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List of abbreviations 

 

ALDH3A2  -  fatty aldehyde dehydrogenase 3A2 

c-MET  -  c-mesenchymal-epithelial transition 

COTL1  -  coactosin like f-actin binding protein 1 

DNA - deoxyribonucleic acid 

DSG1  -  desmoglein-1  

DYNLL1  -  dynein light chain 1, cytoplasmic 

EGFR  -  epidermal growth factor receptor 

ESI  -  electrospray ionization 

FFPE  -  formalin-fixed paraffin-embedded  

H&E  -  hematoxylin and eosin 

HGF  -  hepatocyte growth factor 

HNSCC  -  head neck squamous cell carcinoma 

HPV  -  human papilloma virus 

IPA  -  Ingenuity Pathway Analysis 

KRT9 or K1C9  -  type I citosceletal keratin 9 

LC  -  liquid chromatography 

LHSCC  -  laryngeal-hypopharyngeal squamous cell carcinoma 

MALDI  -  matrix-assisted laser desorption/ionization 

miRNA - micro ribonucleic acid 

mRNA  - messenger ribonucleic acid 

MRM  -  multiple reaction monitoring 

MS  -  mass spectrometry 

m/z  -  mass-to-charge ratio 

NCL  -  nucleolin 

NFE2L2  -  nuclear factor erythroid 2-related factor 2 

REIMS  -  rapid evaporative ionization mass spectrometry 

RNA  -  ribonucleic acid 

SCC - squamous cell carcinoma 

SNRNP200  -  small nuclear ribonucleoprotein U5 subunit 200 

snRNA  -  small nuclear ribonucleic acid 

SPRR2D -  small proline rich protein 2D  

TMED2  -  transmembrane p24 trafficking protein 2 

TNC  -  tenascin-C 

TOF  -  time-of-flight 
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I. INTRODUCTION 

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common malignant 

tumor worldwide. Approximately, 660,000 new cases are diagnosed each year, placing a 

significant burden on healthcare systems and negatively affecting patients' quality of life. 

HNSCC includes malignant laryngeal and laryngopharyngeal squamous cell carcinomas 

(LHSCC). Although diagnostic and therapeutic procedures have undergone significant 

advances over the recent decades, the overall survival did not improved substantially. One main 

reason for this is that the disease is often diagnosed only at an advanced stage when treatment 

options are more limited. On the other hand, the aggressive biological behavior of the tumor 

also makes successful treatment difficult. 

Therefore, early tumor detection is crucial for improving patients' chances of survival. 

Alongside traditional diagnostic methods (physical examination, imaging procedures, biopsy), 

there remains a high demand for research of tumor markers. Tumor markers are molecules (e.g. 

proteins, DNA fragments) that are present in altered quantities in the body when a tumor is 

present. Ideally, tumor markers allow for the early diagnosis of tumors, as well as monitoring 

therapeutical response and potential tumor recurrence. Proteins carried by the tumor not only 

serve as diagnostic tools but can also act as therapeutic targets for biological therapy. 

Among proteomic methods, mass spectrometry (MS) has opened new avenues in tumor marker 

research. MS is an analytical technique used to determine the mass of charged particles. During 

the process, the sample is ionized, and the ions are separated in an electromagnetic field based 

on their mass-to-charge ratio (m/z). The spectrum obtained allows for the identification and 

quantification of the components of the examined material. This method offers the possibility 

to identify differences in protein composition between phenotypically tumorous and healthy 

tissues. Therefore, not only the detected proteins but also their quantitative differences can serve 

as potential tumor markers 

 

II. OBJECTIVES 

In this study, our objective was to investigate protein differences within tissues using label-free 

MS, comparing LHSCC with the surrounding normal phenotypic mucosa, based on formalin-

fixed paraffin-embedded (FFPE) tissue sections, in search of potential tumor markers. We 

aimed to verify our hypothesis that certain proteins are over- or underexpressed in LHSCC. 
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Additionally, based on the international literature and the Ingenuity Pathway Analysis (IPA) 

database, we mapped the role of the identified proteins - potentially serving as tumor markers 

and future therapeutic targets - in signal transduction pathways. 

 

III. MATERIAL AND METHOD 

Patients 

A total of 16 male patients with histologically confirmed LHSCC were included in our research. 

The average age of the patients was 61 years (the youngest patient was 45, the oldest was 79). 

All participants were classified as heavy smokers and reported regular alcohol consumption. 

The diagnosed tumors were all identified as primary cases. The diagnosis was made through 

direct laryngoscopy. During direct laryngoscopy, the laryngoscope used for exposure was 

inserted through the mouth of the patient in a supine, hyperextended neck position, into the 

laryngeal and hypopharyngeal region. Tumor extent was determined intraoperatively using 

visualization with an operating microscope or a rigid laryngological endoscope. Diagnostic 

sampling was performed using laryngomicrosurgical instruments. The tissue samples for 

analysis were obtained from sections of formalin-fixed paraffin-embedded (FFPE) tissue 

blocks. 

 

Sample preparation 

Deparaffinization was performed by washing the unstained slides with xylol, ethanol 90% 

(m/m), ethanol 70% (m/m), ethanol 50% (m/m) and 50 mM ammonium-bicarbonate, 

respectively. Antigen retrieval was performed with 100 mM Tris-HCl buffer (97 °C, 30 min). 

