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I. Introduction 
 

Unusual changes in oxygen concentration that differ from the physiological oxygen level 

and often go beyond the body's compensatory mechanisms. A decrease in the oxygen (O2) level 

results in a hypoxic state in the tissues, which is also involved in the pathogenesis of several 

neurological disorders, such as Alzheimer's disease and Parkinson's disease [1, 2]. Neonatal 

hypoxia-ischemia is responsible for 23% of infant mortality and is a severe risk factor, 

especially in the development of cognitive and learning problems [3-5]. At the same time, mild 

hypoxic treatments are given an increasing role in the development of rehabilitation strategies. 

On the other hand, excess oxygen is often used to reduce the damage caused by severe hypoxia. 

Supplemental O2 is widespread and frequently recommended, especially for critical care 

patients. Oxygen therapy can be life-saving, for example, in hypoxic-ischemic injuries, in lung 

patients (e.g. chronic obstructive pulmonary disease) and in premature neonates [6-8]. 

However, the advantages and disadvantages of different oxygen therapies are still controversial, 

as hypoxia and hyperoxia, which means higher oxygen levels in the tissues, can both lead to 

severe oxidative stress. 

Alterations in metabolic processes are particularly dangerous for the brain. The human 

brain constitutes only a fraction of the total body mass (2%). Nevertheless, the brain is one of 

our largest energy-consuming organs, utilising 20% of oxygen metabolism [9, 10]. It is 

estimated that neurons use 75-80% of the energy produced in the brain [10]. Therefore, our 

nerve cells react very sensitively to changes in oxygen concentration. The hippocampus, which 

is involved in memory, learning and cognitive processes, is susceptible to disruption of O2 

homeostasis [11]. Oxygen levels different from the physiological concentration can 

significantly affect the neural activity of hippocampal neurons, thereby being responsible for 

long-term changes, primarily learning and spatial memory disorders. Consequently, it is crucial 

to understand the effect of short-term hypoxic and hyperoxic conditions on hippocampal 

neurons as thoroughly as possible to more accurately determine the optimal lower and upper 

limits of oxygen supply in clinical practice and during rehabilitation and to tailor oxygen 

therapy better.  
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II. Aims 
 

The doctoral research was aimed at revealing the vulnerability of the hippocampus to 

short-term hypoxia and hyperoxia, as well as clarifying the underlying mechanisms, so we set 

the following goals in our work: 

 Investigation of the damaging effects of acute, mild hypoxia (16% O2) and acute, mild 

(30% O2) and severe (100% O2) hyperoxia in different layers of the hippocampus. 

 Cell-specific identification of neurons damaged during hypoxia and hyperoxia using 

interneuron-specific markers. 

 Determination of the effect of applied oxygen concentrations on network oscillations in 

the hippocampus. 

 To identify the nerve cell populations most sensitive to changed O2 concentrations based 

on their firing frequency. 

III. Materials and methods 
 

1. Animals 

The experiments were performed on male Wistar rats (n = 60) weighing 250-300 g at the 

time of surgery. We always followed the guidelines and protocols approved by the National 

Scientific Ethical Committee on Animal Experimentation (license number: BA/73/0052-

5/2022) and the directive of the European Communities Council (2010/63/EU) when using 

animals in experiments. 

2. Oxygen treatments 

At the beginning of the experiment, the rats were randomly divided into three groups: 

control group, hypoxia group and hyperoxia group. In the case of the hypoxia group, the applied 

O2 concentration was 16%, while in the hyperoxia group, it was 30% and 100% O2. For the 

histopathological and immunohistochemical studies, the animals (n = 10/group) were placed in 

an induction chamber, and the oxygen exposure was 1 hour. For the electrophysiological tests, 

the rats (hypoxia n = 10, hyperoxia n = 10) were anesthetized with urethane (1.1-1.3 g/kg). 

After the surgery, the animals breathed 21% O2, and we took the baseline. Then, we changed 
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the O2 concentration of the inhaled gas mixture through the anesthetic mask. The exposure time 

was 1 hour, and we made electrophysiological recordings during the last 15 minutes. At the end 

of the experiment, the animals were anesthetized with urethane (2 g/kg). 

3. Histochemistry 

Gallyas staining 

This staining procedure stains the soma and neurites of degenerated neurons with high 

selectivity. Brain slices with a thickness of 50 µm were subjected to a series of dehydration 

steps (1-propanol, 1-1 min) and then incubated overnight in 1-propanol containing 1% sulfuric 

acid (esterification) at 56 °C. After rehydration, the samples were treated with 1% acetic acid 

for 5 minutes and then incubated in the physical developer solution. The reaction was stopped 

with 1% acetic acid (5 min). 

