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Bevezetés 

A tüdőrák az elmúlt néhány évtizedben világszerte jelentős közegészségügyi 

problémává vált, és a daganatos halálozások vezető oka, amely hatalmas kihívást jelent 

a modern onkológia számára. A daganatokhoz kapcsolódó halálozások jelentős részéért 

felelős világszerte, és az egyik legelterjedtebb tumorként tartják számon – évente 

körülbelül 2,2 millió új esetet regisztrálnak, melyek közül 1,8 millió végződik halállal. 

Szövettani szempontból a tüdőrák két típusra osztható: kissejtes tüdőrák (SCLC) és 

nem kissejtes tüdőrák (NSCLC). Ez utóbbi az összes tüdőrákok több, mint 80%-át teszi 

ki, és tovább osztható adenokarcinómára, laphámsejtes karcinómára és nagysejtes 

karcinómára. A tüdő adenokarcinóma (LUAD) a tüdőrák leggyakoribb formája, amely 

az esetek körülbelül 40%-áért felelős. Sajnos a legtöbb LUAD eset prognózisa 

továbbra is kedvezőtlen, mivel az LUAD diagnózisok mintegy kétharmada 

előrehaladott, inoperábilis stádiumban van, valamint a korai felismerés nehézségei és a 

hatékony kezelések hiánya miatt. Ezért elengedhetetlen a LUAD-hoz kapcsolódó 

biomarkerek és terápiás célpontok azonosítása a korai felismerés javítása és a tüdőrák 

célzott terápiájának elősegítése érdekében. 

A mikroRNSek (miRNS) körülbelül 20-25 nukleotid hosszúságú, egyszálú, nem 

kódoló RNS-molekulák. A cél mRNS 3ʹ nem transzlált régiójával (UTR) bázispárokat 

képezve képesek beavatkozni az mRNS transzlációjába, ami mRNS degradációhoz 

vagy a transzláció gátlásához vezet. Bár a miRNS-ek csupán az emberi genom 2%-át 

teszik ki, mégis kulcsszerepet játszanak a sejtek sorsának alakulásában. Emellett 

szabályozzák a gének közel egyharmadának kifejeződését, szinte minden biológiai 

folyamatban, beleértve az embriófejlődést, a sejtproliferációt, az apoptózist, az 

immunválaszokat és a tumorképződést. Egyre több bizonyíték hangsúlyozza a 

miRNS-ek sokoldalú szabályozó hatásait. A kutatások azt mutatják, hogy a miRNS-ek 

számos sejtszintű szabályozó funkcióval rendelkeznek, és több miRNS onkogénként 

vagy tumorszuppresszorként működik. Számos miRNS jelentős klinikai potenciált 

mutatott az onkológiában, különösen azok, amelyek több mRNS-hez képesek kötődni 

és azokat szabályozni, így ígéretes biomarkerekké válnak az onkológia területén. 
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A hosszú, nem kódoló RNS-ek (lncRNS-ek) 200 és 10 000 bázispár (bp) 

hosszúságú nem kódoló RNS-ek. Az lncRNS-ek nem transzlálódnak fehérjékké, 

hanem a célgének expresszióját transzkripciós és poszttranszkripciós szinten 

szabályozzák. Azonban az lncRNS-ek daganatokban betöltött egyértelmű szerepe 

további kutatásokat igényel. A kompetitív endogén RNS (ceRNS) hipotézis szerint az 

lncRNS-ek szivacsszerű hatást fejthetnek ki a miRNS-ekre, és gyengíthetik azok 

mRNS-ekre gyakorolt hatását. Ezen túlmenően, tanulmányok kimutatták, hogy az 

lncRNS-ek, miRNS-ek és mRNS-ek hálózatai fontos szerepet játszanak a daganatok 

patogenezisében és progressziójában. Mindazonáltal a LUAD esetében cask igen ritkán 

találkozunk nagyobb minták vizsgálatával. Pedig a LUAD-hoz kapcsolódó miRNS-ek 

szűrése, valamint egy miRNS központú ceRNS hálózat felépítése rendkívül fontos a 

LUAD-ban szenvedő betegek korai diagnózisa és kezelése szempontjából. 

Jelen PhD értekezésben először áttekintjük a miRNS-ek tüdő adenokarcinómában 

(LUAD) betöltött átfogó szerepét. A miRNS-ek kulcsszerepet játszanak a 

génszabályozásban, és a daganatkialakulásban való részvételüket széles körben 

tanulmányozták. Bár számos áttekintő cikk jelent meg a miRNS-ekről és a 

daganatokról, kifejezetten a LUAD-ra vonatkozóan még mindig nem áll rendelkezésre 

elegendő információ. Áttekintésünk ezt a hiányosságot pótolja azáltal, hogy átfogó 

összefoglalót nyújt jelenlegi ismereteinkről a LUAD progressziójában szerepet játszó 

miRNS-ekkel kapcsolatban. Nemcsak a miRNS-ek diagnosztikai, prognosztikai és 

terápiás jelentőségét emeljük ki a LUAD-ban, hanem átfogó áttekintést is nyújtunk a 

miRNS-ekkel foglalkozó kiterjedt kutatásokról is. Ezenkívül összeállítottunk egy 

függeléket, amely szinte az összes, a tüdő adenokarcinóma kialakulásához és 

kezeléséhez kapcsolódó miRNS-t tartalmazza, megkönnyítve az ezekre vonatkozó 

további vizsgálatokat és a specifikus miRNS-ek és a LUAD közötti korrelációk 

feltárását. Ezt követően elemeztük az lncRNS-ek, miRNS-ek és mRNS-ek 

expresszióját LUAD esetében, a GEO adatbázisból származó génexpressziós profilok 

alapján. Továbbá bioinformatikai módszerekkel létrehoztunk egy LUAD-ra vonatkozó 

ceRNS-hálózatot, hogy új potenciális célpontokat találjunk a rákterápiához. A nagy 