According to the marked field lining histologically obvious malignant part, the tissue 

wasmicrodissected with a fine needle and collected to 2ml Eppendorf tube containing SDS lysis 

buffer. Tumor adjacent normal tissue was also microdissected and each sample was incubated 

in the lysis buffer (97 °C, 30min). After centrifugation ice cold absolute ethanol was added to 

the supernatant with 9 volume surplus. Samples were kept at 4 °C overnight for protein 

precipitation. The pellet was washed twice with absolute ethanol, proteins were solubilized with 

8 M urea. Reduction and alkylation were followed by overnight trypsin digestion. The resulting 

tryptic peptides were cleaned using Pierce C18 spin columns (Thermo Fisher Scientific, 

Waltham, MA). 
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Mass spectrometrical analysis 

The MS used for analysis was a Bruker mAXIS II ETD Q-TOF (Bruker Daltonics, Bremen, 

Germany) coupled to an Ultimate 3000 nanoRSLC system (Dionex, Sunnyvale, CA, USA). 

Samples were injected on an Acclaim PepMap100 C-18 trap column (100 μm× 20 mm, Thermo 

Scientific, Sunnyvale, CA, USA) online coupled to an ACQUITY UPLC M-Class Peptide BEH 

C18 column (130 Å, 1.7 μm, 75 μm× 250 mm,Waters, Milford, MA, USA). Peptides were 

separated at 48 °C with a flow rate of 300 nl/min, 4% solvent B from 0 to 11 min, followed by 

a 120 min gradient to 50% solvent B. Solvent A consisted of water +0.1% formic acid, while 

Solvent B was acetonitrile +0.1% formic acid. The injected sample amount was 0.5 μg. Sample 

ionization was achieved in the positive electrospray ionization mode via a CaptiveSpray 

nanoBooster ionsource. The capillary voltage was 1300 V, the nanoBooster pressure was 0.2 

Bar, drying gas was 150 °C, the flow rate was 3 l/min. External mass calibration was done using 

the low concentration tuning mix from Agilent technologies via direct infusion. Internal mass 

calibration was performed via lock mass for each run using sodium formate. The MS spectra 

were recorded with a fix cycle time (2.5 s) over the mass range of m/z 150–2200 at 3 Hz with 

a minimal precursor mass of m/z 322. The CID was performed at 16 Hz for abundant precursors 

and at 4 Hz for ones of low abundance. Singly charged peptides were excluded from analysis, 

only multiple charged peptides were chosen for fragmentation. Collision energy for precursor 

signals was set automatically followed by the manufacturer’s recommendations based on the 

isolation m/z, isolation mass range width and ion charge state. Active exclusion of 2 min. After 

1 spectra was used except if the intensity of the precursor was elevated threefold.  

 

Protein identification 

For protein analysis raw data were recalibrated using the Compass DataAnalysis software 4.3 

(Bruker Daltonics, Bremen, Germany). Data were processed by the ProteinScape 3.0 software 

(Bruker Daltonik GmbH, Bremen, Germany). Proteins were identified by searching against the 

human Swissprot database (2015_08) using the Mascot search engine version 2.5 (Matrix 

Science, London, UK) applying the following search parameters: 7 ppm peptide mass tolerance, 

0.05 Da fragment mass tolerance, 2 missed cleavages, carbamidomethylation of cysteines as 

fixed modification, deamidation (NQ) and oxidation (M) as variable modifications and proteins 

were identified using 1% FDR limit. Label-free quantitation (LFQ) was then performed using 

MaxQuant (software version 1.5.3.30), applying default parameters. MaxQuant analysis 
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searched only for proteins identified previously by Mascot. Each LC-MS/MS run was aligned 

using the “match between runs” feature (match time window 0.8 min, alignment time window 

15 min).  

 

Statistical and bioinformatical analysis 

The data obtained were subjected to discriminant analysis and paired t-test to identify the 

proteins most characteristic for phenotypically malignant and normal tissues. For 

bioinformatical analysis, we used the Ingenuity Pathway Analysis software 

(www.ingenuity.com, Mountain View, California, USA), which we employed to map the roles 

of the identified proteins within known signal transduction pathways and to explore possible 

interactions among them. 

 

IV. RESULTS 

Using a label-free proteomic method, a total of 1,164 proteins were detected based on at least 

2 unique peptides. Through discriminant analysis, we identified 18 proteins characteristic for 

the tumor and non-tumor groups. With the help of paired t-test, we investigated the presence of 

any statistically significant differences between the matched tumor-normal sample pairs for 

these 18 proteins. The p -value was determined as 0.1, considering the low number of matched 

tumor-normal pairs (n=16). 

As a result of these analyses, the following 8 proteins showed significantly higher levels in the 

tumor tissue: 

o tenascin-C (TNC) 

o transmembrane p24 trafficking protein 2 (TMED2) 

o dynein light chain 1, cytoplasmic (DYNLL1) 

o coactosin like f-actin binding protein 1 (COTL1) 

o small proline rich protein 2D (SPRR2D) 

o nucleolin (NCL) 

o small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) 

o fatty aldehyde dehydrogenase 3A2 (ALDH3A2) 

 

 

http://www.ingenuity.com/
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Two proteins were found to be elevated in the phenotypically intact tissue adjacent to the 

tumor: 

o desmoglein-1 (DSG1)   

o type I citosceletal keratin 9 (KRT9 or K1C9)  

The bioinformatical analysis did not reveal any connections between the identified proteins; 

however, we mapped 6 interactions involving 6 of the proteins we identified (ALDH3A2, 

DSG1, DYNLL1, NCL, TMED2 and TNC) and 3 known molecules (epidermal growth factor 

receptor (EGFR), hepatocyte growth factor (HGF), and nuclear factor erythroid 2-related factor 

2 (NFE2L2)). By illustrating the involvement of the proteins we identified in known signaling 

pathways, we also made an attempt to envision several potential future diagnostic and 

therapeutic applications. 

