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List of abbreviations

ALDH3A2 - fatty aldehyde dehydrogenase 3A2
c-MET - c-mesenchymal-epithelial transition
COTL1 - coactosin like f-actin binding protein 1
DNA - deoxyribonucleic acid

DSGI1 - desmoglein-1

DYNLLI - dynein light chain 1, cytoplasmic

EGFR - epidermal growth factor receptor

ESI - electrospray ionization

FFPE - formalin-fixed paraffin-embedded

H&E - hematoxylin and eosin

HGF - hepatocyte growth factor

HNSCC - head neck squamous cell carcinoma

HPV - human papilloma virus

IPA - Ingenuity Pathway Analysis

KRT9 or KI1C9 - type I citosceletal keratin 9

LC - liquid chromatography

LHSCC - laryngeal-hypopharyngeal squamous cell carcinoma
MALDI - matrix-assisted laser desorption/ionization
miRNA - micro ribonucleic acid

mRNA - messenger ribonucleic acid

MRM - multiple reaction monitoring

MS - mass spectrometry

m/z - mass-to-charge ratio

NCL - nucleolin

NFE2L2 - nuclear factor erythroid 2-related factor 2
REIMS - rapid evaporative ionization mass spectrometry
RNA - ribonucleic acid

SCC - squamous cell carcinoma

SNRNP200 - small nuclear ribonucleoprotein U5 subunit 200
snRNA - small nuclear ribonucleic acid

SPRR2D - small proline rich protein 2D

TMED?2 - transmembrane p24 trafficking protein 2
TNC - tenascin-C

TOF - time-of-flight



I. INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common malignant
tumor worldwide. Approximately, 660,000 new cases are diagnosed each year, placing a
significant burden on healthcare systems and negatively affecting patients' quality of life.
HNSCC includes malignant laryngeal and laryngopharyngeal squamous cell carcinomas
(LHSCC). Although diagnostic and therapeutic procedures have undergone significant
advances over the recent decades, the overall survival did not improved substantially. One main
reason for this is that the disease is often diagnosed only at an advanced stage when treatment
options are more limited. On the other hand, the aggressive biological behavior of the tumor

also makes successful treatment difficult.

Therefore, early tumor detection is crucial for improving patients' chances of survival.
Alongside traditional diagnostic methods (physical examination, imaging procedures, biopsy),
there remains a high demand for research of tumor markers. Tumor markers are molecules (e.g.
proteins, DNA fragments) that are present in altered quantities in the body when a tumor is
present. Ideally, tumor markers allow for the early diagnosis of tumors, as well as monitoring
therapeutical response and potential tumor recurrence. Proteins carried by the tumor not only

serve as diagnostic tools but can also act as therapeutic targets for biological therapy.

Among proteomic methods, mass spectrometry (MS) has opened new avenues in tumor marker
research. MS is an analytical technique used to determine the mass of charged particles. During
the process, the sample is ionized, and the ions are separated in an electromagnetic field based
on their mass-to-charge ratio (m/z). The spectrum obtained allows for the identification and
quantification of the components of the examined material. This method offers the possibility
to identify differences in protein composition between phenotypically tumorous and healthy
tissues. Therefore, not only the detected proteins but also their quantitative differences can serve

as potential tumor markers

I1. OBJECTIVES

In this study, our objective was to investigate protein differences within tissues using label-free
MS, comparing LHSCC with the surrounding normal phenotypic mucosa, based on formalin-
fixed paraffin-embedded (FFPE) tissue sections, in search of potential tumor markers. We

aimed to verify our hypothesis that certain proteins are over- or underexpressed in LHSCC.



Additionally, based on the international literature and the Ingenuity Pathway Analysis (IPA)
database, we mapped the role of the identified proteins - potentially serving as tumor markers

and future therapeutic targets - in signal transduction pathways.

III. MATERIAL AND METHOD

Patients

Actotal of 16 male patients with histologically confirmed LHSCC were included in our research.
The average age of the patients was 61 years (the youngest patient was 45, the oldest was 79).
All participants were classified as heavy smokers and reported regular alcohol consumption.
The diagnosed tumors were all identified as primary cases. The diagnosis was made through
direct laryngoscopy. During direct laryngoscopy, the laryngoscope used for exposure was
inserted through the mouth of the patient in a supine, hyperextended neck position, into the
laryngeal and hypopharyngeal region. Tumor extent was determined intraoperatively using
visualization with an operating microscope or a rigid laryngological endoscope. Diagnostic
sampling was performed using laryngomicrosurgical instruments. The tissue samples for
analysis were obtained from sections of formalin-fixed paraffin-embedded (FFPE) tissue

blocks.

Sample preparation

Deparaffinization was performed by washing the unstained slides with xylol, ethanol 90%
(m/m), ethanol 70% (m/m), ethanol 50% (m/m) and 50 mM ammonium-bicarbonate,
respectively. Antigen retrieval was performed with 100 mM Tris-HCI buffer (97 °C, 30 min).
According to the marked field lining histologically obvious malignant part, the tissue
wasmicrodissected with a fine needle and collected to 2ml Eppendorf tube containing SDS lysis
buffer. Tumor adjacent normal tissue was also microdissected and each sample was incubated
in the lysis buffer (97 °C, 30min). After centrifugation ice cold absolute ethanol was added to
the supernatant with 9 volume surplus. Samples were kept at 4 °C overnight for protein
precipitation. The pellet was washed twice with absolute ethanol, proteins were solubilized with
8 M urea. Reduction and alkylation were followed by overnight trypsin digestion. The resulting
tryptic peptides were cleaned using Pierce C18 spin columns (Thermo Fisher Scientific,

Waltham, MA).