áteresztőképességű mikroarray technológia széles körben használt eszközzé vált az 
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expressziós profilozásban; egyszerre több ezer gén expresszióját mérhetjük vele, és új 

rák biomarkereket azonosíthatunk. Ebben a tanulmányban átfogó elemzést végeztünk a 

miRNS, mRNS és lncRNS expresszióról a nyilvános GSE135918, GSE136043 és 

GSE130779 adatbázisok újraelemzésével. Azonosítottuk a LUAD mintákban a 

kontrollhoz képest differenciálisan expresszált miRNS-eket (DEMis), differenciálisan 

expresszált mRNS-eket (DEMs) és differenciálisan expresszált lncRNS-eket (DELs). 

Megpróbáltuk előre jelezni a DEMis és DEMs közötti interakciókat, majd funkcionális 

dúsítási analízist végeztünk a miRNS-gén szabályozó hálózatok és ceRNS hálózatok 

felépítéséhez. Átfogó bioinformatikai elemzésünk eredményeképpen azt vártuk, hogy 

új LUAD terápiás célpontokat és biomarkereket találunk. 
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A miRNS-ek szerepe a tüdő adenokarcinómában 

A miRNS-ek kis, nem kódoló RNS-ek, amelyeket először 1993-ban a 

*Caenorhabditis elegans* tanulmányozása során azonosítottak. Gyorsan felismerésre 

került, hogy ezek a látszólag konzervált miRNS szekvenciák kulcsszerepet játszanak az 

eukarióták szabályozási folyamataiban. A miRNS-ek képesek beavatkozni az mRNS 

transzlációjába azáltal, hogy komplementer bázispárokat képeznek a cél mRNS 3' 

UTR-jával, ami mRNS degradációhoz vagy transzlációs gátláshoz vezet. A miRNS-ek 

körülbelül 70%-a saját miRNS-lokációkból íródik át, míg a fennmaradó részük 

fehérjekódoló gének intronjából származik. A legtöbb esetben a miRNS géneket a 

sejtmagban írja át az RNS polimeráz II (Pol II) enzim. Ez a primer miRNS (pri-miRNS) 

képződéséhez vezet, amely capping-en, splicing-en és poliadenilációs folyamatokon 

megy keresztül. Egy pri-miRNS vagy egyetlen miRNS-t, vagy két vagy több miRNS-t 

tartalmazó klasztert generálhat. Ezek a hosszú pri-miRNS-ek mikroprocesszor 

komplexum általi hasítást igényelnek, amely complex elsősorban a DROSHA RNáz III 

enzimből és a DiGeorge szindróma kritikus régió 8 (DGCR8) kettős szálú RNS (dsRNS) 

kötőfehérjéből áll. A mikroprocesszor a dsRNS egyik szálát hasítja a pri-miRNS 

belsejében lévő hurok-törzs másodlagos struktúra alján, és felszabadít egy hajtű alakú 

pre-miRNS-t, amely körülbelül 60-70 nukleotid hosszúságú. 

Bár a mikroprocesszor alapvető komponensei, a DROSHA és a DGCR8, 

elengedhetetlenek szinte az összes miRNS biogeneziséhez a sejtekben, több kofaktor is 

szerepet játszik ebben a folyamatban. A pre-miRNS-t az 5-ös exportáló fehérje (XPO5) 

exportálja a sejtmagon kívülre a citoplazmába, majd a DICER1, egy RNáz III enzim 

dolgozza fel, amely a pre-miRNS-t mind a 5'- és 3'-végének hasításával alakítja át. A 

pre-miRNS miRNS-duplexekre hasad, és az egyik szála érett miRNS-sé alakul, amely 

az RNS-indukált csendesítő komplexumba (RISC) kerül, hogy negatív szabályozóként 

működjön a génexpresszióban. A másik szál végül degradálódik (1. ábra). A cél 

mRNS-ek miRNS-ek által indukált degradációja vagy transzlációs gátlása 

nagymértékben függ a miRNS 5'-seed szekvenciájának és az mRNS 3'-UTR elemének 

komplementaritásától. Továbbá a miRNS-biogenezis hibái is hozzájárulhatnak a 
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tumorigenezishez. Számos bizonyíték mutatja, hogy a miRNS-ek sokféle sejtszintű 

szabályozó szerepet töltenek be, és egyes miRNS-ek onkogénként vagy 

tumorszuppresszor géneként működnek. Több tanulmány igazolta, hogy az emberi 

daganatoknál, beleértve a LUAD-ot is, számos miRNS-t dysregulált. Ezért ezek a 

miRNS-ek potenciális diagnosztikus vagy prognosztikus markerekként szolgálhatnak, 

sőt, terápiás beavatkozásokban is szerepet játszhatnak. A miRNS-eket a daganatok 

klasszifikációjára is fel lehet használni, mivel a miRNS expressziós profilok a 

patológiai paraméterek hatékony indikátorai és megbízható biomarkerek a LUAD-ban. 