 

A talált fehérjék között IPA-val azonosított interakciók 

(CO: korreláció; PP: fehérje-fehérje kötés; E: expresszió) 
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V. DISCUSSION 

Despite the ongoing technical advancements in the field of molecular diagnostics, tumor marker 

research still presents significant challenges. In recent years, interest has gradually shifted 

towards proteomics, which emphasizes the observation that proteins produced by the tumor and 

their post-translational modifications are at least as important as the tumor genetics. 

The examination of FFPE tissue samples is less common in studies related to HNSCC. Among 

the publications dealing with proteomic analysis of FFPE tissues, there are only scant references 

pertaining to HNSCC. Initially, proteomic analysis of solid tumors could only be performed on 

rapid frozen tissue samples, which poses logistical challenges in terms of time and space. To 

overcome this, and due to the readily available nature of FFPE tissue samples, the demand for 

their analysis has significantly increased, and our research group also decided to focus on 

examining these samples. 

During our research, we found that the identified proteins influence the tumor 

microenvironment in different ways. Proteins that were significantly overexpressed in the tumor 

(TNC, TMED2, DYNLL1, COTL1, NCL, SPRR2D, SNRNP200, ALDH3A2) promote tumor 

cell proliferation, migration and invasion. Conversely, two proteins that were overexpressed in 

phenotypically normal tissue (DSG1, KRT9) play a role in stabilizing the tissue 

microenvironment and cell adhesion. 

Proteins overexpressed in HNSCC, including LHSCC, can be viewed as promising therapeutic 

targets. Inhibiting these proteins could reduce tumor cell proliferation, migration, and tissue 

invasion, thus opening the way for novel antibody-based therapies in head and neck oncology. 

 

Limitations of the research 

No data were found regarding SPRR2D and KRT9 in the IPA database. This is likely due to the 

lack of information about the relationship between these two proteins and SCCs in the actual 

database. As the database's content expands, it is expected to reveal new interactions involving 

these proteins in the future. Although our study initially was based on a relatively modest 

number of samples, it is important to emphasize that our primary goal was to conduct an 

exploratory study aimed at examining the differences in protein composition between malignant 

and phenotypically healthy tissue surrounding the tumor in LHSCC. 
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Benefit of the research 

We consider it important to emphasize that, in contrast to previous studies based on MS, we 

examined the differences in protein abundance between tissues exclusively on FFPE LHSCC 

tissue samples using a label-free LC/MS proteomic method. The use of quantitative LC/MS 

analysis on FFPE samples has long been a subject of debate. Critics argue against the method 

due to formalin-induced cross-links and by-products. However, thanks to advances in extraction 

procedures, the reliability and diagnostic accuracy of protein recovery from FFPE tissue 

samples are comparable to those from freshly frozen tissues. Moreover, the application of 

LC/MS to FFPE tissues has also been shown to be equivalent to analyses performed on fresh 

frozen samples. Additionally, label-free proteomic methods have several advantages over 

labeled techniques. On the one hand, labeling procedures involve sample preparation steps that 

can lead to protein loss and data loss. On the other hand, some labeling techniques require the 

presence of specific molecular components (e.g., cysteine-containing peptides). 

Beyond our promising initial results, this study also holds clinical relevance. Besides 

successfully highlighting proteomic differences between LHSCC and neighboring 

phenotypically intact tissue, we identified proteins that could potentially serve as markers and 

targets in LHSCC, which had not previously been the focus of attention. Furthermore, the 

reliability of label-free LC/MS on FFPE samples enables the analysis of existing 

histopathological archives. Based on our reasoning, the broad inclusion of such tissue archives 

could significantly contribute to future tumor marker research and would eliminate the need for 

costly and time-consuming fresh freezing procedures. 

 

Future aims 

At the time of our proteomic measurements, monoclonal antibodies suitable for the verification 

of the identified proteins were unfortunately not widely available. In the future, with the 

possession of these antibodies, we would have the opportunity to study the intra-tissue 

distribution of the analyzed proteins, which could potentially aid the better understanding of 

the interactions between tumor tissue and the surrounding stroma. 
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VI. CONCLUSION 

The discovery of potential biomarkers that are characteristic for HNSCC remains 

fundamentally important but also represents a significant challenge even today. The 

continuously improving technical background has contributed to the rapid advancements in 

proteomics and consequently in MS. With sophisticated instrumentation and well-developed 

sample preparation procedures, it has become possible to analyze complex compounds and 

tissue samples. The application of MS naturally extended to tumor marker research as well. 

Similar to other types of cancers, the identification of proteins characteristic for HNSCC has 

become increasingly accessible. Recognizing tumor-specific biomarkers is crucial for early 

detection. These biomarkers are not only useful for screening but also play an essential role in 

detecting tumor recurrence and evaluating responses to treatment. By identifying proteins 

characteristic of LHSCC, we aimed to take another step forward in tumor marker research. 

