
Kezelési lehetőségek myelodysplasiában

Dr Borbényi Zita

SZTE, Hematológia Centrum

MDS Epidemiology

- **Overall incidence:** 4.0/100,000
- In US: 34,118
- Median age: 77 yr

Incidence Rates of MDS Increase With Age

More than 86% of patients were diagnosed at age \geq 60 yr

Zeidan. Blood Rev. 2019;34:1. seer.cancer.gov/statistics-network. Ma. Am J Med. 2012;125:S2.

	(2012- 2018), %
2.6	89.1
4.0	36.9
7.1	57.9
14.1	65.7
19.0	73.8
52.0	22.9
37.7	65.1
128.3	90.6
	4.0 7.1 14.1 19.0 52.0 37.7

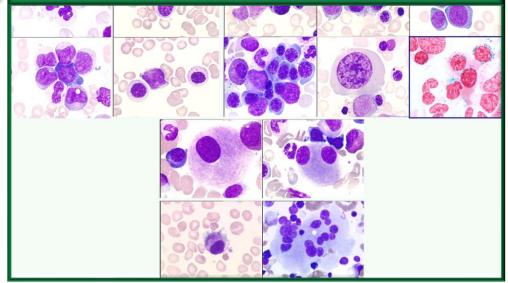
*Age-adjusted incidence rate per 100,000 men and women per yr between 2012 and 2108.

MDS Minimal

Diagnostic Criteria

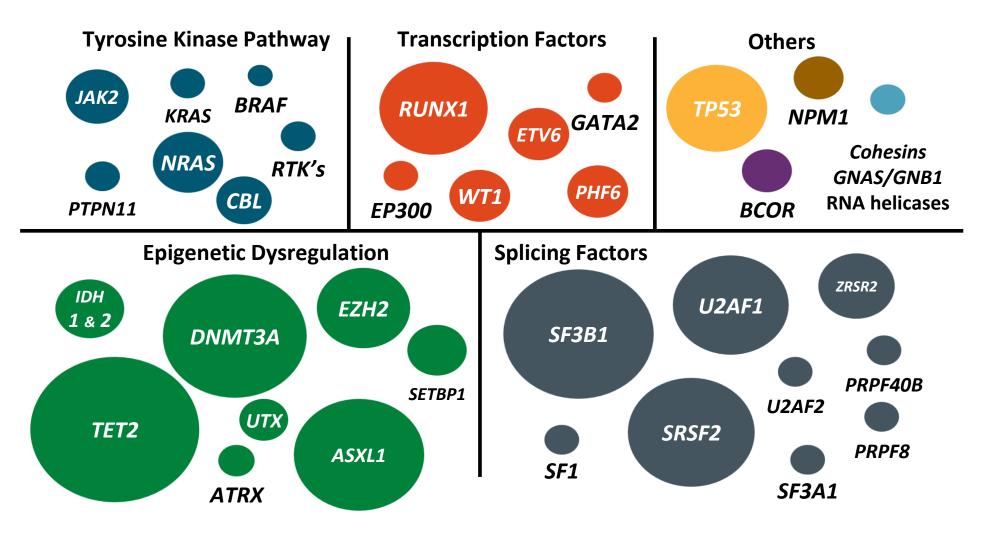
Prerequisite criteria: both 1 and 2 must be fulfilled

1. Persistent cytopenia(s)


2. EXCLUDE other causes of cytopenias and morphological changes

- Vitamin B12/folate deficiency
- HIV or other viral infection
- Copper deficiency
- Alcohol abuse
- Medications (esp. methotrexate, azathioprine, recent chemotherapy)
- Autoimmune conditions (ITP, Felty syndrome, SLE, etc)
- Hereditary BMF syndromes (Fanconi anemia, etc)
- Other hematological disorders (aplastic anemia, LGL disorders, MPN, etc)

MDS major criteria


- Dysplasia of ≥10% of cells in 1 or more major BM lineage(s) (erythroid, neutrophilic, megakaryocytic) or an increase in RS of ≥15% (or ≥5% in the presence of a SF3B1 mutation)
- ii. An increase in myeloblasts of 5%-19% in dysplastic BM smears (in the absence of AML-specific gene rearrangements) or 2%-19% myeloblasts in peripheral blood smears
- iii. An MDS-related (5q-, -7, complex...) karyotype

≥1 of these major MDS criteria has to be met (together with prerequisite criteria) to arrive at diagnosis of MDS

Valent. Oncotarget. 2017;8:73483. NCCN. Clinical practice guidelines in oncology: myelodysplastic syndromes. v.1.2023. nccn.org.

