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Rövidítésjegyzék 

Akt: Protein kinase B; Protein kináz B 

ANOVA: Analysis of Variance; Varianciaanalízis 

Arg1: Arginase-1; Argináz-1 

BSA: Bovine Serum Albumin; Szarvasmarha szérumalbumin 

CRF: Corticotropin-releasing factor: Kortikotropin felszabadító faktor 

DMEM: Dulbecco's Modified Eagle Medium 

DOPA: Dihydroxy-phenylalanine; Dihidroxi-fenilalanin 

EMT: Epithelial–Mesenchymal Transition; Epiteliális–mezenchimális átmenet 

FPE: Foot Process Effacement; Podocita lábnyúlvány-fúzió 

FSGS: Focal Segmental Glomerulosclerosis; Fokális szegmentális glomeruloszklerózis 

HEK-293: Human Embryonic Kidney cells; Humán embrionális vesesejtek 

iNOS: Inducible nitric oxide synthase; Indukálható nitrogén-monoxid-szintáz 

IRS-1: Insulin receptor substrate 1; Inzulinreceptor-szubsztrát-1 

pAkt: Phosphorylated Akt; Foszforilált Akt 

PAST: Paleontological Statistics Software; PAST statisztikai szoftver 

PBS: Phosphate-buffered saline; Foszfát-pufferelt sóoldat 

Phe: Phenylalanine; Fenilalanin 

ROI: Region of Interest; Vizsgált régió 
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STAT5: Signal Transducer and Activator of Transcription 5; Jelátvivő és transzkripciós 

aktivátor 5 

T2DM: Type 2 Diabetes Mellitus; 2-es típusú diabetes mellitus 

WT1: Wilms’ Tumor Protein; Wilms-tumor fehérje 
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1. BEVEZETÉS 

A fenilalanin (Phe) az esszenciális aminosavak közé tartozik és enzimatikus úton alakul át 

para-Tyr-ná, dihidroxi-fenilalaninná (DOPA), katekolaminokká, melaninná és pajzsmirigy-

hormonokká. A Phe aromás gyűrűjének sérülékenysége miatt az enzimatikus módosulásokon 

felül lehetséges a nem enzimatikus úton történő módosulása. A hidroxil szabad gyök képes a 

Phe aromás gyűrűjét hidroxilálni, aminek hatására a para-tirozin (para-Tyr) mellett nem 

fiziológiás para-tirozin (meta-Tyr) és orto-tirozin (orto-Tyr) is képződhet. A nem enzimatikusan 

képződött para-Tyr, illetve meta- és orto-Tyr mennyisége azonban 3 nagyságrenddel kisebb, az 

enzimatikus folyamatban képződő para-Tyr mennyiségéhez képest. A meta- és orto-Tyr 

megnövekedett mennyisége a hidroxil szabad gyök fokozott képződését tükrözi, ami oxidatív 

stresszre utal. A Tyr-izomereket régóta főként az oxidatív stressz markereiként tanulmányozzák, 

de egyre több bizonyíték van arra, hogy a nem fiziológiás Tyr-izomerek káros hatások okozói 

is [1].  

Megfigyeltük, hogy összefüggés mutatható ki az orto-Tyr szérumszintje és az 

eritropoetin-rezisztencia között dializált betegekben [2]. Egy korábbi tanulmányunkban a meta- 

és orto-Tyr idő- és dózisfüggő módon gátolta az eritropoetin-függő eritroblaszt-proliferációt, 

illetve gyakorlatilag megakadályozta az eritropoetin által indukálta ERK és a STAT5 

foszforilációt [3]. 