Additionally, our label-free LC/MS method applied to FFPE tissue samples appears to be a 

promising approach for investigating potential biomarkers specific to HNSCC. 
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Red boldface indicates proteins significantly overexpressed in tumor tissue comparing to the adjacent phenotipically normal tissue (p < 0,1) 

Green boldface indicate proteins with significantly lower abundance in tumor tissue (p < 0,1) comparing to the adjaccent phenotipically normal tissue 

 

                                         APPENDIX                    Paired t-test 
(regarding the 18 most characteristic proteins based on discriminant analysis for the matched tumor and phenotypically healthy tissue sample pairs)  

 

 

t-value 

Degrees 

of 

freedom 

Significance 

(p-value) 

Relative abundance 

average values 

Standard  

deviation 

Standard  

error 

95% confidence interval of the 

difference 

lower limit upper limit 

 1.pár TENA_HUMAN ép –  

TENA_HUMAN tumoros 

-2348325,00000 1371919,61000 396039,07810 -3220001,13400 -1476648,86600 -5,930 11 0,000 

  2.pár TMED2_HUMAN ép –   

TMED2_HUMAN tumoros 

-150133,33330 85444,86083 24665,80670 -204422,40780 -95844,25882 -6,087 11 0,000 

  3.pár DYL1_HUMAN ép – 

DYL1_HUMAN tumoros 

-183083,33330 326385,56630 94219,39728 -390458,82850 24292,16187 -1,943 11 0,078 

  4.pár PSMD3_HUMAN ép – 

PSMD3_HUMAN tumoros 

-53666,66667 145052,55060 41873,06456 -145828,66040 38495,32703 -1,282 11 0,226
 

 5.pár DCXR_HUMAN ép – 

DCXR_HUMAN tumoros 

-35258,33333 123515,69980 35655,91127 -113736,46490 43219,79825 -0,989 11 0,344
 

 6.pár DSG1_HUMAN ép – 

DSG1_HUMAN tumoros 

1390166,66700 2209880,78000 637937,63150 -13924,59339 2794257,92700 2,179 11 0,052 

 7.pár COTL1_HUMAN ép – 

COTL1_HUMAN tumoros 

-264333,33330 397229,34370 114670,23430 -516720,81730 -11945,84941 -2,305 11 0,042 

 8.pár K1C9_HUMAN ép – 

K1C9_HUMAN tumoros 

73326666,67000 97159973,93000 28047668,55000 11594164,41000 135059168,90000 2,614 11 0,024 

 9.pár OSTF1_HUMAN ép – 

OSTF1_HUMAN tumoros 

-21475,00000 81984,66736 23666,93488 -73565,57247 30615,57247 -0,907 11 0,384 

10.pár IF6_HUMAN ép – 

IF6_HUMAN tumoros 

-3266,66667 193252,24370 55787,11746 -126053,28430 119519,95100 -0,059 11 0,954 

11.pár ACOC_HUMAN ép – 

ACOC_HUMAN tumoros 

8716,66667 91136,93826 26308,96792 -49188,98130 66622,31463 0,331 11 0,747 

12.pár SPR2D_HUMAN ép – 

SPR2D_HUMAN tumoros 

-103300,00000 134895,60270 38941,00627 -189008,57690 -17591,42307 -2,653 11 0,022 

13.pár NUCL_HUMAN ép – 

NUCL_HUMAN tumoros 

-1271858,33300 1047332,64900 302338,89340 -1937301,75100 -606414,91570 -4,207 11 0,001 

14.pár TXNL1_HUMAN ép – 

TXNL1_HUMAN tumoros 

-41316,66667 84232,22050 24315,74759 -94835,26627 12201,93293 -1,699 11 0,117 

15.pár U520_HUMAN ép – 

U520_HUMAN tumoros 

-691750,00000 768104,41110 221732,64430 -1179780,26000 -203719,74050 -3,120 11 0,010 

16.pár UD17_HUMAN ép – 

UD17_HUMAN tumoros 

-9275,00000 163882,95780 47308,93491 -113401,26370 94851,26367 -0,196 11 0,848 

17.pár AL3A2_HUMAN ép – 

AL3A2_HUMAN tumoros 

-86083,33333 144985,55310 41853,72405 -178202,75890 6036,09220 -2,057 11 0,064 

18.pár TBB6_HUMAN ép – 

TBB6_HUMAN tumoros 

-230333,33330 647338,93520 186870,65420 -641632,87020 180966,20350 -1,233 11 0,243 
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APPENDIX         List of identified proteins 

 

      
Genes encoding 

identified proteins  

ID number of 

encoded protein Mascot points 

Molecule 

weight (kDa) 

Sequence 

coverage (%) 

Number of 

peptides* 

TNC TENA_HUMAN 354 240,7 8,3 13 

TMED2 TMED2_HUMAN 59,1 22,7 12,2 3 

DYNLL1 DYL1_HUMAN 82,3  8  21,6 5 

COTL1 COTL1_HUMAN 72,7 15,9 5,4 3 

SPRR2D SPR2D_HUMAN 89,1 7,9 46,8 3 

NCL NUCL_HUMAN 316,2 76,6 17,9 11 

SNRNP200 U520_HUMAN 51,5 244,4 1,3 2 

ALDH3A2 AL3A2_HUMAN 64,6 54,8 7,9 3 

DSG1 DSG1_HUMAN 175 113,7 6,9 5 

KRT9 K1C9_HUMAN 1493,3 62 68,2 37 

    