Oncogenic Gene Mutations in MDS

Bejar. Blood. 2014;124:2793. Ogawa. Blood. 2019;133:1049. Slide courtesy of D. Steensma (modified).

Validation of MDS Classification Systems

- Investigators concluded that improvements are possible for both WHO 2022 and ICC 2022 MDS classification systems
 - Molecularly defined subtypes (SF3B1, del5q, and multihit TP53) are unique
 - TP53 mutation predicted poor survival, and multihit TP53 independently predicted survival
 - MDS-RS (*SF3B1* wild-type) and MDS-LB subtypes showed similar survival
 - Outcomes were worse for MDS-MLD vs MDS-SLD
 - Blast percentage correlated with OS, but precise cutoffs should be examined further
 - Grade 2/3 fibrosis was associated with decreased OS and was independent predictor of OS within MDS-IB
- Investigators proposed unified classification algorithm for MDS and plan analysis of multicenter dataset (VALIDATE study)

Ball. ASH 2022. Abstr 463.

Genetically Defined Subtypes in 2022: ICC and WHO

Lower-risk MDS subtypes: <5% BM and <2% PB blasts

- MDS with mutated SF3B1
- MDS with del(5q)

- MDS with low blasts and SF3B1 mutation
- MDS with low blasts and del(5q)

Higher-risk MDS subtype: any blast percentage up to 20%

- MDS with mutated *TP53* (blasts 0%-9%)
- MDS/AML with mutated TP53 (blasts 10%-19%)

MDS with biallelic *TP53* inactivation

Diverted to AML: cases with AML-defining genetic abnormalities (ICC: only if ≥10% blasts)

 PML::RARA, RUNX1::RUNX1T1, CBFB::MYH11, KMT2A rearranged, DEK::NUP214, MECOM rearranged, NUP98 rearranged, NPM1 mutated, CEBPA mutated, bZIP CEBPA*

Morphologically Defined Subtypes in 2022: ICC and WHO

Lower-risk MDS subtypes: <5% BM and <2% PB blasts

- MDS-NOS with single-lineage dysplasia
- MDS-NOS with multilineage dysplasia
- MDS-NOS without dysplasia

- MDS with low blasts
- MDS with low blasts and ring sideroblasts
- Hypoplastic MDS

Higher-risk MDS subtypes: ≥5% BM/≥2% PB blasts or Auer rods

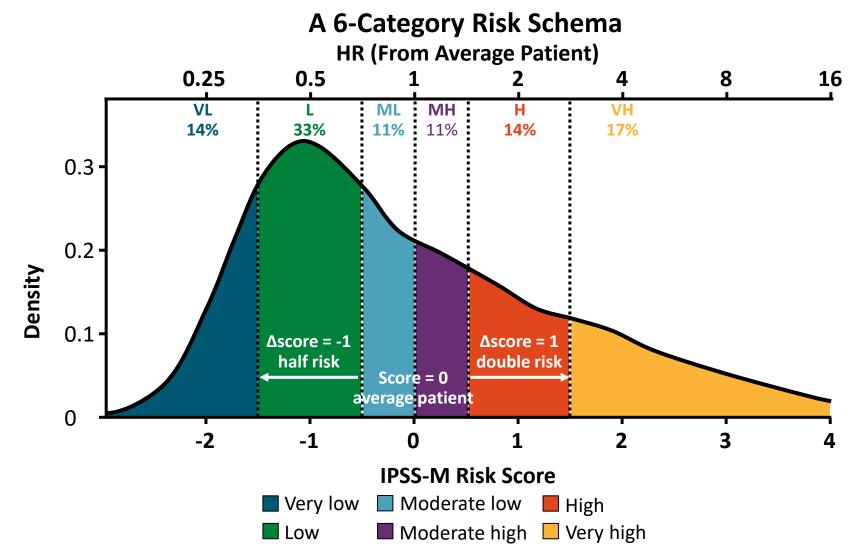
•	MDS with excess blasts	•	MDS with increased blasts: 1
		-	MDS with increased blasts: 2
			MDS with fibrosis

Diverted to new entity intermediate between MDS and AML: 10%-19% blasts

MDS/AML	Effort to acknowledge continuum between MDS and AML, expand patient treatment options, and stimulate research to		
	achieve more rational (likely genetic) distinction between		
	MDS and AML than arbitrary blast cutoff		

Arber. Blood 2022;140:1200. Khoury. Leukemia 2022;36:1703. Estey. Blood. 2022;139:323. DiNardo. Cancer. 2022;128:1568.