Mass spectrometrical analysis

The MS used for analysis was a Bruker mAXIS II ETD Q-TOF (Bruker Daltonics, Bremen,
Germany) coupled to an Ultimate 3000 nanoRSLC system (Dionex, Sunnyvale, CA, USA).
Samples were injected on an Acclaim PepMap100 C-18 trap column (100 umx 20 mm, Thermo
Scientific, Sunnyvale, CA, USA) online coupled to an ACQUITY UPLC M-Class Peptide BEH
C18 column (130 A, 1.7 pm, 75 pmx 250 mm,Waters, Milford, MA, USA). Peptides were
separated at 48 °C with a flow rate of 300 nl/min, 4% solvent B from 0 to 11 min, followed by
a 120 min gradient to 50% solvent B. Solvent A consisted of water +0.1% formic acid, while
Solvent B was acetonitrile +0.1% formic acid. The injected sample amount was 0.5 pg. Sample
ionization was achieved in the positive electrospray ionization mode via a CaptiveSpray
nanoBooster ionsource. The capillary voltage was 1300 V, the nanoBooster pressure was 0.2
Bar, drying gas was 150 °C, the flow rate was 3 1/min. External mass calibration was done using
the low concentration tuning mix from Agilent technologies via direct infusion. Internal mass
calibration was performed via lock mass for each run using sodium formate. The MS spectra
were recorded with a fix cycle time (2.5 s) over the mass range of m/z 150-2200 at 3 Hz with
a minimal precursor mass of m/z 322. The CID was performed at 16 Hz for abundant precursors
and at 4 Hz for ones of low abundance. Singly charged peptides were excluded from analysis,
only multiple charged peptides were chosen for fragmentation. Collision energy for precursor
signals was set automatically followed by the manufacturer’s recommendations based on the
isolation m/z, isolation mass range width and ion charge state. Active exclusion of 2 min. After

1 spectra was used except if the intensity of the precursor was elevated threefold.

Protein identification

For protein analysis raw data were recalibrated using the Compass DataAnalysis software 4.3
(Bruker Daltonics, Bremen, Germany). Data were processed by the ProteinScape 3.0 software
(Bruker Daltonik GmbH, Bremen, Germany). Proteins were identified by searching against the
human Swissprot database (2015_08) using the Mascot search engine version 2.5 (Matrix
Science, London, UK) applying the following search parameters: 7 ppm peptide mass tolerance,
0.05 Da fragment mass tolerance, 2 missed cleavages, carbamidomethylation of cysteines as
fixed modification, deamidation (NQ) and oxidation (M) as variable modifications and proteins
were identified using 1% FDR limit. Label-free quantitation (LFQ) was then performed using

MaxQuant (software version 1.5.3.30), applying default parameters. MaxQuant analysis



searched only for proteins identified previously by Mascot. Each LC-MS/MS run was aligned
using the “match between runs” feature (match time window 0.8 min, alignment time window

15 min).

Statistical and bioinformatical analysis

The data obtained were subjected to discriminant analysis and paired t-test to identify the
proteins most characteristic for phenotypically malignant and normal tissues. For
bioinformatical analysis, we used the Ingenuity Pathway Analysis software
(www.ingenuity.com, Mountain View, California, USA), which we employed to map the roles
of the identified proteins within known signal transduction pathways and to explore possible

interactions among them.

IV. RESULTS

Using a label-free proteomic method, a total of 1,164 proteins were detected based on at least
2 unique peptides. Through discriminant analysis, we identified 18 proteins characteristic for
the tumor and non-tumor groups. With the help of paired t-test, we investigated the presence of
any statistically significant differences between the matched tumor-normal sample pairs for
these 18 proteins. The p -value was determined as 0.1, considering the low number of matched

tumor-normal pairs (n=16).

As a result of these analyses, the following 8 proteins showed significantly higher levels in the
tumor tissue:

o tenascin-C (TNC)

o transmembrane p24 trafficking protein 2 (TMED?2)

o dynein light chain 1, cytoplasmic (DYNLLI)

o coactosin like f-actin binding protein 1 (COTLI)

o small proline rich protein 2D (SPRR2D)

o nucleolin (NCL)

o small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200)

o fatty aldehyde dehydrogenase 3A2 (ALDH3A2)


http://www.ingenuity.com/

Two proteins were found to be elevated in the phenotypically intact tissue adjacent to the

tumor:

o desmoglein-1 (DSG1)
o type I citosceletal keratin 9 (KRT9 or K1C9)

The bioinformatical analysis did not reveal any connections between the identified proteins;
however, we mapped 6 interactions involving 6 of the proteins we identified (ALDH3A2,
DSG1, DYNLLI1, NCL, TMED?2 and TNC) and 3 known molecules (epidermal growth factor
receptor (EGFR), hepatocyte growth factor (HGF), and nuclear factor erythroid 2-related factor
2 (NFE2L2)). By illustrating the involvement of the proteins we identified in known signaling
pathways, we also made an attempt to envision several potential future diagnostic and

therapeutic applications.
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V. DISCUSSION

Despite the ongoing technical advancements in the field of molecular diagnostics, tumor marker
research still presents significant challenges. In recent years, interest has gradually shifted
towards proteomics, which emphasizes the observation that proteins produced by the tumor and

their post-translational modifications are at least as important as the tumor genetics.