Számos nyilvános miRNS adatbázis jött létre, amelyek különböző szempontok 

szerint összegyűjtik az annotált emberi miRNS-ek ezreiről szóló adatokat, beleértve a 

LUAD-hoz kapcsolódó egyre növekvő számú miRNS-t is. Növekvő érdeklődés 

mutatkozik a különböző testfolyadékokból származó miRNS-ek azonosítása és 

jellemzése iránt, mivel ezek a minták könnyen hozzáférhetők. A miRNS-ek 

szövetmintákból is beszerezhetők. A formalin-fixált és paraffinba ágyazott (FFPE) 

mintákból származó miRNS-ek nagyobb ellenállást mutatnak a degradációval szemben 

a mRNS-ekhez képest. Ennek következtében ezek a kórházakban tárolt minták jelentős 

előnyökkel bírnak a miRNS kutatásokhoz. Másrészt, bár a miRNS-ek izgalmas új 

célpontot jelentenek a rák kezelésében, a miRNS-ek terápiás alkalmazása kihívást 

jelent a specifitás hiánya miatt. Egy miRNS tipikusan egy génklasztert céloz meg, így 

az expresszió manipulálása nem kívánt következményekhez is vezethet. 

A miRNS-ek ígéretes eszközként jelentek meg a daganatterápiában, mivel 

képesek több biológiai folyamat szabályozására. Számos miRNS diszregulációját 

figyelték meg különböző típusú rákokban, és még a szintjeik apró változásai is 

jelentősen befolyásolhatják a betegség kimenetelét. A LUAD kontextusában a 

miRNS-ek hatékony inhibitorokként működnek a génexpresszióban, hatékonyan 

gátolják a ráksejtek növekedését és túlélését. Továbbá, a miRNS-ek stabilitása a 

szérumban, plazmában és FFPE-tárolt mintákban nagyobb, mint az mRNS-eké, így 

ideális nem invazív biomarkerekként szolgálnak a betegség előrehaladásának nyomon 

követésére és altípusok osztályozására. Növekvő mennyiségű bizonyíték utal arra, 

hogy a miRNS-ek potenciálisan hatékonyak lehetnek a kemoterápiával indukált 
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gyógyszerrezisztencia ellen. Fontos azonban figyelembe venni, hogy a miRNS-alapú 

terápiák kiszámíthatatlan mellékhatásokat vonhatnak maguk után, mivel minden egyes 

miRNS számos mRNS-t célozhat meg, még a szándékolt specifikus cél-mRNS-en túl is. 

Ennek megfelelően csupán néhány miRNS jutott el klinikai vizsgálatokig, és szinte 

mindet elvetették, mielőtt a 3. fázisba értek volna. Ezen kívül a preklinikai vizsgálatok 

során néhány miRNS-t mind tumor szuppresszornak, mind onkogénnek találtak, ami 

azt jelzi, hogy mennyire fontos az a kifejeződési környezet, amelybe bevezetésre 

kerülnek. A daganatokkal kapcsolatos miRNS-ekhez tartozó downstream elemek 

azonosítása és azok megcélzása specifikusabban tervezett siRNS-ekkel ígéretesebb 

stratégiát jelenthet. Továbbá, az exozómákból származó miRNS-ek is nagyon 

ígéretesek lehetnek a LUAD diagnózisában, prognózisában és kezelésében. A 

LUAD-ban található exoszomális miRNS-ek további kutatása várhatóan növeli a 

korábban kevesebb figyelmet kapott miRNS-frakció megértését. 

A kutatási eredmények klinikai gyakorlatba való hatékony átültetéséhez 

elengedhetetlen a miRNS biológia átfogó megértése. A kutatók olyan miRNS-jelzések 

azonosítására összpontosítottak, amelyek új betekintést nyújthatnak a régóta fennálló 

kérdésekbe. Azonban a miRNS-alapú terápiák biztonságának és hatékonyságának 

biztosítása érdekében szükség van a a daganat helyszíneire való célzott szállításra, a 

ráksejtek általi hatékony felvételre és a nem szándékolt hatások minimalizálására. A 

miRNS-ek kimutatására vonatkozó szabványosított módszerek kidolgozása, a 

miRNS-ek és más genomi elemek közötti kölcsönhatások jobb megértése, valamint 

biokompatibilis, célzottan a tüdőléziókra irányuló szállító mechanizmusok 

kifejlesztése kiemelkedően fontos. Még mindig vannak akadályok, amelyeket le kell 

küzdeni a miRNS kutatás klinikai gyakorlatba való átültetésének útján. Azonban 

kitartó erőfeszítésekkel sikerülhet ezeket a kihívásokat leküzdeni, és a közeljövőben új 

korszakot nyithatunk a miRNS-ek átfogó alkalmazásában a LUAD-ban. 

  



8 
 

A tanulmány céljai 

Egyre több kutatás mutatja, hogy a miRNS-ek részt vesznek a génszabályozásban. 

Számos miRNS-ről kimutatták, hogy befolyásolják a tüdőrák kialakulását és fejlődését. 

Jelen tanulmánynak a célja, hogy bioinformatikai elemzés segítségével új, a 

LUAD-hoz kapcsolódó miRNS-eket azonosítson, illetve feltárjon bizonyos 

molekuláris mechanizmusokat is. 