IPSS-Revised

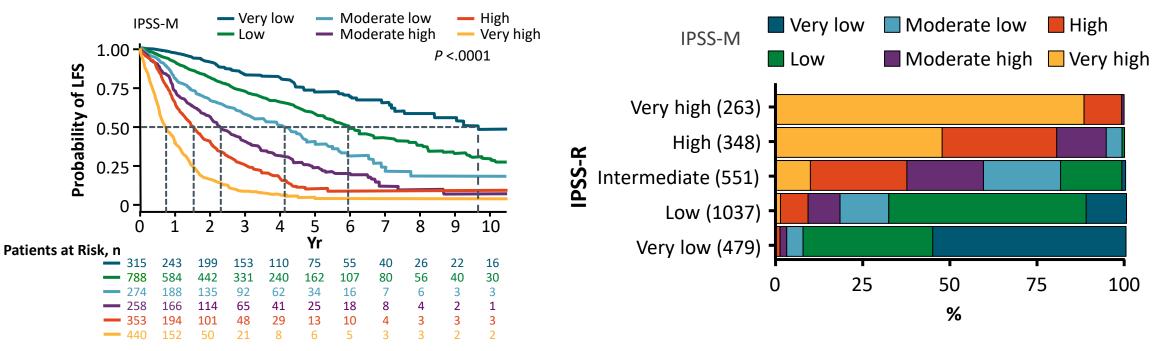

				Score Va	lue		
Prognostic variable	0	0.5	1.0	1.5	2.0	3	4
Cytogenetics	Very good		Good		Intermediate	Poor	Very poor
BM blast, %	≤2		>2-<5		5-10	>10	
Hemoglobin, g/dL	≥10		8-<10	<8			
Platelets, x 10 ⁹ /L	≥100	50-<100	<50				
ANC, x 10 ⁹ /L	≥0.8	< 0.8					

Risk	Score
Very low	≤1.5
Low	>1.5-3.0
Intermediate	>3.0-4.5
High	>4.5-6.0
Very high	>6.0

Risk Groups for the IPSS-R

Risk Group	Points	Patients, %	Median Survival, Yr	Time Until 25% of Patients Develop AML, Yr
Very low	≤1.5	19	8.8	Not reached
Low	>1.5-3	38	5.3	10.8
Intermediate	>3-4.5	20	3.0	3.2
High	>4.5-6	13	1.6	1.4
Very high	>6	10	0.8	0.73
	$ \begin{array}{c} 100\\ (\%) \\ 80\\ 60\\ 40\\ 20\\ 0\\ 0\\ 22\\ 40\\ 0\\ 0\\ 2 4 6 \end{array} $	8 10 12	$\begin{array}{c} 100 \\ 80 \\ 60 \\ 20 \\ 0 \\ 20 \\ 0 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	2
	Overall Survi	val (Yr)	Time to AML Evolution (Yr)

IPSS-M Risk Categories


Molecular IPSS for MDS

- Discovery cohort: diagnostic MDS samples (N = 2957) with <20% blasts and WBC <13 x 10⁹/L were profiled for mutations in 152 driver genes
- Candidate target risk variables consisted of blood counts, blasts, cytogenetics and gene mutations, while patient age, sex and MDS type (de novo or not) were treated as confounders

Leukemia-Free Survival

Restratification of Patients From IPSS-R to IPSS-M Categories

- 46% (n = 1223) of patients were restratified
- 7% (n = 196) of patients were restratified by more than 1 strata



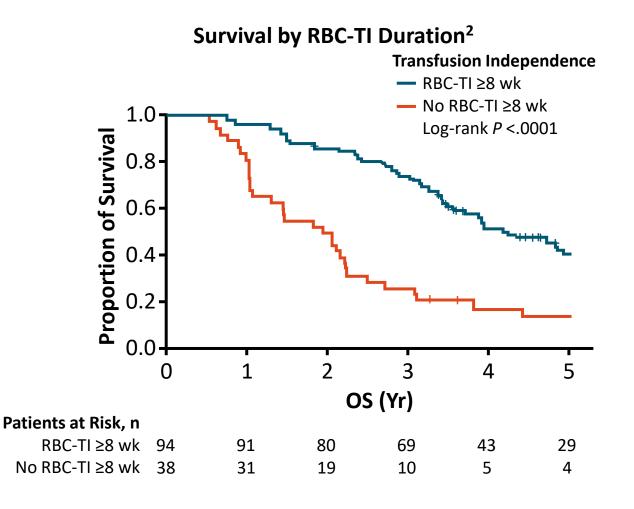
Bernard. NEJM Evidence. 2022;1.