The examination of FFPE tissue samples is less common in studies related to HNSCC. Among
the publications dealing with proteomic analysis of FFPE tissues, there are only scant references
pertaining to HNSCC. Initially, proteomic analysis of solid tumors could only be performed on
rapid frozen tissue samples, which poses logistical challenges in terms of time and space. To
overcome this, and due to the readily available nature of FFPE tissue samples, the demand for
their analysis has significantly increased, and our research group also decided to focus on

examining these samples.

During our research, we found that the identified proteins influence the tumor
microenvironment in different ways. Proteins that were significantly overexpressed in the tumor
(TNC, TMED2, DYNLLI, COTL1, NCL, SPRR2D, SNRNP200, ALDH3A2) promote tumor
cell proliferation, migration and invasion. Conversely, two proteins that were overexpressed in
phenotypically normal tissue (DSG1, KRT9) play a role in stabilizing the tissue

microenvironment and cell adhesion.

Proteins overexpressed in HNSCC, including LHSCC, can be viewed as promising therapeutic
targets. Inhibiting these proteins could reduce tumor cell proliferation, migration, and tissue

invasion, thus opening the way for novel antibody-based therapies in head and neck oncology.

Limitations of the research

No data were found regarding SPRR2D and KRT9 in the IPA database. This is likely due to the
lack of information about the relationship between these two proteins and SCCs in the actual
database. As the database's content expands, it is expected to reveal new interactions involving
these proteins in the future. Although our study initially was based on a relatively modest
number of samples, it is important to emphasize that our primary goal was to conduct an
exploratory study aimed at examining the differences in protein composition between malignant

and phenotypically healthy tissue surrounding the tumor in LHSCC.



Benefit of the research

We consider it important to emphasize that, in contrast to previous studies based on MS, we
examined the differences in protein abundance between tissues exclusively on FFPE LHSCC
tissue samples using a label-free LC/MS proteomic method. The use of quantitative LC/MS
analysis on FFPE samples has long been a subject of debate. Critics argue against the method
due to formalin-induced cross-links and by-products. However, thanks to advances in extraction
procedures, the reliability and diagnostic accuracy of protein recovery from FFPE tissue
samples are comparable to those from freshly frozen tissues. Moreover, the application of
LC/MS to FFPE tissues has also been shown to be equivalent to analyses performed on fresh
frozen samples. Additionally, label-free proteomic methods have several advantages over
labeled techniques. On the one hand, labeling procedures involve sample preparation steps that
can lead to protein loss and data loss. On the other hand, some labeling techniques require the

presence of specific molecular components (e.g., cysteine-containing peptides).

Beyond our promising initial results, this study also holds clinical relevance. Besides
successfully highlighting proteomic differences between LHSCC and neighboring
phenotypically intact tissue, we identified proteins that could potentially serve as markers and
targets in LHSCC, which had not previously been the focus of attention. Furthermore, the
reliability of label-free LC/MS on FFPE samples enables the analysis of existing
histopathological archives. Based on our reasoning, the broad inclusion of such tissue archives
could significantly contribute to future tumor marker research and would eliminate the need for

costly and time-consuming fresh freezing procedures.

Future aims

At the time of our proteomic measurements, monoclonal antibodies suitable for the verification
of the identified proteins were unfortunately not widely available. In the future, with the
possession of these antibodies, we would have the opportunity to study the intra-tissue
distribution of the analyzed proteins, which could potentially aid the better understanding of

the interactions between tumor tissue and the surrounding stroma.
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VI. CONCLUSION

The discovery of potential biomarkers that are characteristic for HNSCC remains
fundamentally important but also represents a significant challenge even today. The
continuously improving technical background has contributed to the rapid advancements in
proteomics and consequently in MS. With sophisticated instrumentation and well-developed
sample preparation procedures, it has become possible to analyze complex compounds and
tissue samples. The application of MS naturally extended to tumor marker research as well.
Similar to other types of cancers, the identification of proteins characteristic for HNSCC has
become increasingly accessible. Recognizing tumor-specific biomarkers is crucial for early
detection. These biomarkers are not only useful for screening but also play an essential role in
detecting tumor recurrence and evaluating responses to treatment. By identifying proteins
characteristic of LHSCC, we aimed to take another step forward in tumor marker research.
Additionally, our label-free LC/MS method applied to FFPE tissue samples appears to be a

promising approach for investigating potential biomarkers specific to HNSCC.
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APPENDIX

Paired t-test

(regarding the 18 most characteristic proteins based on discriminant analysis for the matched tumor and phenotypically healthy tissue sample pairs)