A magas áteresztőképességű mikrorendszerek alkalmazása az 

expresszióprofilozáshoz széles körben elterjedt technológiává vált; ez lehetővé teszi 

több ezer gén expressziójának egyidejű mérését és új daganat-biomarkerek 

azonosítását. A tanulmányunkban átfogó elemzést nyújtunk a miRNS-ek, mRNS-ek és 

lncRNS-ek expressziójáról a GSE135918, GSE136043 és GSE130779 nyilvánosan 

hozzáférhető adatbázisok újraelemzésével. A kontroll-mintákhoz képest LUAD 

mintákban DEMi-ket, DEM-eket és DEL-eket azonosítottunk. Megpróbáltuk 

megjósolni a DEMi-k és a DEM-ek közötti kölcsönhatásokat, majd funkcionális 

gazdagítási elemzést végeztünk a miRNS-gén szabályozó hálózatok felépítésére. 

Átfogó bioinformatikai elemzés révén új terápiás célok és biomarkerek felfedezését 

várjuk a LUAD esetében. 
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Módszerek 

1. Mikrorendszer Adatok 

A génexpresszióval kapcsolatos adatbázisokat a GEO adattárból 

(https://www.ncbi.nlm.nih.gov/geo/) szereztük be, amely egy nyilvános adatbázis, 

amely génexpressziós adatokat tartalmaz nagy áteresztőképességű kísérletekből. Az 

emberi miRNS-ek és mRNS-ek expressziós rekordjait, amelyek a tüdőrák szövetének 

és az azonos 5 tüdő adenokarcinómás beteghez tartozó szomszédos szövetek 

expressziós profiljait tartalmazzák, az NCBI GEO-ból szereztük be (GSE135918, 

GSE136043). A 8 tüdő-adenokarcinómás beteg lncRNS mikrorendszer adatait szintén 

az NCBI GEO-ból töltöttük le (GSE130779), amely ugyancsak tartalmazza a tüdőrák 

szöveteinek és szomszédos szöveteinek rekordját. A GEO adatbázisból származó 

adatok felhasználásához nincs szükség etikai bizottsági engedélyre. 

 

2. Adat-előfeldolgozás és a differenciális expresszió szűrése 

Az R platform GEOquery csomagját használtuk a miRNS, mRNS és lncRNS 

adatok letöltésére, majd az adatokat importáltuk az R statisztikai környezetbe. Az 

adatok előfeldolgozásához a limma csomagot használtuk, amely magában foglalta az 

expressziós mátrix, klinikai információk, platform annotációs fájlok kinyerését és a 

hiányzó adatokat tartalmazó rekordok törlését. A miRNS adatok esetében eltávolítottuk 

a nem humán miRNS-próbákat, és az adatokat log2-re konvertáltuk. A lncRNS 

adatokat normalizálás és log2 konverzió segítségével dolgoztuk fel. A platform 

annotációs információt a GEO adatbázisból szereztük be, és a chip-próba azonosítókat 

gén-szimbólumokká alakítottuk. Az expressziós mátrixot a daganatos szövetcsoport és 

a szomszédos nem daganatos csoport szerint osztottuk fel. A limma csomagot 

használtuk a génexpresszió különbségének p-értékének kiszámítására a daganatos 

szövetcsoport és a szomszédos nem daganatos csoport között, majd a különböző 

expressziójú miRNS-ek (DEMis), mRNS-ek (DEMs) és lncRNS-ek (DELs) 
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kiválasztására. A DEMi-k, DEM-ek és DEL-ek szűrésére a következő kritériumokat 

alkalmaztuk: p-érték < 0,05 és log2 fold change (FC) > 1. A DEMi-k, DEM-ek és 

DEL-ek vizualizálásához az R platformon a FactoMineR, factoextra, ggplot2, ggplotify 

és pheatmap csomagokat használtuk, hogy főkomponens-analízis (PCA) térképeket, 

vulkán térképeket és hőtérképeket készítsünk. 

 

3. Funkcionális feldúsulás elemzés 

A clusterProfiler csomagot használtuk az R platformon a DEM-ek adataira 

vonatkozó és a Kyotoi Gén és Genom Enciklopédia (KEGG) útvonal-elemzésére. A 

funkcionális feldúsulás elemzésének eredményeit a tüdőrák szöveteinek molekuláris 

biológiai funkcióinak változásainak elemzésére használtuk. 

 

4. A DEMi-k cél-lncRNS-einek és mRNS-einek előrejelzése 

A lncRNS-ek és miRNS-ek közötti interakciót a DIANA Tools LncBase Predicted 

v.2 szoftverével jósoltuk meg. Az interakciós pontszám küszöbértékének 0,8-ra 

állításával a lncRNS-miRNS párok előrejelzett lncRNS-eit tovább szűrtük (a pontszám 

0-tól 1-ig terjed), és megkaptuk a DEL-DEMi párok információját. Ezt követően a 

DEMi-k célzott mRNS-eit a MiRTarBase és a Targetscan adatbázisokból szereztük be. 

Mindkét miRNS referenciadatbázis megbízható. Ezen két adatbázis előrejelzési 

eredményei révén megkaptuk a DEMi-DEM párok információit. 