Conclusions

- MDS are heterogenous group of neoplastic stem cell neoplasms
- MDS are interplay between genetic abnormalities and inflammatory milieu
- Clonal hematopoiesis is a spectrum
- Modern classification and risk stratification should include clinical, molecular, and host-related variables

Lower-Risk MDS Treatment Goals

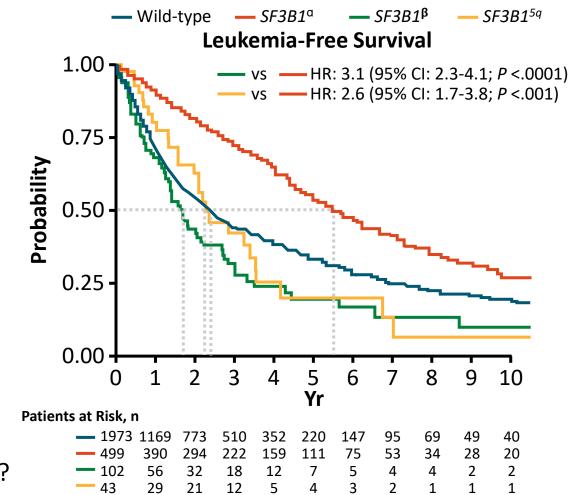
- Improve quality of life
- Improve cytopenia (mostly anemia)

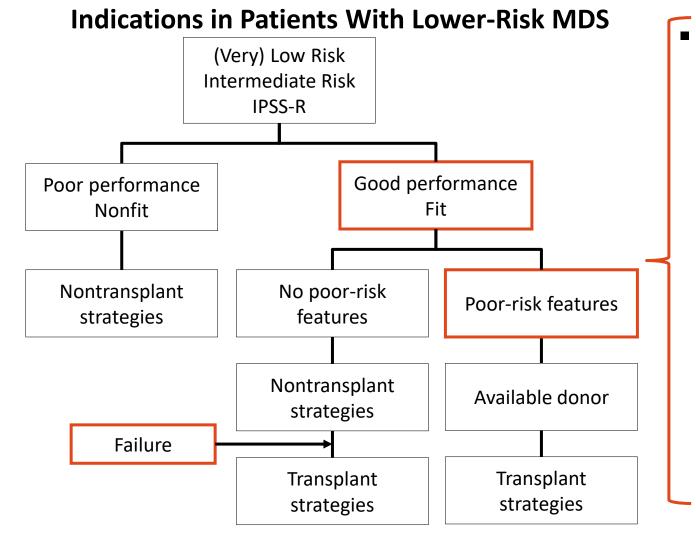

- Prolong overall survival
- Reduce risk of progression

Lower-Risk MDS Treatment Goals

Disease-Modifying Therapy in Lower-Risk Setting¹

- Lenalidomide in MDS del(5q)^{2,3}
 - Eliminate del(5q) clone, not stem cells
 - Transfusion independence and cytogenetic responses
 - Improved outcome among responders (OS and EFS)
- Allogeneic stem cell transplant⁴
 - Curative
 - Increased morbidity, mortality
 - Delay until disease evolution, not as first line?


List. Leukemia. 2018;32:1493. 2. List. Leukemia. 2014;28:1033.
 Fenaux. Blood. 2011;118:3765. 4. De Witte. Blood. 2017;129:1753.


Disease-Modifying Drug in Lower-Risk MDS: Lenalidomide in del(5q)

Lenalidomide (10 mg/day orally, 21/28 days)

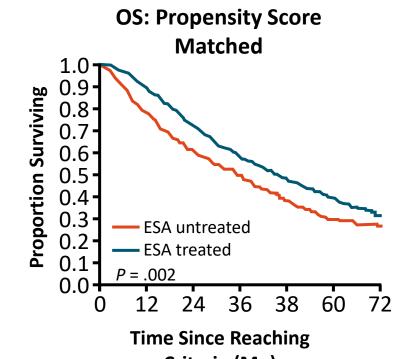
- Del(5q) transfusion dependent
 - Median Hgb increase 5.4 g/dL, median time to response 4.6 wk
 - 76% ER, 60% TI, and 50% cytogenetic responses
 - Myelosuppression, rash, diarrhea
 - Improved outcome among responders
 - Mandatory TP53 status
 - Increased AML evolution if mutated:
 5yr 77% TP53mut vs 24% TP53wt
 - Other adverse genes: TET2, RUNX1, SF3B1???