95% confidence interval of the Degrees
Relative abundance Standard Standard difference of Significance
average values deviation error lower limit upper limit t-value freedom (p-value)
1.par TENA_HUMAN ép — -2348325,00000 1371919,61000 396039,07810 -3220001,13400 -1476648,86600  -5,930 1 0,000
TENA_HUMAN tumoros
2.par TMED2_HUMAN ép — -150133,33330 85444,86083 24665,80670 -204422,40780 -95844,25882  -6,087 11 0,000
TMED2_HUMAN tumoros
3.par DYL1_HUMAN ép — -183083,33330 326385,56630 94219,39728 -390458,82850 24292,16187  -1,943 1 0,078
DYL1_HUMAN tumoros
4.par PSMD3_HUMAN ép — -53666,66667 145052,55060 41873,06456 -145828,66040 38495,32703  -1,282 11 0,226
PSMD3_HUMAN tumoros
5.par DCXR_HUMAN ép — -35258,33333 123515,69980 35655,91127 -113736,46490 43219,79825  -0,989 1 0,344
DCXR_HUMAN tumoros
6.par DSG1_HUMAN ép — 1390166,66700 2209880,78000 637937,63150 -13924,59339 2794257,92700 2,179 1 0,052
DSG1_HUMAN tumoros
7.par COTL1_HUMAN ép — -264333,33330 397229,34370 114670,23430 -516720,81730 -11945,84941 -2,305 1 0,042
COTL1_HUMAN tumoros
8.par K1C9_HUMAN ép — 73326666,67000 97159973,93000 28047668,55000 11594164,41000  135059168,90000 2,614 1" 0,024
K1C9_HUMAN tumoros
9.par OSTF1_HUMAN ép — -21475,00000 81984,66736 23666,93488 -73565,57247 30615,57247  -0,907 1 0,384
OSTF1_HUMAN tumoros
10.par IF6_HUMAN ép — -3266,66667 193252,24370 55787,11746 -126053,28430 119519,95100  -0,059 1 0,954
IF6_HUMAN tumoros
11.par ACOC_HUMAN ép — 8716,66667 91136,93826 26308,96792 -49188,98130 66622,31463 0,331 1 0,747
ACOC_HUMAN tumoros
12.par SPR2D_HUMAN ép — -103300,00000 134895,60270 38941,00627 -189008,57690 -17591,42307  -2,653 1 0,022
SPR2D_HUMAN tumoros
13.par NUCL_HUMAN ép — -1271858,33300 1047332,64900 302338,89340 -1937301,75100 -606414,91570  -4,207 1 0,001
NUCL_HUMAN tumoros
14.par TXNL1_HUMAN ép — -41316,66667 84232,22050 24315,74759 -94835,26627 12201,93293  -1,699 1 0,117
TXNL1_HUMAN tumoros
15.par U520_HUMAN ép — -691750,00000 768104,41110 221732,64430 -1179780,26000 -203719,74050  -3,120 1 0,010
U520_HUMAN tumoros
16.par UD17_HUMAN ép — -9275,00000 163882,95780 47308,93491 -113401,26370 94851,26367  -0,196 1 0,848
UD17_HUMAN tumoros
17.par AL3A2_HUMAN ép — -86083,33333 144985,55310 41853,72405 -178202,75890 6036,09220  -2,057 1 0,064
AL3A2_HUMAN tumoros
18.par TBB6_HUMAN ép — -230333,33330 647338,93520 186870,65420 -641632,87020 180966,20350  -1,233 1 0,243

TBB6_HUMAN tumoros
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Red boldface indicates proteins significantly overexpressed in tumor tissue comparing to the adjacent phenotipically normal tissue (p <0,1)

Green boldface indicate proteins with significantly lower abundance in tumor tissue (p <0,1) comparing to the adjaccent phenotipically normal tissue



APPENDIX

List of identified proteins

Genes encoding ID number of Molecule Sequence Number of
identified proteins | encoded protein Mascot points weight (kDa) coverage (%) peptides*
TNC TENA HUMAN 354 240,7 8,3 13
TMED2 TMED2 HUMAN 59,1 22,7 12,2 3
DYNLL1 DYL1 HUMAN 82,3 8 21,6 5
COTL1 COTL1 HUMAN 72,7 15,9 5,4 3
SPRR2D SPR2D HUMAN 89,1 7,9 46,8 3
NCL NUCL HUMAN 316,2 76,6 17,9 11
SNRNP200 U520 HUMAN 51,5 2444 1,3 2
ALDH3A2 AL3A2 HUMAN 64,6 54,8 7,9 3
DSG1 DSG1 HUMAN 175 113,7 6,9 5
KRTY9 K1C9 HUMAN 14933 62 68,2 37

* the average number of peptides each protein was identified with

Red boldface indicates proteins significantly overexpressed in tumor tissue comparing to the adjacent phenotipically

normal tissue (p <0,1)

Green boldface indicate proteins with significantly lower abundance in tumor tissue (p < 0,1) comparing to the

adjaccent phenotipically normal tissue
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Abstract