Előző vizsgálataink szerint a nem fiziológiás Tyr-izomerek (meta- és orto-Tyr) az 

oxidatív stressz markerei voltak krónikus veseelégtelenséggel együtt vagy anélkül előforduló 

2-estípusú diabetes mellitus (Type 2 diabetes mellitus, T2DM) esetén [4]. További 

eredményeink azt mutatták, hogy a resveratrol antioxidáns hatása miatt a 2-es típusú diabetes 

mellitusban szenvedő betegeknél csökkent az orto-Tyr kiválasztása a vizeletben, és ezzel 

párhuzamosan az inzulin-rezisztencia javulása is megfigyelhető volt [5].  
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A különböző sejtvonalak (HEK, podocita, makrofág és adipocita) meta- és orto-Tyr-en 

történő tenyésztése inzulin-rezisztenciához vezetett ezekben a sejtekben, hasonlóan a magas 

glükóztartalmú környezetben megfigyeltekhez. Ezekben a meta- és orto-Tyr-en tenyésztett 

sejtekben csökkent az inzulin által kiváltott inzulinreceptor-szubsztrát-1 (IRS-1) foszforiláció 

[6].  

Korábbi Western-blot módszerrel végzett vizsgálataink azt mutatták, hogy az Akt 

(Protein kináz B) nem stimulált, bazális foszforilációja a 3T3-L1 zsírsejtekben, HEK-293-

sejtekben (humán embrionális vesesejtek) és podocitákban szignifikánsan magasabb volt meta- 

és orto-Tyr-kezelés hatására, a para-Tyr-kezeléshez viszonyítva. A megemelkedett foszforiláció 

rezisztenciát eredményezett ezekben a sejtekben, mert az inzulin-stimulált foszforiláció nem 

lett szignifikáns. Azt is megfigyeltük, hogy ha a foszforilált tirozin meta-Tyr vagy orto-Tyr volt 

a foszforilált polipeptid defoszforilációja a protein tirozin-foszfatáz 1B enzimje által szinte 

lehetetlen volt, míg a foszforilált para-Tyr gyorsan defoszforilálódott [6].  

A gyulladásos folyamatok fontos szerepet játszanak a T2DM kialakulásában, viszont 

ennek mechanizmusa még nem teljesen tisztázott [7]. Valószínűsíthető, hogy az immunsejtek 

nem megfelelő aktiválása és az ennek hatására módosuló gyulladásos folyamatok részt vesznek 

a T2DM kialakulásában [7]. Az inzulin-rezisztencia hatással lehet a makrofágok működésére, 

mivel az inzulin az Akt jelátvitel aktiválásán keresztül befolyásolja a makrofágok M1 és M2 

típusú polarizációját [8,9]. 

Ezek alapján arra a következtetésre jutottunk, hogy a nem fiziológiás tirozin-izomerek 

nemcsak az oxidatív stressz markerei, hanem számos betegség patogenezisében is szerepet 

játszhatnak [3,4,6,10]. 
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2. CÉLKITŰZÉSEK 

1. Célul tűztük ki a Tyr-izomerek sejtek által történő felvételének időbeli és mennyiségi 

meghatározását vesesejtekben. 

2. Célul tűztük ki a nem fiziológiás Tyr-izomerek hatásának vizsgálatát a makrofágok 

inzulin-jelátvitelére az immunfluoreszcens módon jelölt pAkt (foszforilált Akt) 

intenzitásának meghatározásával. 

3. Meg kívántuk vizsgálni, hogy a para-, meta- és orto-Tyr-kezelések hogyan befolyásolják 

a makrofágok M1/M2 irányú polarizációját az Argináz-1/iNOS (indukálható nitrogén-

monoxid-szintáz) arány meghatározásának segítségével. 

4. Célunk volt kimutatni, hogy az inzulin milyen hatással van az M1/M2 irányú makrofág 

polarizációra, illetve azt, hogy az abnormális Tyr-izomerek hogyan befolyásolják az 

inzulin ez irányú hatását. 

5. Célul tűztük ki a vesebiopsziás minták vizsgálata során a kontroll és az FSGS (fokális 

szegmentális glomeruloszklerózis) csoport betegeinek összehasonlítását a klinikai 

adataik alapján. 

6. Össze kívántuk hasonlítani a kontroll és FSGS-csoportok vesebiopsziás mintáit a 

glomerulusokban és a tubulo-intertitiumban immunfluoreszcens módszerrel jelölt WT1 

(Wilms-tumor fehérje), vimentin és CRF (kortikotropin felszabadító faktor) festődési 

intenzitása alapján. 