*  the average number of peptides each protein was identified with   

Red boldface indicates proteins significantly overexpressed in tumor tissue comparing to the adjacent phenotipically 

normal tissue (p < 0,1) 

Green boldface indicate proteins with significantly lower abundance in tumor tissue (p < 0,1) comparing to the 

adjaccent phenotipically normal tissue 
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Abstract
Squamous cell carcinoma (SCC) of the head and neck region is the sixth most frequent malignancy with high mortality rate. Due
to its poor prognosis it is considered a growing public health problem worldwide inspite of existing treatment modalities. Thus,
early diagnosis of new diseases and recurrences is emerging on one hand, but on the other hand troublesome in the lack of reliable
tumor markers in this field. The rapid development of proteomics has opened new perspectives in tumor marker discovery.
Liquid chromatography/mass spectrometry (LC/MS) as the gold standard in proteomics enables the semi-quantitative analysis of
proteins within various tissues. Abundance differences between tumor and normal tissue also can be interpreted as tumor specific
changes. The aim of this study was to identify potential tumor markers of laryngeal/hypopharyngeal SCC by revealing abundance
changes between cancerous and the surrounding phenotypically healthy tissue. After separating the phenotypically cancerous and
healthy parts of formalin-fixed paraffin-embedded tissues, each sample underwent protein recovery process and tryptic digestion
for label-free semi-quantitative LC/MS analysis. Eight proteins showed significantly higher abundance in tumor including
tenascin, transmembrane emp24 domain-containing protein 2, cytoplasmic dynein light chain 1, coactosin-like protein, small
proline-rich protein 2D, nucleolin, U5 small nuclear RNP 200-kDa helicase and fatty aldehyde dehydrogenase. Desmoglein-1
and keratin type I cytoskeletal 9 were down-regulated in tumor. Using Ingenuity Pathway Analysis we mapped the signaling
pathways these proteins play role in regarding other tumors. Based on these findings these proteins may serve as promising
biomarkers in the fight against laryngeal/hypopharyngeal SCCs.
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Introduction

Head neck squamous cell carcinoma (HNSCC) is the 6th most
frequent malignancy [1] related with nicotine and alcohol
abuse [2]. Its incidence is three-fold higher in males. Due to
the aspecific symptoms most HNSCCs are diagnosed with
advanced stage indicating growing public health problem
worldwide The low 5-year overall survival rate has not
changed significantly in the past decade despite surgical and
oncological innovations [3].

Thus, early diagnosis and better understanding of tumor be-
havior is essential. HNSCCs probably produce several proteins
that could be utilized as tumormarkers. In possession of reliable
markers not only screening and early recognition, but early
detection of recurrence could be achieved. In addition, some
markers may serve as promising targets for biological therapies.

Due to rapid proteomics development, a newway has opened
in biomarker discovery. Beside evaluating epigenetic modifica-
tions, on-tissue protein distribution investigation and protein im-
aging also became available [4]. As potential biomarkers are
mostly unknown, labeling can not be used in discovery contrary
to label-free semiquantitative methods. Without labeling, inten-
sity of distinct peptides appropriately follows their abundance
changes. Nevertheless, label-free methods are more cost-effi-
cient. LC/MS possesses these advantages. Its high throughput
feature also makes it powerful in protein discovery. Initially,
proteomic analysis of solid tumors with mass spectrometry
(MS) was available only on fresh frozen samples. Therefore,
growing demand for analysis of formalin fixed paraffin embed-
ded (FFPE) tissue samples appeared. Development of tissue
preparation protocols enabled the elimination of formaldehyde
induced protein cross-linkings disturbing MS. Overcoming this
formerly limiting factor, an invaluable perspective has opened in
retrograd analysis due to broad histological sample archives used
in daily clinical practice.

The present study aims to investigate protein abundance dif-
ferences between laryngeal/hypopharyngeal squamous cell car-
cinoma (LHSCC) and phenotypically normal tissue on FFPE
samples to identify potential tumor markers. Furthermore, based
on the literature and Ingenuity Pathway Analysis (IPA), we aim
to map the pathways these proteins take part in other malignant
tumors in order to evaluate them as possible candidates for target
therapy of HNSCCs in the future.

Material and Methods

Patients

Sixteen consenting patients (16 males, median age 61 yrs.,
range from 45 yrs. to 79 yrs) diagnosed with LHSCC were
enrolled. Heavy smoking and regular alcohol consumption
were reported in all cases. All tumors were advanced primary

cases (stage III-IV.A). Exclusion criteria included non-SCC
histology, HPV positivity, previous oncological treatment and
recurrence or second primary tumor.

Method

Clinical examination included biopsy from all tumors for di-
agnosis prior to treatment. Biopsy samples were fixed in for-
malin followed by paraffin-embedding, sectioning and
hematoxylin-eosin (HE) staining. Histological examination
confirmed HNSCC in all cases.