Squamous cell carcinoma (SCC) of the head and neck region is the sixth most frequent malignancy with high mortality rate. Due
to its poor prognosis it is considered a growing public health problem worldwide inspite of existing treatment modalities. Thus,
carly diagnosis of new diseases and recurrences is emerging on one hand, but on the other hand troublesome in the lack of reliable
tumor markers in this field. The rapid development of proteomics has opened new perspectives in tumor marker discovery.
Liquid chromatography/mass spectrometry (LC/MS) as the gold standard in proteomics enables the semi-quantitative analysis of
proteins within various tissues. Abundance differences between tumor and normal tissue also can be interpreted as tumor specific
changes. The aim of this study was to identify potential tumor markers of laryngeal/hypopharyngeal SCC by revealing abundance
changes between cancerous and the surrounding phenotypically healthy tissue. After separating the phenotypically cancerous and
healthy parts of formalin-fixed paraffin-embedded tissues, each sample underwent protein recovery process and tryptic digestion
for label-free semi-quantitative LC/MS analysis. Eight proteins showed significantly higher abundance in tumor including
tenascin, transmembrane emp24 domain-containing protein 2, cytoplasmic dynein light chain 1, coactosin-like protein, small
proline-rich protein 2D, nucleolin, U5 small nuclear RNP 200-kDa helicase and fatty aldehyde dehydrogenase. Desmoglein-1
and keratin type I cytoskeletal 9 were down-regulated in tumor. Using Ingenuity Pathway Analysis we mapped the signaling
pathways these proteins play role in regarding other tumors. Based on these findings these proteins may serve as promising
biomarkers in the fight against laryngeal/hypopharyngeal SCCs.

Keywords Biomarker discovery - Laryngeal cancer - LC/MS - Squamous cell carcinoma - Proteomics
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Introduction

Head neck squamous cell carcinoma (HNSCC) is the 6th most
frequent malignancy [1] related with nicotine and alcohol
abuse [2]. Its incidence is three-fold higher in males. Due to
the aspecific symptoms most HNSCCs are diagnosed with
advanced stage indicating growing public health problem
worldwide The low 5-year overall survival rate has not
changed significantly in the past decade despite surgical and
oncological innovations [3].

Thus, early diagnosis and better understanding of tumor be-
havior is essential. HNSCCs probably produce several proteins
that could be utilized as tumormarkers. In possession of reliable
markers not only screening and early recognition, but early
detection of recurrence could be achieved. In addition, some
markers may serve as promising targets for biological therapies.

Due to rapid proteomics development, a new way has opened
in biomarker discovery. Beside evaluating epigenetic modifica-
tions, on-tissue protein distribution investigation and protein im-
aging also became available [4]. As potential biomarkers are
mostly unknown, labeling can not be used in discovery contrary
to label-free semiquantitative methods. Without labeling, inten-
sity of distinct peptides appropriately follows their abundance
changes. Nevertheless, label-free methods are more cost-effi-
cient. LC/MS possesses these advantages. Its high throughput
feature also makes it powerful in protein discovery. Initially,
proteomic analysis of solid tumors with mass spectrometry
(MS) was available only on fresh frozen samples. Therefore,
growing demand for analysis of formalin fixed paraffin embed-
ded (FFPE) tissue samples appeared. Development of tissue
preparation protocols enabled the elimination of formaldehyde
induced protein cross-linkings disturbing MS. Overcoming this
formerly limiting factor, an invaluable perspective has opened in
retrograd analysis due to broad histological sample archives used
in daily clinical practice.

The present study aims to investigate protein abundance dif-
ferences between laryngeal/hypopharyngeal squamous cell car-
cinoma (LHSCC) and phenotypically normal tissue on FFPE
samples to identify potential tumor markers. Furthermore, based
on the literature and Ingenuity Pathway Analysis (IPA), we aim
to map the pathways these proteins take part in other malignant
tumors in order to evaluate them as possible candidates for target
therapy of HNSCCs in the future.

Material and Methods

Patients

Sixteen consenting patients (16 males, median age 61 yrs.,
range from 45 yrs. to 79 yrs) diagnosed with LHSCC were

enrolled. Heavy smoking and regular alcohol consumption
were reported in all cases. All tumors were advanced primary

@ Springer

cases (stage III-IV.A). Exclusion criteria included non-SCC
histology, HPV positivity, previous oncological treatment and
recurrence or second primary tumor.

Method

Clinical examination included biopsy from all tumors for di-
agnosis prior to treatment. Biopsy samples were fixed in for-
malin followed by paraffin-embedding, sectioning and
hematoxylin-eosin (HE) staining. Histological examination
confirmed HNSCC in all cases.