Apoptosis detection 

Two types of TUNEL tests were used to detect the DNA fragmentation of cell nuclei. In 

one case, the sections were incubated with a TdT reaction buffer for 10 minutes. It was 

incubated with a TdT reaction cocktail for 60 minutes at 37 °C. After washing with PBS, the 

samples were incubated with Click-iT reaction buffer for 30 minutes. For the other kit, the fixed 

brain slices were incubated with a permeabilization solution (0.2% Triton X-100; 0.1% sodium 

citrate) for 2 minutes on ice. The samples were then incubated with the TUNEL reaction 

mixture for 60 minutes at 37 °C in the dark.  

4. Immunohistochemistry 

We marked the brain slices with different interneuron markers (parvalbumin, 

somatostatin, neuropeptide Y, calbindin, calretinin, cholecystokinin) to identify the interneuron 

subclasses. We later performed the Gallyas silver staining described above on these samples. 

Furthermore, an anti-caspase-3 antibody was used to detect apoptosis. Sections were blocked 

in phosphate-buffered saline (0.1 M PBS, pH = 7.4) containing 1% Triton X-100 and 2% goat 

serum for 2 h at room temperature. After that, the solution containing the primary antibodies 

(primary antibody, 2% goat serum, 1% Triton X-100) was pipetted onto the slices and incubated 

overnight at 4 °C. After washing with PBS (3x5 minutes), the secondary antibodies were 

dissolved in PBS and placed on the sample. The incubation time was 2 hours.  
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5. Anesthesia and surgery 

 For the surgical intervention, the rats were anesthetized with an intraperitoneal injection 

of urethane (1.1-1.3 g/kg). The depth of anesthesia was checked, and then the heads of the 

animals were fixed in a stereotaxic device. For our electrophysiological tests, we selected the 

location of the electrodes based on our histochemical results. According to this, holes were 

made with a bone drill with a diameter of 2 mm on the skull bone according to the previously 

determined coordinates above the hippocampus. The electrode array used for conduction 

(A4x8-5mm-200-400-703, NeuroNexus Technologies, Inc., USA) was dipped in a 2% DiI 

solution, and then the electrode was inserted into the planned brain area using a 

micromanipulator. The electrode was connected to a 128-channel TDT amplifier system 

(Tucker-Davis Technologies Inc, Florida, USA). The electrophysiological data were digitalized 

using the LabChart virtual device (AD Instrument) and then recorded on a computer for later 

data processing. Oxygen concentration was monitored in the brain with a modified Clark-type 

oxygen microelectrode (OX-10, Unisense A/S, Aarhus, Denmark). 

6. Processing of electrophysiological data  

The raw data were processed and analyzed using MATLAB (The MathWorks, Inc., 

Natick, Massachusetts, USA). To analyze the multiunit activity (MUA), we used the automatic 

clustering algorithm of the recording software with 500-5000 Hz band filtering to detect the 

firing rate and inter-spike interval (ISI) values. 

7. Statistical analysis 

The statistical analysis of the measurement results was performed using the SPSS 28 

program (SPSS Inc., Chicago, IL, US). If the assumptions of normal distribution and 

homogeneity of variance are met, we used a paired t-test to compare the average of two samples 

and, for more than two groups, analysis of variance (one-way ANOVA). For those populations 

where the condition for normality was not met, the Friedman test was performed for non-

independent groups, and the Kruskal-Wallis test was used for independent samples. Differences 

were considered to be significant at the level of p <0,05. Data are presented as mean ± SEM. 
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IV. Results and discussion 
 

1. Effect of hypoxia and hyperoxia on neuronal damage in the hippocampus 

Compacted neurons in the hippocampus have been previously observed, such as in cases 

of epilepsy and hyperglycemia [12, 13]. Furthermore, dark neurons can be formed in the hilus 

and CA1 regions during cerebral ischemia [14-16]. After mild (16% O2) hypoxic treatment, we 

found that compacted neurons were formed within the dentate gyrus in the hilus and subgranular 

zone. Moreover, we observed compacted neurons in the CA1 and CA3 regions. In most healthy 

control animals, dark neurons did not occur at all. In the CA1 area, the damaged neurons were 

predominantly in the str. pyramidale (4.67 ± 2.43). The short-term hypoxic treatment resulted 

in the average number of compacted neurons in the CA3 region. Within this, str. oriens (17.57 

± 4.44), and str. pyramidale (17.57 ± 5.26) had the highest number of silvered neurons. Similar 

results were previously reported by Mahakizadeh et al. (2020), who observed dark neuron 

formation in the CA1 and CA3 regions during chronic hypoxia [17]. Based on literature data, 

the staining procedure we use (Gallyas silvering) practically does not stain the structures of 

healthy neurons. Thus, the rapid appearance of hyperargyrophilia shortly after the external 

initialization indicates damage to the affected cells [12-14]. 