 

5. A DEMi-k Validálása 

A TCGA adatbázis gazdag klinikai információkat és miRNS-expresszió adatokat 

nyújt, hatalmas mintaméretből. Ezért a "TCGA-LUAD" adathalmazon keresztül 

szűrtük a GSE135918-ból nyert DEMi-ket. Az adatbázisból megszereztük a 

TCGA-LUAD klinikai információit és a miRNS-expresszió mennyiségi adatait 

tartalmazó fájlt (https://portal.gdc.cancer.gov/). Az R platformon a DESeq2 csomagot 

használtuk a daganatcsoport és a normál csoport közötti génexpresszió eltérés 
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p-értékének és log2 fold change értékének kiszámítására, hogy megerősítsük a GEO 

adatbázisból nyert DEMi-k eredményeit. 

 

6. A ceRNA Hálózat Felépítése 

A DEL-DEMi-DEM hálózatot a DEMi-k cél lncRNS-einek és mRNS-einek 

predikciós eredményeinek integrálásával rekonstruáltuk. A Cytoscape szoftvert 

használtuk a DEL-DEMi-DEM hálózat vizualizálására. 

 

7. A DEMi-k Túlélési Elemzése 

Annak érdekében, hogy megvizsgáljuk, vajon a kiválasztott DEM-ek 

összefüggésben állnak-e a betegek összesített túlélésével, a TCGA LUAD adatokat 

használtunk. További két R csomagot, a survival-t és a survminer-t alkalmaztuk a 

DEM-ek összesített túlélési elemzésére. A betegeket magas és alacsony csoportokra 

osztottuk, és a miRNS-expresszió szintjeit a surv_categorize funkció segítségével 

rétegeztük az R platformon. Ezenkívül a diagram megmutatta a kockázati arányt 

95%-os konfidenciaintervallummal (CI) és a p-értéket. 

 

 

 

 

 

 

 

  



12 
 

Eredmények 

1. DEMi-k Azonosítása 

Az elemzéshez a GSE135918-ból kiemeltük a miRNS adatokat. Öt tüdő 

adenokarcinómás beteg tüdőrákos szöveteiben és azok szomszédos szöveteiben 

vizsgáltuk a miRNS szintjeit. A miRNS log FC cutoff értéke 1 volt, míg a p-érték cutoff 

0,05. A GSE135918-ban a hiányzó és duplikált adatok eltávolításával összesen 272 

túlszabályozott és 353 alulszabályozott miRNS-t azonosítottunk. A Kiegészítő 

Digitális Tartalom (http://links.lww.com/MD/H189) egy teljes fájlt tartalmaz, amely az 

összes miRNS információt tartalmazza.  

 

2. DEM-ek Azonosítása 

Az mRNS adatokat a GSE136043-ból nyertük ki, és elemeztük az mRNS szintjeit 

tüdőrákos szövetekben és azok szomszédos szöveteiben öt tüdő adenokarcinómás 

betegnél. Annak érdekében, hogy pontosabban feltérképezzük a miRNS és az mRNS 

közötti kölcsönhatást, a miRNS és az mRNS adatok ugyanabból az öt betegmintából 

származtak. A miRNS-hez hasonlóan az mRNS log FC cutoff értéke 1 volt, a p-érték 

cutoff pedig 0,05. A GSE135918 adatokban eltávolítottuk a hiányzó és duplikált 

értékeket. Az elemzés eredményei azt mutatták, hogy 1659 mRNS túlszabályozott, míg 

1476 mRNS alulszabályozott. Ezenkívül a teljes DEM-ek fájlt a Kiegészítő Digitális 

Tartalom (http://links.lww.com/MD/H190) tartalmazza. 

 

3. DEL-ek Azonosítása 

Az lncRNS adatokat a GSE130779-ból nyertük. Ez a tanulmány a lncRNS 

szintjeit vizsgálta a tüdőrákos szövetekben és azok szomszédos szöveteiben nyolc tüdő 

adenokarcinómás betegnél. A miRNS és az mRNS szűrési kritériumaihoz hasonlóan az 

lncRNS log FC cutoff értéke 1 volt, a p-érték cutoff pedig 0,05. Ezen kívül 

eltávolítottuk a hiányzó és duplikált értékeket az adatokból. Az R platformon a limma 

csomagot használtuk az összes lncRNS kifejezés szintjének normalizálására és 
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elemzésére. Az eredmények azt mutatták, hogy 4054 lncRNS túlszabályozott, míg 

5543 lncRNS alulszabályozott. A teljes DEL-ek fájlt a Kiegészítő Digitális Tartalom 

(http://links.lww.com/MD/H191) tartalmazza. 

 

4. A DEM-ek Funkcionális Gazdagításának Elemzése 

Az R platformon a ClusterProfiler csomagot használtuk a KEGG analízisek 

elvégzésére a DEM-ek vonatkozásában, hogy feltárjuk a tüdő adenokarcinóma 

kialakulásában részt vevő lehetséges mechanizmusokat. A p-érték küszöbértékét 

0,05-re állítottuk be, ami 70 KEGG jelátviteli pályát eredményezett (5. ábra). A teljes 

fájl a Kiegészítő Digitális Tartalom (http://links.lww.com/MD/H192) és Kiegészítő 

Digitális Tartalom (http://links.lww.com/MD/H193) tartalmazza, beleértve a 

GeneRatio, p-érték, geneID és számadatokat. Ezek közül a Wnt, PI3K-Akt és Notch 

jelátviteli pályák szerepet játszanak a tüdőrák fejlődésében.  