For research purposes, all corresponding paraffin-embedded
tissue blocks were retrieved and further sections (15 pum thick-
ness) were made from original blocks and placed to conventional
histological plate without staining. In addition, another HE
stained section (7 um thickness) was made from blocks with
one obvious malignant field marked by the pathologist on the
contralateral side of the plate. Based on this marking, identical
part of each plate containing unstained paraffin-fixed section was
drawn around in the same way. Deparaffinization was performed
by washing the unstained slides with xylol, ethanol 90% (m/m),
ethanol 70% (m/m), ethanol 50% (m/m) and 50 mM ammoni-
um-bicarbonate, respectively. Antigen retrieval was performed
with 100 mM Tris-HCl buffer (97 °C, 30 min). According to
the marked field lining histologically obvious malignant part, the
tissue was microdissected with a fine needle and collected to 2 ml
Eppendorf tube containing SDS lysis buffer. Tumor adjacent
normal tissue was also microdissected and each sample was
incubated in the lysis buffer (97 °C, 30 min). After centrifugation
ice cold absolute ethanol was added to the supernatant with 9
volume surplus. Samples were kept at 4 °C overnight for protein
precipitation. The pellet was washed twice with absolute ethanol,
proteins were solubilized with 8 M urea. Reduction and alkyl-
ation were followed by overnight trypsin digestion. The resulting
tryptic peptides were cleaned using Pierce C18 spin columns
(Thermo Fisher Scientific, Waltham, MA). The MS used for
analysis was a Bruker mAXIS II ETD Q-TOF (Bruker
Daltonics, Bremen, Germany) coupled to an Ultimate 3000
nanoRSLC system (Dionex, Sunnyvale, CA, USA). Samples
were injected on an Acclaim PepMap100 C-18 trap column
(100 um x 20 mm, Thermo Scientific, Sunnyvale, CA, USA)
online coupled to an ACQUITY UPLC M-Class Peptide BEH
C18column (130 A, 1.7 pum, 75 pm x 250 mm, Waters, Milford,
MA, USA). Peptides were separated at 48 °C with a flow rate of
300 nl/min, 4% solvent B from 0 to 11 min, followed by a
120 min gradient to 50% solvent B. Solvent A consisted of water
+0.1% formic acid, while Solvent B was acetonitrile +0.1%
formic acid. The injected sample amount was 0.5 pg. Sample
ionization was achieved in the positive electrospray ionization
mode via a CaptiveSpray nanoBooster ionsource. The capillary
voltage was 1300 V, the nanoBooster pressure was 0.2 Bar,
drying gas was 150 °C, the flow rate was 3 I/min. External mass
calibration was done using the low concentration tuning mix
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from Agilent technologies via direct infusion. Internal mass cal-
ibration was performed via lock mass for each run using sodium
formate. The MS spectra were recorded with a fix cycle time
(2.5 s) over the mass range of m/z 1502200 at 3 Hz with a
minimal precursor mass of m/z 322. The CID was performed
at 16 Hz for abundant precursors and at 4 Hz for ones of low
abundance. Singly charged peptides were excluded from analy-
sis, only multiple charged peptides were chosen for fragmenta-
tion. Collision energy for precursor signals was set automatically
followed by the manufacturer’s recommendations based on the
isolation m/z, isolation mass range width and ion charge state.
Active exclusion of 2 min. After 1 spectra was used except if the
intensity of the precursor was elevated threefold. For protein
analysis raw data were recalibrated using the Compass
DataAnalysis software 4.3 (Bruker Daltonics, Bremen,
Germany). Data were processed by the ProteinScape 3.0 soft-
ware (Bruker Daltonik GmbH, Bremen, Germany). Proteins
were identified by searching against the human Swissprot data-
base (2015_08) using the Mascot search engine version 2.5
(Matrix Science, London, UK) applying the following search
parameters: 7 ppm peptide mass tolerance, 0.05 Da fragment
mass tolerance, 2 missed cleavages, carbamidomethylation of
cysteines as fixed modification, deamidation (NQ) and oxidation
(M) as variable modifications and proteins were identified using
1% FDR limit. Label-free quantitation (LFQ) was then per-
formed using MaxQuant (software version 1.5.3.30), applying
default parameters. MaxQuant analysis searched only for pro-
teins identified previously by Mascot. Each LC-MS/MS run
was aligned using the “match between runs” feature (match time
window 0.8 min, alignment time window 15 min). The acquired
data underwent discriminant analysis and paired sample t-test
searching for proteins most characteristically describing tumor
and normal tissue. Bioinformatic analysis were performed by
IPA software (Ingenuity Databases, Mountain View, CA,
USA) to place identified proteins in known signalling pathways.

Results

1164 proteins were identified with at least 2 unique peptides
among the samples. Discriminant analysis revealed 18 proteins
describing either the tumor or normal tissue group. Paired sample
t-test were used to test for statistical significance between each
pair regarding these most descriptive 18 proteins (Table 1). The p
value was determined 0,1 considering the low number of sample
pairs of coherent tumor and normal tissue (z = 16). Thus, 8 pro-
teins showed significantly higher density in tumor including
tenascin (TNC), transmembrane emp24 domain-containing pro-
tein 2 (TMED?2), dynein light chain 1, cytoplasmic (DYNLL1),
coactosin-like protein (COTL1), small proline-rich protein 2D
(SPRR2D), nucleolin (NCL), U5 small nuclear RNP 200-kDa
helicase (SNRNP200) and fatty aldehyde dehydrogenase
(ALDH3A2). Two proteins, desmoglein-1 (DSG1) and keratin

type I cytoskeletal 9 (KRT9) had significantly higher density in
the adjacent phenotipically normal tissue. Data and physiological
roles of identified proteins are demonstrated in Table 2.