To our knowledge, the formation of dark neurons in the brain has not yet been reported 

in the case of hyperoxia as opposed to hypoxia. Our studies established that mild (30% O2) and 

severe (100% O2) hyperoxia can cause the development of compacted neurons in the 

hippocampus. In the latter case, a significant increase in the dark neuron numbers (9.88 ± 0.66) 

could be observed compared to the control group and the group treated with 30% oxygen (2.32 

± 0.17). A higher number of damaged neurons were generated in the hilus (29.63 ± 1.33). In 

the CA1 area, we observed dark neurons in the str. oriens (13.80 ± 0.97), str. pyramidale (15.00 

± 1.17) and str. radiatum (1.03 ± 0.21). In the CA3 region, the most compacted neurons are str. 

radiatum (10.43 ± 0.96). The 16% and 100% O2 applied in our experiment induced the 

formation of almost similar amounts of dark neurons, while it was significantly less at 30% O2 

exposure. The increased level of reactive oxygen and nitrogen species (ROS and RNS) may 

have played an essential role in developing the number of compacted neurons. 

We performed a TUNEL test and caspase-3 labelling to detect apoptosis during our work. 

However, there was no specific labelling after the applied 1-hour normobaric hypoxic (16% 

O2) and hyperoxic (30% and 100% O2) treatments. Based on studies, 30 minutes of normobaric 

hypoxia (5% O2) causes significant morphological changes in the cells of the CA3 region from 
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3. hours after the treatment, while the granule cells in the dentate gyrus are affected to a lesser 

extent, while the neurons of the CA1 region are mainly resistant to half an hour of hypoxic 

damage [18]. Furthermore, 1-hour 100% hyperoxia treatment increases the expression of pro-

apoptotic Bax and Bad proteins in the cerebral cortex [19]. In light of this knowledge, we 

assume that the short-term O2 treatments we use can potentially induce apoptosis. However, 

further studies are needed to clarify this. 

2. Immunohistochemical characterization of damaged neurons 

The samples were previously labelled with different interneuron markers to identify the 

compacted neurons. During the immunohistochemical staining, calbindin (CB), calretinin (CR), 

cholecystokinin (CCK), neuropeptide Y (NPY) and parvalbumin (PV) positive inhibitory cells 

were identified. Nevertheless, the fluorescent labelling did not overlap with the silvered neurons 

in either hypoxic or hyperoxic samples. On the other hand, somatostatin (SST) immunoreactive 

compacted neurons were observed during mild hypoxic treatment. After 1 hour of 16% hypoxia, 

23.57% of dark neurons were somatostatin positive neurons. SST-positive neurons were located 

within the hilus. However, the CA1 and CA3 regions of the hippocampus did not contain SST 

immunoreactive compacted neurons. No SST-positive dark neurons were present in any of the 

hippocampal areas after hyperoxic exposure.  

According to our hypothesis, the observed differences between hippocampal regions do 

not arise from differences between regions but from cell type-specific differences. 

Hippocampal interneurons differ in morphology, immunoreactivity, synaptic properties, 

laminar arrangement, and connectivity. It has been previously observed that a particular 

subpopulation of interneurons in the hilus is sensitive to Ca2+-induced hyperexcitation [20, 21]. 

Thus, it is likely that a similar mechanism causes SST interneuron damage in the hilus during 

mild acute hypoxia. All SST immunopositive neurons in the hippocampus are GABAergic, and 

14% of all inhibitory interneurons are SST-positive [22, 23]. In the dentate gyrus, SST 

immunopositive neurons are predominantly located within the hilus, primarily in the 

subgranular zone [24]. In the subgranular zone, SST neurons have a fusiform soma and their 

dendrites run parallel to the str. granulosum. They are predominantly described as hilar 

interneurons with perforant pathway-associated axon terminals (HIPP) [24]. HIPP cells target 

the PV-containing perisomatic basket cells and regulate the activity of the basket cells [25]. 