Disease-Modifying Approach in MDS: Allogeneic Transplant

- Poor-risk features defined as:
 - Poor-risk cytogenetic characteristics
 - Persistent blast increase
 (>50% or with >15% BM blasts)
 - Life-threatening cytopenia (ANC <0.3 x 10⁹/L; PLTs <30 x 10⁹/L)
 - High transfusion intensity
 (≥2 units per mo for 6 mo)
 - Molecular testing should be seriously considered in case of absence of poor-risk cytogenetic characteristics or persistent blast increase

First-line Treatment in Symptomatic Anemia: ESAs

- ESAs (high doses + G-CSF; if no responders, 20% rescue, MDS-RS)
- Symptomatic anemia
- Phase III clinical trials (erythroid response: 14.7% darbepoetin and 31.8% epoetin-α)^{1,2}
- Real-world evidence³:
 - 59% of erythroid responses
 - Median duration of response: 18-24 mo
 - No increased risk of AML
- No relevant adverse events


Predicted score of response⁴:

Transfusion Need		Serum Epo		
Value <2 U/mo ≥2 U/mo		Value <500 U/L ≥500 U/L	Score 0 1	
	Response Score (L 23		

Fenaux. Leukemia. 2018;32:2648.
 Platzbecker. Leukemia. 2017;31:1944.
 Diez Campelo. EHA. 2015. Abstr P244.
 Hellstrom-Lindberg. Best Pract Res Clin Haematol. 2013;26:401.

First-line Treatment in Symptomatic Anemia: ESAs

- EUMDS: prospective registry since 2008
- LR-MDS, Hgb <10 g/dL, propensity score matching
- n = 426 untreated vs
 n = 742 treated with ESAs
- Median OS: 34.8 mo untreated vs 44.9 mo treated

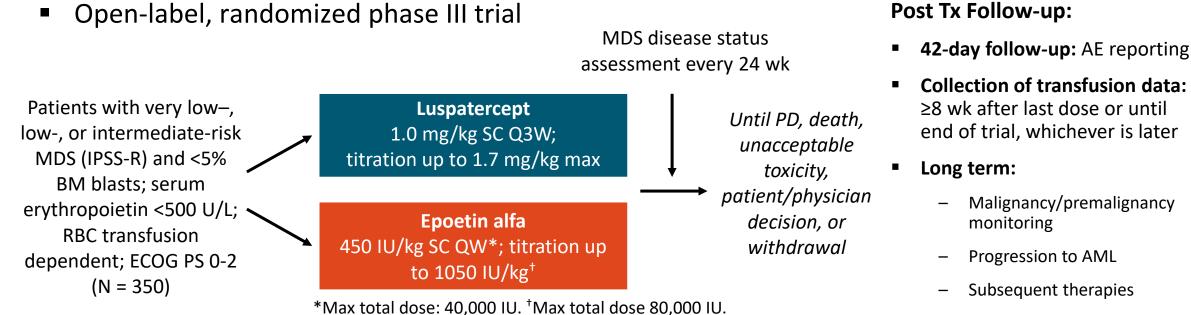
Criteria (Mo)

Second-line Treatment for Patients With RS-LR-MDS

- Luspatercept (1-1.75 mg/kg SC every 3 wk)
- Transfusion-dependent MDS with RS/SF3B1mut
- TI 38%, ER 53%, median duration of response 30 wk
- Median peak Hgb increase level 2.55 g/dL
- Favorable safety profile and administration (SC/3 wk)

Real World Data on Luspatercept

- Retrospective review, N = 114¹
 - RBC HTB: 47%
 - Dose escalation: 55%
- Higher responses correlated with lower TB at baseline and with SF3B1 mutations


Outcome	Luspatercept (N = 114)
HI, %HMA failure vs HMA naive	39.5 30 vs 50
ORR, % SF3B1 mut vs wt RS vs non-RS MDS/MPN-RS-T 	45 48 vs 16 49 vs 28 79
mDOR, mo (range)	15.6 (2.6-27.3)

- Retrospective review, N = 184²
- Patients with higher TB significantly associated with lower probability of TI