Discussion

Despite rapid development of molecular diagnostics,
tumormarker discovery is still challenging. In the past few
years the interest of tumor research has gradually turned to
proteomics highlighting the observation that secreted proteins
are as important as tumor genetics. MS coupled with LC is
considered as the ,,gold standard” quantitative method in tu-
mor protein research. Due to the continuously evolving tech-
nical background, growing effort on investigation of HNSCC
proteome has also appeared. Initially, studies targeted in vitro
cell lines. Analysis of solid tumor tissues opened new ways in
tumormarker discovery, as these include the surrounding mi-
croenvironment also contributing to the malignant nature of
HNSCC:s [5]. MS-based protein analysis had been previously
possible only on fresh frozen tissue samples with the
neccessity of organization steps including planned cryosection
and coordination of sample preparation. These drawbacks can
be overhelmed by FFPE tissues utilizing deparaffination pro-
cess [6]. Among existing papers reporting proteomic analysis
on FFPE samples, only a few reports address HNSCC [7].
Discovering possible tumor markers can be achieved by find-
ing proteins exclusively expressed by tumor tissue, but protein
abundance differences between normal and tumor tissue can
also be interpreted as a possible tumor marker. Our aim was to
explore protein abundance differences between phenotypical-
ly normal and tumor tissue on FFPE laryngeal-
hypopharyngeal tumor samples. To our knowledge no LC/
MS based proteomical studies exist exclusively investigating
LHSCC on FFPE samples.

We found eight and two proteins with significantly higher
and lower abundance in LHSCC, respectively, compared to
adjacent normal tissue (Table 2).

We foremost found TNC, DYNLLI1, COTL1, SPRR2D,
SNRNP200, TMED2 and ALDH3A2 abundant in LHSCC
by LC/MS. Similar to our findings, one LC/MS study also
found NCL levels elevated in LHSCC [8].

We first found DSG1 down-regulated in LHSCC with LC/
MS, albeit rather isoform switch among desmogleins seems to
be determining in tumor invasivity.

We identified K1C9 down-regulated. One possible expla-
nation for down-regulation is the dedifferentiation. The other
probable hypothesis in our opinion is the lack of detectable
tryptic peptides of cytokeratins in peritumoral microenviron-
ment due to non-tryptic digestion during invasion.

IPA found no connection between proteins, but we uncov-
ered existing interactions being considered as possible targets
for future therapies in LHSCCs (Fig. 1).

@ Springer
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Table 2  Data of identified proteins
Gene Accession Role HNSCC related literature  IPA findings Mascot MW > SC 3
symbol referral score (kDa)* (%)** Peptides***
TNC TENA  ECM adhesion, overexpression as adverse activating EGFR due to 354 240.7 83 13
HUM- angiogenesis, EMT prognostic factor in oral ~ EGF-like repeats
AN SCC (mRNA expression
analysis)
TMED2 TMED?2_ trafficking between up- and downregulation in overexpression mediated by ~ 59.1 22.7 122 3
HUM- endoplasmic oral and NFE2L2 (a transcription
AN reticulum and Golgi hypopharyngeal SCC factor that may promote
apparat, cytoskeletal (miRNA expression and  carcinogenesis)
re-arrangement, cell gene expression
migration analysis, low sample
number, n=15)
DYNLL1 DYL1  intracellular up-regulation under indirectly facilitating 82.3 8 216 5
HUM- microtubular vesicle hypoxic conditions on HGF/c-MET pathway
AN transport, FaDuDD HNSCC cell
maintenance of line (LC-MS/MS)
cytoskeleton
COTL1 COTL1_ F-actin binding protein, no reports found tumor associated protein in ~ 72.7 15.9 54 3
HUM- cellular motility chemical-induced SCC
AN model”
SPRR2D  SPR2D_  function in skin barrier, up-regulated in oral SCC  no data found 89.1 79 468 3
HUM- wound healing, and NPC (RNA
AN quenching of ROS, analysis)
terminal
differentiation
marker of stratified
squamous epithel
NCL NUCL_ co-factor in overexpressed in laryngeal recruiting EGFR mediated 3162  76.6 179 11
HUM- transcription SCC (LC-MS/MS on signaling pathways,
AN regulation and RNA snap frozen tissue facilitating EGFR
transport samples) cytoplasmic tail
dimerization, direct
binding with SNRNP200
playing role in RNA
metabolism
SNRNP200 U520 DeXH box protein, no reports found gene mutation in human 51.5 2444 13 2
HUM- pre-mRNA splicing cutaneous SCC, direct
AN binding with NCL acting
as nuclear interacting
partner
ALDH3A2 AL3A2_ detoxification of down-regulated in oral direct binding with EGFR*  64.6 548 79 3
HUM-  aldehydes Scc (o0
AN originating from proteomics analysis
lipid peroxidation using ESl-ion trap and
processes MALDI-TOF/TOF MS)
DSG1 DSG1_ desmosome forming isoform switch among indirectly down-regulated by 175 113.7 69 5
HUM- DSGs in HNSCC (RNA ~ HGF in malignant mela-
AN analysis) noma
KRT9 KI1C9_  intermediate filament of down-regulated in no data found 14933 62 682 37
HUM- intracytoplasmatic HNSCC lymph node
AN cytoskeleton metastasis