For research purposes, all corresponding paraffin-embedded
tissue blocks were retrieved and further sections (15 μm thick-
ness) weremade from original blocks and placed to conventional
histological plate without staining. In addition, another HE
stained section (7 μm thickness) was made from blocks with
one obvious malignant field marked by the pathologist on the
contralateral side of the plate. Based on this marking, identical
part of each plate containing unstained paraffin-fixed section was
drawn around in the sameway. Deparaffinization was performed
by washing the unstained slides with xylol, ethanol 90% (m/m),
ethanol 70% (m/m), ethanol 50% (m/m) and 50 mM ammoni-
um-bicarbonate, respectively. Antigen retrieval was performed
with 100 mM Tris-HCl buffer (97 °C, 30 min). According to
the marked field lining histologically obvious malignant part, the
tissuewasmicrodissectedwith a fine needle and collected to 2ml
Eppendorf tube containing SDS lysis buffer. Tumor adjacent
normal tissue was also microdissected and each sample was
incubated in the lysis buffer (97 °C, 30min). After centrifugation
ice cold absolute ethanol was added to the supernatant with 9
volume surplus. Samples were kept at 4 °C overnight for protein
precipitation. The pellet was washed twice with absolute ethanol,
proteins were solubilized with 8 M urea. Reduction and alkyl-
ation were followed by overnight trypsin digestion. The resulting
tryptic peptides were cleaned using Pierce C18 spin columns
(Thermo Fisher Scientific, Waltham, MA). The MS used for
analysis was a Bruker mAXIS II ETD Q-TOF (Bruker
Daltonics, Bremen, Germany) coupled to an Ultimate 3000
nanoRSLC system (Dionex, Sunnyvale, CA, USA). Samples
were injected on an Acclaim PepMap100 C-18 trap column
(100 μm×20 mm, Thermo Scientific, Sunnyvale, CA, USA)
online coupled to an ACQUITY UPLC M-Class Peptide BEH
C18 column (130Å, 1.7μm, 75μm×250mm,Waters,Milford,
MA, USA). Peptides were separated at 48 °C with a flow rate of
300 nl/min, 4% solvent B from 0 to 11 min, followed by a
120min gradient to 50% solvent B. Solvent A consisted of water
+0.1% formic acid, while Solvent B was acetonitrile +0.1%
formic acid. The injected sample amount was 0.5 μg. Sample
ionization was achieved in the positive electrospray ionization
mode via a CaptiveSpray nanoBooster ionsource. The capillary
voltage was 1300 V, the nanoBooster pressure was 0.2 Bar,
drying gas was 150 °C, the flow rate was 3 l/min. External mass
calibration was done using the low concentration tuning mix
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from Agilent technologies via direct infusion. Internal mass cal-
ibration was performed via lock mass for each run using sodium
formate. The MS spectra were recorded with a fix cycle time
(2.5 s) over the mass range of m/z 150–2200 at 3 Hz with a
minimal precursor mass of m/z 322. The CID was performed
at 16 Hz for abundant precursors and at 4 Hz for ones of low
abundance. Singly charged peptides were excluded from analy-
sis, only multiple charged peptides were chosen for fragmenta-
tion. Collision energy for precursor signals was set automatically
followed by the manufacturer’s recommendations based on the
isolation m/z, isolation mass range width and ion charge state.
Active exclusion of 2 min. After 1 spectra was used except if the
intensity of the precursor was elevated threefold. For protein
analysis raw data were recalibrated using the Compass
DataAnalysis software 4.3 (Bruker Daltonics, Bremen,
Germany). Data were processed by the ProteinScape 3.0 soft-
ware (Bruker Daltonik GmbH, Bremen, Germany). Proteins
were identified by searching against the human Swissprot data-
base (2015_08) using the Mascot search engine version 2.5
(Matrix Science, London, UK) applying the following search
parameters: 7 ppm peptide mass tolerance, 0.05 Da fragment
mass tolerance, 2 missed cleavages, carbamidomethylation of
cysteines as fixed modification, deamidation (NQ) and oxidation
(M) as variable modifications and proteins were identified using
1% FDR limit. Label-free quantitation (LFQ) was then per-
formed using MaxQuant (software version 1.5.3.30), applying
default parameters. MaxQuant analysis searched only for pro-
teins identified previously by Mascot. Each LC-MS/MS run
was aligned using the “match between runs” feature (match time
window 0.8 min, alignment time window 15 min). The acquired
data underwent discriminant analysis and paired sample t-test
searching for proteins most characteristically describing tumor
and normal tissue. Bioinformatic analysis were performed by
IPA software (Ingenuity Databases, Mountain View, CA,
USA) to place identified proteins in known signalling pathways.

Results

1164 proteins were identified with at least 2 unique peptides
among the samples. Discriminant analysis revealed 18 proteins
describing either the tumor or normal tissue group. Paired sample
t-test were used to test for statistical significance between each
pair regarding thesemost descriptive 18 proteins (Table 1). The p
value was determined 0,1 considering the low number of sample
pairs of coherent tumor and normal tissue (n= 16). Thus, 8 pro-
teins showed significantly higher density in tumor including
tenascin (TNC), transmembrane emp24 domain-containing pro-
tein 2 (TMED2), dynein light chain 1, cytoplasmic (DYNLL1),
coactosin-like protein (COTL1), small proline-rich protein 2D
(SPRR2D), nucleolin (NCL), U5 small nuclear RNP 200-kDa
helicase (SNRNP200) and fatty aldehyde dehydrogenase
(ALDH3A2). Two proteins, desmoglein-1 (DSG1) and keratin

type I cytoskeletal 9 (KRT9) had significantly higher density in
the adjacent phenotipically normal tissue. Data and physiological
roles of identified proteins are demonstrated in Table 2.