 

5. MiRNA Szűrés 

A legjelentősebb eltérő expresszióval rendelkező 50 felregulált és leregulált 

miRNS-t választottunk ki és igazoltuk a TCGA adatbázisban található miRNS 

adatokkal. Az összes klinikai információt a tüdő adenokarcinóma (TCGA-LUAD) 

miRNS expressziós kvantifikálásáról a következő linken töltöttük le: 

https://portal.gdc.cancer.gov/. Az eredmények azt mutatták, hogy 567 LUAD minta állt 

rendelkezésre, köztük 46 normál és 521 daganatos minta. A TCGA adatok 

összehasonlításakor a legfeljebb 50 alulregulált és 50 felülregulált miRNS-sel a 

következő 8 alulregulált DEMis (hsa-miR-101-3p, hsa-miR-195-5p, hsa-miR-30a-3p, 

hsa-miR-451a, hsa-miR-144-3p, hsa-miR-15b-5p, hsa-miR-193a-3p, hsa-miR-145-5p) 

és 6 felülregulált DEMis (hsa-miR-665, hsa-miR-369-3p, hsa-miR-224-3p, 

hsa-miR-381, hsa-miR-3944-3p, hsa-miR-3652) azonosítható. Mivel ez a 14 miRNS 

differenciáltan expresszálódott mind a GEO, mind a TCGA adatbázisban, így magas 

fokú hitelességgel rendelkeznek. Annak érdekében, hogy elemezzük, vajon a 14 eltérő 

expressziójú miRNS kapcsolódik-e a tüdőrák kialakulásához, kiválasztottuk a Wnt 
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jelátviteli pályához, a PI3K-Akt jelátviteli pályához és a Notch jelátviteli pályához 

kapcsolódó mRNS-eket a miRNS által előre jelzett cél mRNS-ek közül, hogy 

felfedezzük az interakciókat a miRNS és e három jelátviteli pálya között. 

 

6. CeRNA Hálózat Építése 

A Targetscan és a MiRBase eszközöket használtuk a 14 azonosított miRNS 

célgéneinek előrejelzésére. Ezekből a célgénekből kiválasztottuk a kulcsfontosságú 

mRNS-eket a fent említett három jelátviteli pályáról. E 14 miRNS-t és a 

kulcsfontosságú mRNS-eket felhasználva megépítettük a miRNS-mRNS szabályozó 

hálózatot (lásd: 1A, 1B, 1C ábra). Ezután a LncBase Predicted v.2 eszközt, amely a 

DIANA Tools része, használtuk az lncRNS-ek és miRNS-ek közötti interakciók 

előrejelzésére. Azok az lncRNS-ek kerültek kiválasztásra, amelyek kölcsönhatásba 

lépnek e 14 miRNS-sel, és megépítettük az lncRNS-miRNS szabályozó hálózatot (lásd: 

1D ábra). 

 

7. Túlélési Elemzés 

A TCGA adatbázist és az R csomagot használtuk a kiválasztott DEMis 

értékelésére. Eredményeink azt mutatták, hogy a hsa-miR-101, hsa-miR-195, 

hsa-miR-30a, hsa-miR-145 alacsony expressziós szintje (p < 0,05) rossz overall 

survival-t (OS) jelez a LUAD esetében. Ezzel szemben a hsa-miR-381, hsa-miR-3944 

magas expressziós szintje (p < 0,05) szintén rossz OS-t mutatott a LUAD esetében. 

Ezután a Kaplan-Meier Plotter (http://kmplot.com/) alkalmazást használtuk az OS 

elemzés elvégzésére a hsa-miR-101, hsa-miR-195, hsa-miR-30a, hsa-miR-145, 

hsa-miR-381, hsa-miR-3944 esetében. Ugyanez az eredmény jelenik meg a 

Kaplan-Meier Plotterben. 
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1. ábra: CeRNA szabályozó hálózat a LUAD-ban. 
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Megbeszélés 

A tanulmányunkban a GEO adatbázis felhasználásával öt tüdő adenokarcinómás 

páciens daganatos szöveteiből és szomszédos normál szöveteiből származó miRNS- és 

mRNS-mikroarray adatokat elemeztünk. Azáltal, hogy a miRNS- és mRNS-adatokat 

ugyanazoktól a betegektől választottuk ki, célunk a miRNS-ek és a tüdőrák közötti 

kapcsolat jobb elemzése és előrejelzése volt. A miRNS- és mRNS- kifejeződési 

profilok integrált elemzése összesen 625 különböző mértékben kifejeződött miRNS-t 

(DEMi) tárt fel, beleértve 272 felfelé szabályozott és 353 lefelé szabályozott miRNS-t. 

Ezenkívül 3135 különböző mértékben kifejeződött mRNS-t (DEMs) is azonosítottunk, 

amelyből 1659 túlszabályozott és 1476 alulszabályozott mRNS volt. Ezek az 

azonosított mRNS-ek és miRNS-ek jelentős szerepet játszanak 70 jelátviteli 

útvonalban. Különösen a Wnt jelátviteli útvonal, a PI3K-Akt jelátviteli útvonal és a 

Notch jelátviteli útvonal szerepe áll kapcsolatban a tüdőrák fejlődésével és 

progressziójával. Ezen útvonalak megértése az általunk kiválasztott öt tüdőrákos 

páciens kontextusában mélyebb betekintést nyújthat a LUAD mögötti 

mechanizmusokba. Továbbá megvizsgáltuk az 50 legnagyobb mértékben túl- és 

alulszabályozott miRNS-t, és validáltuk őket a TCGA-LUAD adatbázis használatával. 