Consequently, a decrease in the number of SST immunoreactive neurons may lead to a decline 

in the activity of excitatory granule cells in the dentate gyrus.  
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3. In vivo measurement of oxygen concentration in the hippocampus 

During our functional tests, the oxygen concentration was measured with an O2 sensor 

embedded in the hippocampus. In hypoxic (16% O2) treatment, tissue partial pressure of oxygen 

(PtO2) decreased from 20.1 mm Hg to 8.71 mm Hg, which falls within the hypoxic threshold 

range determined by other studies. Regarding the hypoxic threshold, although there is no clearly 

defined "critical" PtO2 for the rat brain, this value was estimated to be between 6-10 mmHg in 

the previous studies [26, 27]. It increased to 42.4 mm Hg at 30% O2 and to 79.04 mm Hg when 

the oxygen concentration was further increased to 100%, indicating a higher than physiological 

oxygen level in the hippocampus. 

4. The effect of hypoxia and hyperoxia on network oscillation  

To investigate the effects of hypoxia (1 hour) and hyperoxia (1 hour) on network 

oscillation, local field potentials (LFP) were conducted from the layers of the hippocampus. In 

the case of the higher frequency alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-100 Hz) 

waves, no significant differences were found during hypoxic exposure. However, in the lower 

frequency range (1-4 Hz), an activity around 2.18 Hz appeared, the peak frequency of which 

shifted with the change in oxygen concentration. The average peak frequency during baseline 

recording was 2.18 Hz, which increased to 2.28 Hz at 16% O2 concentration. The difference 

was significant (p < 0.05) based on the analysis of variance and the subsequent post hoc test. 

We also examined the spectral power of the slow wave and found that the power spectrum 

increased, but the difference was not significant compared to the control. In agreement with our 

results, others have observed increased delta wave activity during hypoxia and ischemic [28-

31]. An increase in delta activity may represent a sustained hyperpolarization and inhibition of 

cortical neurons, which affects the activity of the hippocampus via the entorhinal cortex [28, 

29, 32-34]. Based on this, we assume that the activation level of neuron populations decreased 

due to mild hypoxia and that the effect of hypoxia on neuronal activity probably reduced or 

inhibited the activity of only specific neurons or neuron populations. In the hyperoxic group, a 

distinguishable slow activity around 2 Hz appeared in the delta frequency band, similar to the 

hypoxic experiment. At the 30% O2 concentration, compared to the baseline (2.18 Hz), the peak 

frequency was significantly reduced to 1.92 Hz (p < 0.05). We increased the O2 level further, 

and the slow oscillation was reduced considerably to 1.72 Hz at 100% O2 exposure (p < 0.001). 

Delta wave performance decreased during oxygen treatment, but no significant difference was 

detected between normobaric and hyperoxic conditions. Based on the literature, the decrease in 
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delta activity is related to the increased firing rate of neurons [35]. Our results allow us to 

conclude that hyperoxia presumably increased the firing rate of many neurons, which 

manifested itself differently in individual neurons and neuron populations. During hypoxia and 

hyperoxia, reduced blood flow may develop [36]. Hence, the change in blood flow velocity 

may play a role in the shift towards lower frequencies. Neocortical discharges influence the 

activity of the hippocampal network via the entorhinal input [33], thereby presumably 

producing diverse patterns in hippocampal delta waves under altered O2 concentrations. The 

change in the slow wave frequency during hypoxia and hyperoxia is assumed to be closely 

related to the secondary effects of oxygen, but further studies would be needed to understand 

this.  

5. Changes in the firing activity of hippocampal neurons under hypoxia and hyperoxia 

Because of their electrical activity, neurons require a lot of energy. Consequently, the lack 

of energy caused by mitochondrial damage plays a particularly significant role in the damage 

of nerve cells [37]. Our analyses found that hypoxia increased the firing frequency of pyramidal 

cells in the CA1 and CA3 regions (p < 0.05 and p < 0.001), which is related to the depolarization 

of hippocampal pyramidal cells. Hypoxic conditions cause a decrease in the amount of ATP, 

an increase in free calcium levels in the cytoplasm, and an accumulation of extracellular 

adenosine (generated during the breakdown of ATP). This causes a disturbance in the ionic 

balance, which leads to the early cessation of electrical activity and the disappearance of 

excitatory synaptic potentials [38]. Most neurons are known to be sensitive to hypoxia, but the 

reactions of different types of neurons can be different even within the same brain region [39-

41]. As a result of hypoxia, the excitability of neurons in the CA1 region is reduced, which is 

probably explained by the strong expression of KATP channels in CA1 neurons, and the 

excitability is at least partly regulated by the availability and voltage dependence of voltage-

gated potassium channels [42-45]. In our hypoxic model, there was a decrease in the electrical 

activation of hilus interneurons during the hypoxic treatment (p < 0.005). SST immunoreactive 

interneurons in the hilus are particularly sensitive to ischemia. Hypoxia induces presynaptic 

inhibition in dentate gyrus interneurons, partially mediated by activation of metabotropic 

glutamate receptors [46-48]. During our work, we divided the presumed interneurons into two 

groups based on ISI values and firing frequency (type I and type II). We observed that the 

electrical excitability of type I interneurons in the CA3 region was reduced in hypoxia (p > 

