszter prezentacié cime: Novel humanized model for pharmacological research: Generating human somatostatin
receptor 4 (hSSTR4) expressing transgenic mice

Baldzs Nemes, Kata Bolcskei, Timea Aczél, Adnan Ahmad Alkurdi, Yazan Abuawwad, Andras Dinny¢és, Julianna

Kobolak, Erika Pintér, Zsuzsanna Helyes, Zoltan Sandor

FENS Regional Meeting 2019, Belgrad

2019.07.10-13.

Elbadas és poszter prezentacio cime: Generating human somatostatin receptor 4 (hSSTR4) espressing transgenic
mice for pharmacological research

Balazs Nemes, Kata Bolcskei, Timea Aczél, Adnan Ahmad Alkurdi, Yazan Abuawwad, Andras Dinnyés, Julianna

Kobolak, Erika Pintér, Zsuzsanna Helyes, Zoltan Sandor

MOFT konferencia 2019, Szeged

2019.11.08-09.

Poszter prezentacid cime: Humanizalt szomatosztatin receptor 4 expresszald egerek: novel allatmodel a
szomatosztatin analog hatéanyagok fejlesztéséhez

Nemes Balazs, Bolcskei Kata, Aczél Timea, Adnan Ahmad Alkurdi, Yazan Abuawwad, Dinnyés Andras, Kobolak

Julianna, Pintér Erika, Helyes Zsuzsanna, Sandor Zoltan

ISCTICO-HUPHAR-IUPHAR 2021, Pécs

2021.10.27-30.

Poszter prezentacio cime: Characterization of transgenic mice expressing the human somatostatin receptor subtype
4

Balazs Nemes, Kata Bolcskei, Angéla Kecskés, Timea Aczél, Adnan Ahmad Alkurdi, Yazan Abuawwad, Erika

Pintér, Zsuzsanna Helyes, Zoltan Sandor

MOFT konferencia 2021, Szeged

2021.11.05-06.

Poszter prezentacié cime: Szerves poliszulfidok kotéhelyének vizsgalata TRPA1 receptoron helyspecifikus
mutagenezissel

Nemes Balazs, Dr. Fehér Adam, Dr. Papp Ferenc, Dr. Sandor Zoltan, Dr. Pozsgai Gabor, Prof. Dr. Pintér Erika

MOFT konferencia 2022, Szeged

2022.11.04-05.

El6adas cime: A szerves poliszulfidok kotShelyének azonositdsa a human TRPA1 receptoron gyogyszerfejlesztési
célokra

Nemes Balazs, Dr. Zsid6 Balazs, Dr. Hetényi Csaba, Dr. Fehér Adam, Dr. Papp Ferenc, Dr. Széke Eva, Dr. Sandor
Zoltan, Prof. Dr. Pintér Erika
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10. Szakmai eredmények

Kozlemények szama: 5

Hirsch index (MTMT): 3

110 index (Google Scholar): 3

Ertekezés alapjat szolgalo kozlemények impakt faktora: 16.808
Osszes kdzlemény impakt faktora: 21.033

Fiiggetlen citaciok szama (MTMT): 18

Osszes citaciok szama (MTMT): 27

Osszes citaciok szama (Google Scholar): 39

11. Szakmai elismerések

e 2017-2021. Elnyertem a Richter Gedeon Talentum Alapitvany Tanulményi Osztondijat.

e 2019.07.10-13. Belgradban, a nemzetkzi FENS konferencian felkértek, hogy tartsak
eldadast a poszterem anyagabol.

e 2020.06.25-28. Meghivtak Szentpétervarba a nemzetk6zi ,,Summer School of Stress”
tanulmanyi programba ¢és Koltushi-ban a Pavlov Kutatasi Intézetbe és Muzeumba
tanulmanyi Utra.

e 2021-2022. Elnyertem a PTE AOK PhD+1 tanulmanyi sztondijat.

e 2023.04.12. A Magyarorszagi Fajdalom Tarsasag palyazatan 2. helyezést értem el a
poszteremmel, és ezzel megnyertem a tamogatast az elkovetkez6 nemzetkozi EFIC
konferenciara (2023.09.20-23.).