7. Célunk volt megvizsgálni, hogy a meta- és orto-Tyr hogyan befolyásolja a WT1, 

vimentin és CRF expresszióját embrionális vesesejtekben. 
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3. MÓDSZEREK 

Sejtek tenyésztése 

A vizsgálatainkhoz használt J774A.1 egér BALB/C monocita-makrofág és a HEK-293 

tenyésztéséhez és fenntartásához Dulbecco Eagle’s módosított tápközeget használtunk 

(DMEM) melyhez az alábbi összetevőket adtuk: 10% magzati szarvasmarha-szérum, 100 

egység/ml penicillin, 0,1 mg/ml sztreptomicin, 2 µg/ml Fluconazol, 1 µg/ml inzulin. A tápközeg 

kisérlettől függően 5 vagy 25 mmol/l glükózt tartalmazott. A sejteket 6 lyukú plate-k-be 

helyezett fedőlemezeken tenyésztettük, párásított inkubátorban, 37 ºC-on és 5%-os CO2 

tartalom mellett. 

3.1.  NEM FIZIOLÓGIÁS TIROZIN-IZOMEREK HATÁSÁRA KIALAKULÓ 

KRÓNIKUS INZULIN-REZISZTENCIA MAKROFÁGOKBAN 

A makrofág sejtek kezelése és vizsgálata 

A kezelések során a médiumhoz para-, vagy meta-, vagy orto-Tyr-t adtunk 72 mg/l 

mennyiségben. A para-Tyr kezelésen belül 5 és 25 mmol/l glükózt alkalmaztunk. A meta- és 

orto-Tyr kezeléseknél egyaránt és kizárólag 5 mmol/l glükózt tartalmazott a tápközeg. A 

kezeléseket 5 napon keresztül végeztük. Az 5. nap végén a sejteket egy éjszakán keresztül 

szérummentes médiumban tartottuk. Az inzulin-jelátvitel vizsgálata során 6, 25, 100 és 400 

nmol-os inzulindózisokat használtunk 10 perces kezelési idővel, míg az M1/M2 polarizáció 

meghatározásánál kizárólag 400 nmol-os inzulin koncentrációt használtunk 48 órán keresztül. 

A Tyr-izomerek hatását a makrofágok inzulin-jelátvitelére a pAkt mennyiségének, 

meghatározásával végeztük immunfluoreszcens jelölés és intenzitásmérés segítségével. A 

makrofágok M1/M2 polarizációjának irányát az Argináz-1/iNOS arány számításával 

vizsgáltuk, aminek során az immunfluoreszcens módszerrel jelölt Argináz-1 és iNOS 



8 

 

mennyiségét intenzitás méréssel határoztuk meg. Negatív kontrollként csak para-Tyr-t 

tartalmazó médiumot, pozitív kontrollként pedig csak para-Tyr és magas glükóztartalmú (25 

mmol/l) médiumot használtunk. A médium eltávolítása és jéghideg PBS-el való öblítés után a 

sejtek fixálását jéghideg 4%-os PBS-ben oldott pufferolt paraformaldehiddel 20 percig jégen 

végeztük. 0,1%-os PBS-ben oldott Triton X-100-zal 15 percig permeabilizáltunk. A 

blokkoláshoz 5%-os szarvasmarha szérumalbumint használtunk 60 percig szobahőmérsékleten. 

Az elsődleges antitesttel egy éjszakán át 4 ºC-on, majd 60 percig szobahőmérsékleten 

inkubáltunk. A másodlagos antitestnél alkalmazott inkubáció 4 óra volt szobahőmérsékleten. A 

sejtmagokat DAPI segítségével jelöltük, a fedőlemezeket pedig DPX-el fedtük.  

A HEK-sejtek tirozinfelvétele 

Olyan tápközeget állítottunk elő para-, meta- és orto-Tyr hozzáadásával, amely azonos 

mennyiségben tartalmazza a három Tyr-izomert. A HEK sejteket ebben a médiumban 

inkubáltuk 0, 10, 20, 30, 40, 50 és 60 percig. 