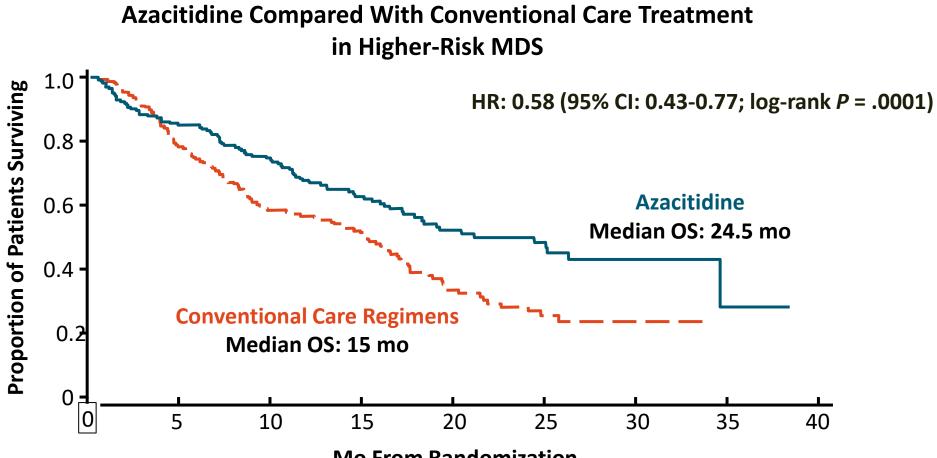
Outcome	Luspatercept (N = 184)
≥8 wk TI in Weeks 1-24, %	32
≥8 wk TI in Weeks 1-48, %	38.6
Median duration TI, wk	27.9
≥1 Maximum approved dose, n (%)	144 (81)

1. Komrokji. ASH 2022. Abstr 1757. 2. Lanino. ASH 2022. Abstr 3088.

COMMANDS: Upfront Luspatercept vs Epoetin Alfa

- 5-yr survival from last dose or 3-yr survival from last dose (whichever is later) unless the patients withdraws, dies, or is lost to follow-up
- Primary endpoint: 12-wk RBC-TI with mean Hgb increase ≥1.5 g/dL
- Key secondary endpoints: 24-wk RBC-TI, Hgb change, HI-E, RBC-TI for ≥12 wk, time to first RBC transfusion, safety

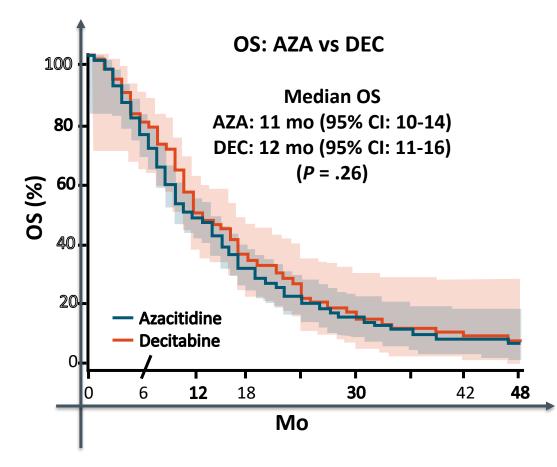
Novel Investigational Therapies in R/R TD LR-MDS: Imetelstat


- Imetelstat (7.5 mg/kg IV/28 days)
- Transfusion dependent after ESA failure
- Telomerase inhibitor targeting cells with short telomere lengths and active telomerase
- Phase II IMerge trial
 - 38% TI, median duration of response 1.3 yr¹
 - Disease modifier: VAF decreased among responders¹⁻³
 - Not clinically relevant hematologic toxicities (grade 3/4 neutropenia/thrombopenia: ~60%)¹
 - On-target activity (hTERT reduction >50%) correlates with durable TI⁴
- Phase III completed
- Target malignant megakaryocytes

1. Steensma. JCO. 2021;39:48. 2. Fenaux. EHA 2019. Abstr S837.

3. Platzbecker. EHA 2020. Abstr S183. 4. Santini. ASH 2021. Abstr 2598.

Higher Risk MDS


AZA-001: Azacitidine Efficacy in Higher-Risk MDS

Mo From Randomization

Which HMA Would You Use?