(MALDI-Q-TOF
MS/MS); up-regulated
in NPC
(ESI-Q-TOF-MS)

Boldface entries under “Gene symbol” indicate proteins significantly overexpressed in tumor comparing to the adjacent phenotipically normal tissue

(p<0.1)

Italicized entries under “Gene symbol” indicate proteins with significantly lower abundance in tumor (p < 0,1) comparing to the adjaccent phenotipically

normal tissue
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c-MET: hepatocyte growth factor receptor; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ECM: extracellular matrix; EMT:

endothelial-mesenchymal transition; HGF: hepatocyte growth factor;

HNSCC: head neck cancer squamous cell carcinoma; NFE2L2: nuclear factor, erythroid 2 like 2; NPC: nasopharyngeal carcinoma, ROS: reactive

oxygen species; SCC: squamous cell carcinoma

*molecular weight in kDa

**average sequence coverage in percentage

***the average number of peptides each protein was identified with
T without identified participating pathways

¥ with unknown significance

Theoretically, inhibition of TMED?2 or its inducer NFE2L.2
may suggest a promising tool against HNSCC invasion. NCL
can act both as a recruiter and overexpressed protein of EGFR
mediated pathways and can facilitate dimerization of EGFR’s
cytoplasmic tail. Thus NCL overexpression can be both con-
sequence and initiator of EGFR activation. Therefore interfer-
ing NCL can also be promising in EGFR-positive HNSCCs,
while down-regulation may serve as a marker of anti-EGFR
therapy efficacy.

TNC containing EGF-like repeats may serve as targets
against EGFR-positive HNSCCs. Inhibiting EGFR results in
TNC down-regulation. Considering the diverse correlations
between TNC and EGFR, TNC can serve both a potential
target in HNSCC and therapeutic response marker in anti-
EGFR treatment.

DYNLLI1-related cytoskeletal rearrangement and tumor
cell migration can be theoretically inhibited by anti-HGF ther-
apy, as DYNLLI1 shows indirect interaction with HGF in
HGF/c-MET pathway in HNSCC.

IPA found indirect inhibition of DSG1 by HGF in malig-
nant melanoma highlighting that DSG1 down-regulation con-
tributes to cell-cell adhesion disruption easing invasion. Thus
inhibition of HGF can exert anti-tumor effect with

’IPA

Fig. 1 Note: This data is
mandatory. Please provide

maintaining cell-to-cell junctions via stabilizing desmosomes
by DSG1 overexpression. Considering that EGFR pathway
shares common signals with HGF-mediated routes resulting
redundancy and frequently moderate therapeutic response to
anti-EGFR treatment, combined inhibition of EGFR and c-
MET/HGF pathway is emerging. Interfering redundant path-
ways (p44/p42 MAPK, PI3K/AKT, STAT) may have the de-
sired anti-cancer effect. Until routinely applied anticancer
drug combinations are available simultaneously targeting
HGF, EGF and NFE2L2 mediated pathways, inhibition of
overexpressed DYNLL, TNC, NCL and TMED2 may exert
anti-tumor effect on HNSCC beyond their diagnostic role.
IPA also found unclear interactions. COTL-1 is suggested
as tumor-associated protein upregulated on mouse carcino-
genesis model. SNRNP200 gene mutation was reported in
human cutaneous SCC. IPA found EGFR-ALDH3A2 direct
binding with unknown significance. NCL-SNRNP200 direct
binding demonstrates NCL’s place in RNA metabolism and
identifies SNRNP200 as a nuclear interacting partner.
Contrary to previous MS studies, abundance differences
were determined using label-free LC/MS based proteomics
exclusively on FFPE LHSCC samples. Feasibility of quanti-
tative LS/MS methods on FFPE samples had been
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questionable for a long time due to cross-links and formalde-
hyde induced adducts [9]. Various extraction innovations
made protein recovery from FFPE samples as reliable and
diagnostically accurate as from fresh-frozen samples [10].
Labeling has several disadvantages compared to label-free
technique: protein loss due to each manipulation step,
neccessity of prerequisites (e.g. presence of cysteine-
containing peptides) and high costs. These disadvantages also
can be bypassed with label-free methods.

Our study also has limitations. Interestingly, IPA did not
detect SPRR2D and Krt9. This is probably due to the lack of
available IPA data. Continuous amplification of stored data
can reveal new interactions. The other drawback of our study
is the moderate sample number. It should be noted that our
primary aim was to design a pilot study for evaluation of
protein abundance differences between LHSCC and adjacent
healthy tissue.

Conclusion

Considering our initial favorable results, this study has clinical
relevance. Beside highlighting the proteomic difference be-
tween LHSCC and adjacent normal tissue, we found possible
LHSCC markers/targets that had not been in focus till date. On
the other hand, we proposed the potential in involving large
histopathological sample archives taking the reliability of
label-free LC/MS on FFPE samples into account facilitating
protein discovery. Nevertheless, this easy access to HNSCC
samples would make fresh frozen sectioning unneccessary
offering a cost-efficient and time-saving solution.
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