Ez a validálás 14 miRNS-t tárt fel, amelyeket a TCGA-LUAD adatbázisban is 

különböző mértékben kifejezettek, beleértve 8 alulszabályozott és 6 túlszabályozott 

miRNS-t. E 14 miRNS jelenléte mindkét adathalmazban arra utal, hogy kulcsszerepet 

játszhatnak a LUAD patogenezisében, és potenciálisan értékes biomarkerek lehetnek a 

betegségben. Összegzésként megállapításaink hangsúlyozzák a specifikus miRNS-ek 

és azok szabályozó szerepeinek fontosságát a tüdő adenokarcinómában. E miRNS-ek 

további funkcionális vizsgálatai tisztázhatják működési mechanizmusukat és 

hozzájárulásukat a tüdőrák biológiájához, így utat nyithatnak új terápiás stratégiák és 

diagnosztikai eszközök számára a LUAD kezelésében. 

Ezután a Targetscan és a MiRBase adatbázisokat használtuk az említett 14 miRNS 

célgéneinek előrejelzésére. Három, a daganatkialakulásban releváns jelátviteli 

útvonalat (Wnt, PI3K-Akt és Notch) választottunk ki, és megvizsgáltuk az ezeken a 
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pályákon részt vevő fehérjéket, amelyek potenciális céljai lehetnek a fent említett 

miRNS-eknek. 

A 8 lefelé szabályozott miRNS közül a hsa-miR-30a-3p célgénei gazdagok a Wnt 

jelátviteli útvonalban, beleértve a WNT, FZD, DVL, LEF, CCND, PLC és más 

családhoz tartozó mRNS-eket. E gének magas expressziója aktiválhatja a Wnt 

jelátviteli útvonalat, elősegítve a tüdő adenokarcinóma kialakulását. A hsa-miR-30a-3p 

alacsony expressziója növelheti e mRNS-ek expresszióját, ezáltal elősegítve a Wnt 

jelátviteli útvonal aktiválódását. Ezen kívül a FZD4 és DVL1 a hsa-miR-144-3p 

célgénjei. A hsa-miR-195-5p és hsa-miR-15b-5p célgénei közé tartozik a WNT2B, 

WNT3A, WNT4, WNT7A, FZD4, FZD6, CCND1, CCND2 és CCND3. A 

hsa-miR-145-5p célgénjei közé tartozik a WNT2B, FZD4 és CCND2. Ezek a gének 

pozitívan szabályozzák a Wnt jelátviteli útvonalat. Ezután elemeztük a túlszabályozott 

miRNS-eket. A hsa-miR-665 célgénei között szerepel a SOST, SOX17 és NLK. A 

hsa-miR-369 célgénei a NKD1, GSK3B és TLE4. A hsa-miR-224 célgénei közé 

tartozik a DKK1, SFRP1, SFRP2, CXXC4, GSK3B, CTBP1, CTBP2. A hsa-miR-381 

célgénei között szerepel a SOST, DKK3, SFRP2, CXXC4, CTBP2 és NLK. A 

hsa-miR-3652 célgénei a SFRP5, NOTUM, NKD1, AXIN1, APC2, CTNNBIP1, 

SOX17, CTBP1. Ezek a mRNS-ek negatívan szabályozzák a Wnt jelátviteli útvonalat. 

E miRNS-ek magas expressziója csökkentheti e célgének kifejeződését, aktiválva a 

Wnt jelátviteli útvonalat. 

A miRNS-ek (8 alulszabályozott és 6 túlszabályozott miRNS) és a PI3K-Akt 

jelátviteli útvonal közötti kapcsolatot is elemeztük. A hsa-miR-30a-3p képes célba 

venni a PI3K, AKT, MTOR és más fontos géneket a PI3K-Akt jelátviteli útvonalban. A 

8 alulszabályozott miRNS közül a hsa-miR-30a-3p-nek van a legnagyobb számú 

célgénje a PI3K-Akt jelátviteli útvonalban. A hsa-miR-101-3p célgénjei közé tartozik a 

PIK3CB, AKT3 és MTOR. A hsa-miR-144-3p célgénjei az IRS1 és a PIK3CB. A 

hsa-miR-15b-5p és hsa-miR-195-5p célgénjei az IRS1, PIK3R1 és AKT3. A 

hsa-miR-145-5p célgénjei között szerepel az IRS1 és AKT3. E gének aktiválhatják a 

PI3K-Akt jelátviteli útvonalat, és a fenti miRNS-ek alacsony expressziója a gének 

felfelé szabályozódását eredményezheti. A 6 túlszabályozott miRNS esetében számos 
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kulcsfontosságú daganatellenes gént elemeztünk. A PTEN a hsa-miR-224-3p és a 

hsa-miR-369-3p célgéne. A hsa-miR-3652 célgénjei közé tartozik a TP53, MAGI és 

PTEN. A MAGI és TSC1 a hsa-miR-3944 célgénjei. E miRNS-ek túlszabályozódása a 

TP53, MAGI, TSC1 és PTEN expressziójának elvesztéséhez vezethet. 

Végül elemeztük a miRNS és a Notch jelátviteli útvonal közötti kapcsolatot. A 

DLL1, DLL4, NOTCH2 és RBPJ a hsa-miR-15b-5p és hsa-miR-195-5p célgénei. E két 

miRNS alacsony expressziója a Notch jelátviteli útvonal aktiválódásához vezethet. 