Discussion

Despite rapid development of molecular diagnostics,
tumormarker discovery is still challenging. In the past few
years the interest of tumor research has gradually turned to
proteomics highlighting the observation that secreted proteins
are as important as tumor genetics. MS coupled with LC is
considered as the „gold standard” quantitative method in tu-
mor protein research. Due to the continuously evolving tech-
nical background, growing effort on investigation of HNSCC
proteome has also appeared. Initially, studies targeted in vitro
cell lines. Analysis of solid tumor tissues opened new ways in
tumormarker discovery, as these include the surrounding mi-
croenvironment also contributing to the malignant nature of
HNSCCs [5]. MS-based protein analysis had been previously
possible only on fresh frozen tissue samples with the
neccessity of organization steps including planned cryosection
and coordination of sample preparation. These drawbacks can
be overhelmed by FFPE tissues utilizing deparaffination pro-
cess [6]. Among existing papers reporting proteomic analysis
on FFPE samples, only a few reports address HNSCC [7].
Discovering possible tumor markers can be achieved by find-
ing proteins exclusively expressed by tumor tissue, but protein
abundance differences between normal and tumor tissue can
also be interpreted as a possible tumor marker. Our aim was to
explore protein abundance differences between phenotypical-
ly normal and tumor t issue on FFPE laryngeal-
hypopharyngeal tumor samples. To our knowledge no LC/
MS based proteomical studies exist exclusively investigating
LHSCC on FFPE samples.

We found eight and two proteins with significantly higher
and lower abundance in LHSCC, respectively, compared to
adjacent normal tissue (Table 2).

We foremost found TNC, DYNLL1, COTL1, SPRR2D,
SNRNP200, TMED2 and ALDH3A2 abundant in LHSCC
by LC/MS. Similar to our findings, one LC/MS study also
found NCL levels elevated in LHSCC [8].

We first found DSG1 down-regulated in LHSCC with LC/
MS, albeit rather isoform switch among desmogleins seems to
be determining in tumor invasivity.

We identified K1C9 down-regulated. One possible expla-
nation for down-regulation is the dedifferentiation. The other
probable hypothesis in our opinion is the lack of detectable
tryptic peptides of cytokeratins in peritumoral microenviron-
ment due to non-tryptic digestion during invasion.

IPA found no connection between proteins, but we uncov-
ered existing interactions being considered as possible targets
for future therapies in LHSCCs (Fig. 1).
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Table 2 Data of identified proteins

Gene
symbol

Accession Role HNSCC related literature
referral

IPA findings Mascot
score

MW
(kDa)*

∑ SC
(%)**

∑
Peptides***

TNC TENA_
HUM-
AN

ECM adhesion,
angiogenesis, EMT

overexpression as adverse
prognostic factor in oral
SCC (mRNA expression
analysis)

activating EGFR due to
EGF-like repeats

354 240.7 8.3 13

TMED2 TMED2_
HUM-
AN

trafficking between
endoplasmic
reticulum and Golgi
apparat, cytoskeletal
re-arrangement, cell
migration

up- and downregulation in
oral and
hypopharyngeal SCC
(miRNA expression and
gene expression
analysis, low sample
number, n = 5)

overexpression mediated by
NFE2L2 (a transcription
factor that may promote
carcinogenesis)

59.1 22.7 12.2 3

DYNLL1 DYL1_
HUM-
AN

intracellular
microtubular vesicle
transport,
maintenance of
cytoskeleton

up-regulation under
hypoxic conditions on
FaDuDD HNSCC cell
line (LC-MS/MS)

indirectly facilitating
HGF/c-MET pathway

82.3 8 21.6 5

COTL1 COTL1_
HUM-
AN

F-actin binding protein,
cellular motility

no reports found tumor associated protein in
chemical-induced SCC
model†

72.7 15.9 5.4 3

SPRR2D SPR2D_
HUM-
AN

function in skin barrier,
wound healing,
quenching of ROS,
terminal
differentiation
marker of stratified
squamous epithel

up-regulated in oral SCC
and NPC (RNA
analysis)

no data found 89.1 7.9 46.8 3

NCL NUCL_
HUM-
AN

co-factor in
transcription
regulation and RNA
transport

overexpressed in laryngeal
SCC (LC-MS/MS on
snap frozen tissue
samples)

recruiting EGFR mediated
signaling pathways,
facilitating EGFR
cytoplasmic tail
dimerization, direct
binding with SNRNP200
playing role in RNA
metabolism

316.2 76.6 17.9 11

SNRNP200 U520_
HUM-
AN

DeXH box protein,
pre-mRNA splicing

no reports found gene mutation in human
cutaneous SCC, direct
binding with NCL acting
as nuclear interacting
partner

51.5 244.4 1.3 2

ALDH3A2 AL3A2_
HUM-
AN

detoxification of
aldehydes
originating from
lipid peroxidation
processes

down-regulated in oral
SCC (16O/18O
proteomics analysis
using ESI-ion trap and
MALDI-TOF/TOF MS)

direct binding with EGFR‡ 64.6 54.8 7.9 3

DSG1 DSG1_
HUM-
AN

desmosome forming isoform switch among
DSGs in HNSCC (RNA
analysis)

indirectly down-regulated by
HGF in malignant mela-
noma

175 113.7 6.9 5

KRT9 K1C9_
HUM-
AN

intermediate filament of
intracytoplasmatic
cytoskeleton

down-regulated in
HNSCC lymph node
metastasis
(MALDI-Q-TOF
MS/MS); up-regulated
in NPC
(ESI-Q-TOF–MS)

no data found 1493.3 62 68.2 37

Boldface entries under “Gene symbol” indicate proteins significantly overexpressed in tumor comparing to the adjacent phenotipically normal tissue
(p < 0,1)