Retrospective Analysis of HMA-Treated Patients With RAEB From SEER-Medicare Database

- 532 patients who received ≥10 days of therapy; ≥66 yr of age
- 78% received azacitidine, and 22% received decitabine
- Median OS for HMA-treated patients with RAEB: 12 mo (95% CI: 11-14)
- In multivariate analysis of OS, HR: 0.99 (95% CI: 0.78-1.24) indicating no significant improvement (or decrement) for decitabine compared with azacitidine

S1612: Azacitidine and Nivolumab vs Azacitidine in Newly Diagnosed Older Patients With AML or HR-MDS

- Randomized, phase II/III study; primary endpoint: OS
- Early study closure after 49 patients enrolled due to a higher 28-day mortality in the azacitidine-nivolumab arm
- SAEs: 93 AZA + Nivo vs 21 AZA
- Immune adverse events: pneumonitis (n = 2); diarrhea (n = 1); elevated AST (n = 2)

	AZA (n = 24)	AZA + Nivo (n = 25)	P Value
Early death			
 Alive >28 days 	23 (96)	19 (76)	.098
 Died within 28 days 	1 (4)	6 (24)	
Best response			
 CR 	3 (12)	4 (16)	.66
 CRp/CRi 	3 (12)	1 (4)	
 HE-E and HI-N and HI-P 	1 (4)	0	
 HI-P only 	0	1 (4)	
 MLFS 	1 (4)	0	
 Stable disease 	7 (29)	6 (24)	
 No response 	9 (38)	13 (52)	

1.0— AZA (n = 24, deaths = 22) — AZA + Nivo (n = 25, deaths = 25) 0.8 **Probability of Survival** Stratified log-rank P = .230.6 0.40.2 0.0 0 2 4 6 8 10 14 18 22 26 30 34 38 Mo AZA 2421181311 9 8 8 7 6 4 3 2 2 2 2 2 1 Lymphome + 25151411 9 8 8 6 5 5 3 3 3 2 2 1 1 1 Nivo

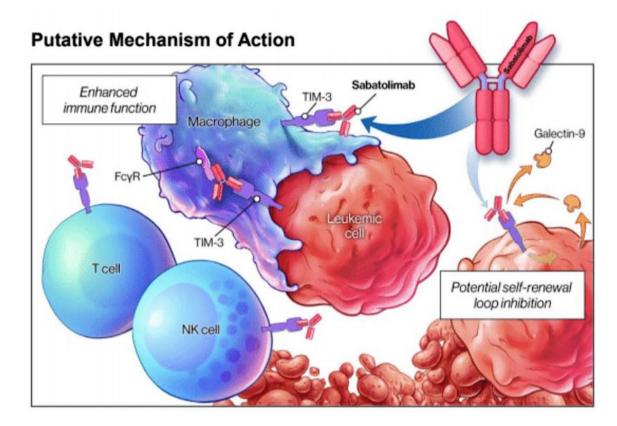
Overall Survival

Assouline. Leuk Lymphoma. 2023;64:473.

VERONA: Venetoclax + Azacitidine in Treatment-Naive Patients With Higher-Risk MDS

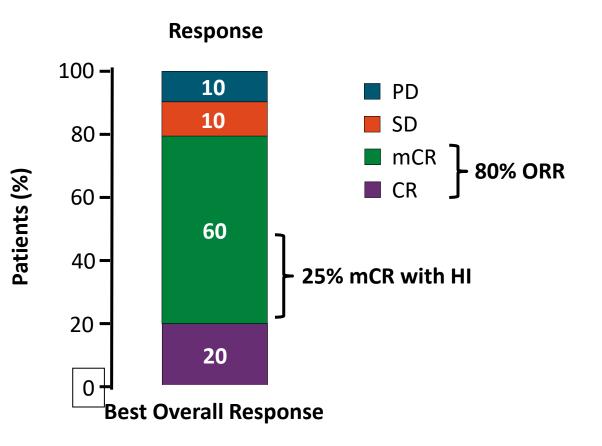
Randomized phase III trial

Patients with newly diagnosed HR MDS, IPSS-R >3 (intermediate, higher, very high risk); HSCT eligible; no previous HMA or venetoclax therapy; ECOG PS ≤2 (planned N = 500) Venetoclax 400 mg QD (Days 1-14) + + Azacitidine 75 mg/m² (7 days within 9 calendar days/28-day cycle)