12. Tamogatas

A PhD tanulmanyaim soran végzett kutatomunkam a kovetkezo tamogatasokkal valdsulhatott meg:
Richter Gedeon Talentum Alapitvany Tanulmanyi Osztondij; Nemzeti Agykutatdsi Program 2017-
1.2.1-NKP-2017-00002 (NAP-2; Kronikus Fajdalom Kutatocsoport); Nemzeti Agykutatasi Program 3.0
(NAP 3.0); GINOP-2.3.2-15-2016-00050 (A peptiderg szignalizacid6 komplexitdsa és szerepe
szisztémas betegségekben; PEPSYS); EFOP 3.6.2-17-2017-00008 N (2017-2019), EFOP-3.6.1-16-
2016-00004 és EFOP-3.6.2-16-2017-00006; FIKPI1-17886-4/23018/FEKUTSTRAT; NKFIH-OTKA-
K 134214; RRF-2.3.1-21-2022-00015 Nemzeti Gyogyszerkutatasi és Fejlesztési Laboratorium
(PharmaLab); TKP2021-EGA-16 Nemzeti Kutatasi, Fejlesztési és Innovacios Iroda és az E6tvos Lorand
Kutatasi Halozat (ELKH).
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13. Koszonetnyilvanitas

Elsésorban szeretném halas kdszonetemet kifejezni témavezetdimnek, Prof. Dr. Pintér
Erikanak és Dr. Sandor Zoltannak a sok tdmogatasért és a kivalo kutatoként mutatott szakmai
segitségiikért, melyben az egész PhD képzésem folyaman részesiiltem.

Koszonetemet szeretném kifejezni Prof. Dr. Helyes Zsuzsannanak, hogy az egész
kutatomunkam soran értékes szakmai segitséggel €s tanacsokkal latott el.

Halas koszonettel tartozom Dr. Boleskei Katanak, Dr. Kecskés Angélanak, Dr. Szdoke
Evanak, Dr. Kemény Agnesnek, Dr. Pozsgai Gabornak, Dr. Kormos Viktorianak és Dr. Nemes-
Szentes Nikolettnek, hogy a kezdetekt6l fogva mindenben segitették a fejlédésemet és
megtanitottak, a kisérletes munka soran elengedhetetlen, preciz és szakszerli munkavégzést.

K0sz6nom a Farmakologiai és Farmakoterapiai Intézetben dolgozé kollégaimnak, Dr. Szabd
Katalinnak, Dr. Nehr-Majoros Andreanak, Dr. Hetényi Csabanak, Dr. Zsid6 Balazs Zoltannak,
Dr. Bathai Istvan Zoardnak, Dr. Cseké Katanak, Dr. Pohéczky Krisztinanak, Dr. Payrits
Majanak, Dr. Aczél Timeanak, Dr. Tékus Valérianak, Dr. Kriszta Gébornak és Moriczné
Bencze Noéminek, a kutatomunkdban az egyiittmikodésiiket, szakmai és technikai
segitségiiket, valamint az intézetben minden hajdani és jelenlegi munkatdrsamnak, hogy
mindvégig egy emberileg is j6 kdzdsségbe tartozhattam.

Ko6sz6nom Dr. Papp Ferencnek, Fehér Adamnak, Laszlo Szabolcsnak, valamint minden
kiils6 egylittmiikddo partneriinknek a k6zos kutatdomunkat.

Kdszondm tovabba Rajnai Tiindének, Omboli Doranak, Santa Csengének, Draskoczi
Lillanak és Toth Norbertnek, hogy nemcsak a munkaban nyujtott segitséggel, de baratsagukkal
is timogattak.

Ko6sz6nom Molvay Robertnek, hogy sokat segitett a hivatalos tigyintézésben.

Ko6szonom Balint Leventének, hogy megkonnyitette és felgyorsitotta a kutatashoz
elengedhetetlen anyagok és eszk6zok beszerzését.

Koszonet Disztl Cecilia, Biro-Siité Tiinde, Bagoly Teréz, Pappné Bényei [1diko, Ordonicsné
Szombati Veronika, Himé Perkecz Aniko, Kiss Arpadné és Zoldhegyi Jozsefné
asszisztenseknek a professzionalis munkajaért, mellyel hozzjarultak a kisérletek
sikerességéhez.

Ko6szonom Schveibert Istvannak és Walter Laszlonak a széleskorii technikai segitséget.

Végiil szeretném megkdszonni feleségemnek, Dr. Nemes-Szentes Nikolettnek, és
Csaladomnak, hogy tamogattak tanulmanyaimat €s a munkamat, valamint a rengeteg batoritast

¢s szeretetet, mellyel 0sztonoztek a legjobb eredmények elérésére.
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