Italicized entries under “Gene symbol” indicate proteins with significantly lower abundance in tumor (p < 0,1) comparing to the adjaccent phenotipically
normal tissue
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Theoretically, inhibition of TMED2 or its inducer NFE2L2
may suggest a promising tool against HNSCC invasion. NCL
can act both as a recruiter and overexpressed protein of EGFR
mediated pathways and can facilitate dimerization of EGFR’s
cytoplasmic tail. Thus NCL overexpression can be both con-
sequence and initiator of EGFR activation. Therefore interfer-
ing NCL can also be promising in EGFR-positive HNSCCs,
while down-regulation may serve as a marker of anti-EGFR
therapy efficacy.

TNC containing EGF-like repeats may serve as targets
against EGFR-positive HNSCCs. Inhibiting EGFR results in
TNC down-regulation. Considering the diverse correlations
between TNC and EGFR, TNC can serve both a potential
target in HNSCC and therapeutic response marker in anti-
EGFR treatment.

DYNLL1-related cytoskeletal rearrangement and tumor
cell migration can be theoretically inhibited by anti-HGF ther-
apy, as DYNLL1 shows indirect interaction with HGF in
HGF/c-MET pathway in HNSCC.

IPA found indirect inhibition of DSG1 by HGF in malig-
nant melanoma highlighting that DSG1 down-regulation con-
tributes to cell-cell adhesion disruption easing invasion. Thus
inhibition of HGF can exert anti-tumor effect with

maintaining cell-to-cell junctions via stabilizing desmosomes
by DSG1 overexpression. Considering that EGFR pathway
shares common signals with HGF-mediated routes resulting
redundancy and frequently moderate therapeutic response to
anti-EGFR treatment, combined inhibition of EGFR and c-
MET/HGF pathway is emerging. Interfering redundant path-
ways (p44/p42 MAPK, PI3K/AKT, STAT) may have the de-
sired anti-cancer effect. Until routinely applied anticancer
drug combinations are available simultaneously targeting
HGF, EGF and NFE2L2 mediated pathways, inhibition of
overexpressed DYNLL, TNC, NCL and TMED2 may exert
anti-tumor effect on HNSCC beyond their diagnostic role.

IPA also found unclear interactions. COTL-1 is suggested
as tumor-associated protein upregulated on mouse carcino-
genesis model. SNRNP200 gene mutation was reported in
human cutaneous SCC. IPA found EGFR-ALDH3A2 direct
binding with unknown significance. NCL-SNRNP200 direct
binding demonstrates NCL’s place in RNA metabolism and
identifies SNRNP200 as a nuclear interacting partner.

Contrary to previous MS studies, abundance differences
were determined using label-free LC/MS based proteomics
exclusively on FFPE LHSCC samples. Feasibility of quanti-
tative LS/MS methods on FFPE samples had been

c-MET: hepatocyte growth factor receptor; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ECM: extracellular matrix; EMT:
endothelial-mesenchymal transition; HGF: hepatocyte growth factor;

HNSCC: head neck cancer squamous cell carcinoma; NFE2L2: nuclear factor, erythroid 2 like 2; NPC: nasopharyngeal carcinoma, ROS: reactive
oxygen species; SCC: squamous cell carcinoma

*molecular weight in kDa

**average sequence coverage in percentage

***the average number of peptides each protein was identified with
†without identified participating pathways
‡with unknown significance

CO: correla�on; PP: protein-protein binding; E: expression

Fig. 1 Note: This data is
mandatory. Please provide

2806 A. Burian et al.



questionable for a long time due to cross-links and formalde-
hyde induced adducts [9]. Various extraction innovations
made protein recovery from FFPE samples as reliable and
diagnostically accurate as from fresh-frozen samples [10].
Labeling has several disadvantages compared to label-free
technique: protein loss due to each manipulation step,
neccessity of prerequisites (e.g. presence of cysteine-
containing peptides) and high costs. These disadvantages also
can be bypassed with label-free methods.

Our study also has limitations. Interestingly, IPA did not
detect SPRR2D and Krt9. This is probably due to the lack of
available IPA data. Continuous amplification of stored data
can reveal new interactions. The other drawback of our study
is the moderate sample number. It should be noted that our
primary aim was to design a pilot study for evaluation of
protein abundance differences between LHSCC and adjacent
healthy tissue.

Conclusion

Considering our initial favorable results, this study has clinical
relevance. Beside highlighting the proteomic difference be-
tween LHSCC and adjacent normal tissue, we found possible
LHSCCmarkers/targets that had not been in focus till date. On
the other hand, we proposed the potential in involving large
histopathological sample archives taking the reliability of
label-free LC/MS on FFPE samples into account facilitating
protein discovery. Nevertheless, this easy access to HNSCC
samples would make fresh frozen sectioning unneccessary
offering a cost-efficient and time-saving solution.
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