Ezek a 14 miRNS szerepet játszhat a LUAD patogenezisében, és potenciálisan 

biomarkerként szolgálhatnak e rosszindulatú daganat számára. A 8 alacsonyabb 

expressziójú miRNS közül mindegyikről közölték már, hogy csökkent kifejeződést 

mutat rákban vagy daganatgátló hatású. Különösen a hsa-miR-101-3p, hsa-miR-195-5p, 

hsa-miR-30a-3p, hsa-miR-144-3p, hsa-miR-193a-3p és hsa-miR-145-5p lettek 

daganatgátlóként azonosítva a tüdőrákban. Tanulmányunk tovább erősítette ezen 

miRNS-ek szerepét a tüdő adenokarcinómában, és új, megbízható molekuláris 

mechanizmusokat tart fel a hatásuk magyarázatára. A hsa-miR-30a különösen 

figyelemre méltó volt, mivel alacsony kifejeződés mértéke szoros összefüggésben állt a 

rossz túlélési arányokkal (OS) LUAD esetén (p < 0.001). A hsa-miR-30a-3p gátolhatja 

a tüdőrák megjelenését és progresszióját a Wnt és Akt jelátviteli útvonalakon keresztül, 

így ígéretes biomarker lehet LUAD esetén. Bár a hsa-miR-451a és hsa-miR-15b-5p 

gátló szerepet játszanak a daganatokban, e két miRNS-el kapcsolatban a tüdő 

adenokarcinóma kontextusában korlátozott számú kutatás áll rendelkezésre. Ezek 

potenciálisan új daganatmarkerekké válhatnak e betegség számára. A 6 fokozottan 

kifejeződő miRNS közül a hsa-miR-665, hsa-miR-369-3p, hsa-miR-224-3p és 

hsa-miR-381 emelkedett kifejeződést mutatnak a rákban. A hsa-miR-665, 

hsa-miR-224-3p és hsa-miR-381 daganatkeltőként funkcionálnak a tüdőrákban. 

Tanulmányunk tovább erősítette e miRNS-ek szerepét a tüdő adenokarcinómában, és 

további potenciális molekuláris mechanizmusokat írt le. Bár a hsa-miR-369-3p 

daganatkeltőként már azonosítva lett, a tüdő-adenokarcinómában betöltött szerepéről 

eddig nem végeztek kutatást. A Wnt jelátviteli úttal való szoros kapcsolata azonban azt 

jelzi, hogy kulcsfontosságú gén lehet ezen a területen. Ezenkívül eredményeink az 
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elsők, amelyek a hsa-miR-3944 és hsa-miR-3652 magas expressziós szintjeit találták 

LUAD-ban, és egyúttal megjósolták célgénjeiket. Különösen a hsa-miR-3944 magas 

kifejeződési szintje áll összefüggésben a rossz túlélési arányokkal. Jelenleg nincs 

kutatás a hsa-miR-3944 rákos kontextusban, ami jelzi, hogy ez új biomarker lehet a 

tüdő adenokarcinóma számára. Ez a kutatás értékes referenciát nyújt a miRNS-hez 

kapcsolódó biomarkerek szűréséhez a tüdőrák diagnózisában és kezelésében. 
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A doktori disszertációm új megállapításai 

1 Átfogó áttekintés: Áttekintésünk jelentős hiányt pótol a szakirodalomban, amely a 

miRNS-ek szerepét tárgyalja a tüdő adenokarcinómában (LUAD), átfogó szintézist 

nyújtva a LUAD progressziójában érintett miRNS-ek aktuális kutatásairól. 

 

2 Kulcsfontosságú miRNS-ek azonosítása: Azonosítottunk 14 miRNS-t, amelyek 

kapcsolódnak a tüdő adenokarcinómához, és mélyebben megvizsgáltuk a LUAD 

karcinogenezisének molekuláris mechanizmusait. Ezenkívül felfedeztük, hogy ezek 

közül 7 miRNS a rossz túlélési arányhoz (OS) is kapcsolódik LUAD esetében. 

 

3 Kísérleti validáció: A 14 azonosított miRNS közül 9-nél kísérletileg igazoltak a 

tüdőrák patogenezisében játszott szerepükben. Tanulmányunk nemcsak megerősíti 

ezeket a megállapításokat, hanem új molekuláris mechanizmusokat is feltár az érintett 

miRNS-ek daganatokkal kapcsolatos szerepében. 

 

4 Kevéssé miRNS-ek elemzése: A 14 azonosított miRNS közül háromról már 

korábban leírták daganatokkal való kapcsolatát. Ezeket a miRNS-eket azonban ritkán 

tanulmányozták tüdő adenokarcinómában. Ezt a három miRNS-t potenciális 

biomarkerként elemeztük LUAD-ra, és megvizsgáltuk lehetséges molekuláris 

mechanizmusaikat. 

 

5 Új biomarkerek: Eredményeink első alkalommal számolnak be arról, hogy a 

hsa-miR-3944 és hsa-miR-3652 magas expressziót mutatott LUAD esetén. A 

hsa-miR-3944 magas szintje a rossz OS-hez is kapcsolódott. A hsa-miR-3944 és 

hsa-miR-3652 új biomarkerként szolgálhatnak LUAD esetén. 

 

6 Átalakító potenciál: Tanulmányunkban feltárt miRNS-ek jelentős potenciállal bírnak 

a tüdőrák kezelésének területén, olyan meglátásokat kínálva, amelyek katalizálhatják 

új terápiák és a korai stádiumú betegség biomarkereinek kifejlesztését. 
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