0.005). Based on previous studies, inhibitory synapses are particularly sensitive to hypoxia, and 
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hypoxic hyperpolarization is often significant in the population of inhibitory interneurons [48, 

49]. In our study, however, we observed an increase in the firing activity of another group of 

CA3 interneurons (type II) during hypoxic exposure (p < 0.001). 

Similar results were obtained in the hyperoxia group. The firing activity of type I 

interneurons in CA3 decreased (30% O2 p < 0.05 and 100% O2 p < 0.005), while the electrical 

excitability of type II interneurons increased at the 30% O2 concentration (30% O2 p < 0.001). 

For pyramidal cells, the firing frequency in the CA1 region increased at 30% and 100% 

hyperoxia exposure, respectively (30% O2 p < 0.05 and 100% O2 p < 0.05). As a result of 

hyperoxia, a similar change in firing activity was observed in CA3 (30% O2 p < 0.001 and 

100% O2 p < 0.001). In the case of hyperoxia, we have no results on the firing activity of hilus 

neurons because we had to discard most of the data due to the significant deviation of the ISI 

values. For reasons similar to hypoxia, no results were presented on the putative interneurons 

of CA1 either. Previous studies have shown that hyperbaric hyperoxia worsens neuronal 

excitability, but this is primarily due to the sensitivity of cells to atmospheric pressure [50-53]. 

In the CA1 region, a single transient hyperbaric hyperoxic stimulus raises neuronal activity, 

and normobaric hyperoxia has also been shown to increase the excitability of CA1 neurons 

[51]. Changes in ion channel characteristics or expression can affect neuronal excitability [54-

58]. High oxygen levels increase the amount of ROS in mitochondria, especially in the 

mitochondrial respiratory chain complex I, which is particularly sensitive to reactive O2 

derivatives [59-61]. Furthermore, urethane anesthesia can alter neurotransmission [62, 63], 

thereby sensitizing neurons to responses to hypoxia and hyperoxia. We assume that normobaric 

1-hour hypoxia (16% O2) and hyperoxia (30% and 100% O2) in the hippocampus results in a 

shift of the excitatory and inhibitory balance in the direction of excitation, i.e. lower activation 

of inhibitory interneurons may lead to a decrease in the regulation of pyramidal cells.  
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V. Summary  
 

1. Using Gallyas' silver staining method, we were the first to demonstrate neuron damage 

(compacted neurons) in the hippocampus with ultrastructural changes after mild or 

severe hyperoxia exposure. 

2. We showed that short-term, 1-hour exposure to hypoxia and hyperoxia can trigger the 

compaction of neurons, which damage is present in both the dentate gyrus, CA1 and 

CA3 regions. We analyzed the distribution of damaged neurons according to cell layers. 

Due to mild hypoxia (16% O2), in the hilus and CA3 str. oriens and str. the pyramidale 

the neuron compaction was most significant. In contrast, the highest number of damaged 

neurons during mild hyperoxia (30% O2) is in the CA3 str. radiatum, while in the case 

of severe hyperoxia (100% O2), they were formed in the hilus. 

3. To identify the compacted neurons, we combined silver impregnation with 

immunohistochemistry and showed that during mild hypoxia, some of the compacted 

neurons in the hilus are somatostatin-positive interneurons. 

4. In the delta frequency range, we detected a peak frequency of around 2.2 Hz, which 

frequency increased during acute, mild hypoxia. In contrast, during acute hyperoxia, a 

decrease in frequency was observed at lower (30% O2) and higher (100% O2) oxygen 

concentrations. 

5. We demonstrated that short-term hypoxic (16% O2) and hyperoxic (30% and 100% O2) 

exposure increases the firing frequency of pyramidal cells in the CA1 and CA3 regions. 

However, the firing response of interneurons in different layers of the hippocampus 

shows a more heterogeneous picture. Based on the observed trend in the firing properties 

of the interneurons, we divided the interneurons into two groups (I and II). Based on 

this, we determined that the firing activity of type I interneurons in the CA3 region 

decreased during both hypoxia and hyperoxia. In contrast, except for 100% O2 exposure, 

the firing activity of type II interneurons increased. In addition, mild hypoxia induced a 

significant decrease in the firing activity of hilus interneurons. 
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