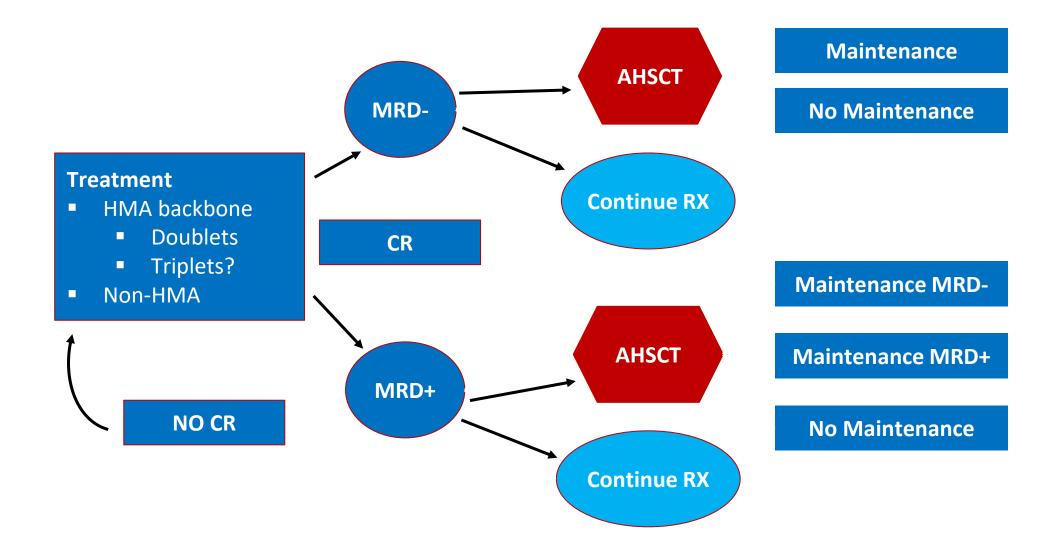

Placebo + Azacitidine 75 mg/m² (7 days within 9 calendar days/28-day cycle) Until relapse, disease progression, unacceptable toxicity, or HSCT

- Primary endpoints: CR, OS
- Secondary endpoints: transfusion independence, ORR, modified ORR, QoL, PRO

Primary results of Stimulus-MDS1: A randomized, double-blind, placebo-controlled Phase II study of TIM-3 inhibition with sabatolimab added to hypomethylating agents (HMAs) in HR-MDS

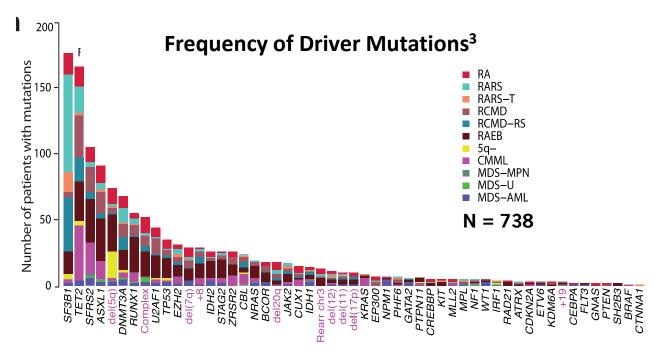

Sabatolimab is a novel immunotherapy targeting the immuno-myeloid regulator TIM-3

- TIM-3 is expressed on LSCs and blasts, but not on normal HSCs¹⁻⁵
- As an inhibitory receptor, TIM-3 plays a key role in regulating innate and adaptive immune responses^{1,2}
- Preclinical studies show that sabatolimab has a potential dual mechanism to combat myeloid malignancies by reactivating the immune system⁶
- Sabatolimab + HMAs demonstrated clinical benefit with favorable tolerability in a Phase Ib study in patients with HR/vHR-MDS⁷



CPX-351 in HR-MDS

- Multicenter, dose-escalation, safety-expansion phase I study (N = 20)
- 75% of patients proceeded to allo-HCT; 15% pending allo-HCT
- 0 deaths within 30 days of induction
- 1 patient died from PD to sAML within
 60 days of induction
- 1 patient did not proceed to allo-HCT due to poor performance status post induction and was taken off study


Total Therapy in HR-MDS

Clinical Drug Development for HR-MDS, Especially Post HMA Failure, Has Proven Very Challenging: Exiting the Black Hole

Challenges^{1,2}

- Biological and molecular heterogeneity of disease
- Poor understanding of mechanisms of resistance, including primary vs secondary failure
- Poor condition of most patients at time of HMA failure
- Typical MDS patient is frail, late 70s in age, many with limited social support, live far from tertiary centers where trials are typically conducted

- >85% to 90% of patients have ≥ 1 mutation^{3,4}
- >45 mutations, none specific to MDS^{3,4}
- Only 5-6 mutations seen >10% cases^{3,4}
- Average number of mutations per patient is 2-4^{3,4}