A sejtek által felvett Tyr-izomerek mennyiségét HPLC-készülék segítségével határoztuk meg. 

Itt nem volt szükség származékképzésre vagy jelölésre, mivel a para-, meta-, és orto-Tyr 

mennyiségét autofluoreszcenciájuk segítségével határoztuk meg, amit az általunk használt 

Shimadzu Class 10 HPLC rendszer RF-10 AXL fluoreszcens detektorával mértünk. 
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3.2. WT1, VIMENTIN ÉS CRF EXPRESSZIÓJA FOKÁLIS SZEGMENTÁLIS 

GLOMERULOSCLEROSISBAN (FSGS) HUMÁN VESÉBEN ÉS A META- ÉS ORTO-TIROZIN 

HATÁSA A WT1-, VIMENTIN- ÉS CRF-EXPRESSZIÓRA HEK-293-SEJTEKBEN 

A vizsgálatban résztvevő betegek 

Tanulmányunkban 42 FSGS-el diagnosztizált beteg vesebiopsziás mintáit, illetve klinikai 

paramétereit vizsgáltuk. Kontrollként 7 vékony bazális membrán nephropathiaban szenvedő 

beteg vesebiopsziás mintáit használtuk. Minden beteg betöltötte a 18 éves kort, átlagéletkoruk 

az FSGS csoport esetén 39,9 ± 18,6 év volt (23 férfi és 19 nő), a kontroll csoport esetén pedig 

5,1 ± 15,6 év volt (3 férfi és 4 nő). Minden vesebiopsziás mintavétel a Pécsi Tudományegyetem 

Orvostudományi Karának 2. Belgyógyászati és Nefrológiai-Diabetológiai Központjában 

történt. 

 

Vesebiopsziás minták 

A vesebiopsziás minták esetében a podocita lábnyúlvány-fúzió (FPE) mértékét 

elektronmikroszkópos vizsgálat segítségével határoztuk meg. A WT1-, vimentin- és CRF-

expresszió mértékét immunfluoreszcens jelöléssel, illetve a jelölés intenzitásának mérésével 

határoztuk meg.  

A mintákból nyert szeleteketet 0,6%-os Triton-X 100-zal permeabilizáltuk és 1%-os BSA-val 

(szarvasmarha szérumalbumin) 30 percig blokkoltuk. Az elsődleges antitest jelölés során a 

szeleteket 90 percig inkubáltuk az elsődleges antitestekkel. A másodlagos antitest alkalmazása 

során a sejteket 60 percig inkubáltuk. Végül a szeleteket VECTASHIELD Antifade Mounting 

Medium-mal fedtük. 
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HEK-293 sejtek kezelése és vizsgálata 

A HEK-293-sejtek kezelése során a tápközeg para-, vagy meta-, vagy orto-Tyr-t tartalmazott 

72 mg/l mennyiségben. A tirozin izomerekkel történő kezelést 5 napig alkalmaztuk, ami után a 

sejteket egy éjszakán keresztül szérummentes médiumban növesztettük. 

Ezt követően PBS-el öblítve eltávolítottuk a sejtekről a tápközeg maradványait, majd a 

sejteket 4% pufferolt paraformaldehiddel (PBS-ben oldva) 20 percig fixáltuk. A 

permeabilizálást 10 percig végeztük PBS-ben oldott 0,3%-os Triton-X 100-zal. A blokkolást 

2,5%-os szarvasmarha szérumalbuminnal történt, 45 percen keresztül. Az elsődleges antitest 

jelölés során a sejteket 60 percig inkubáltuk a PBS-ben oldott elsődleges antitestekkel. A 

másodlagos antitesttel való jelölés során a sejteket 60 percig inkubáltuk a másodlagos 

antitestekkel, amiket szintén PBS-ben oldottunk. Végül a sejteket VECTASHIELD Antifade 

Mounting Medium-mal rögzítettük, fedtük. 

 

Intenzitásmérés 

Az immunfluoreszcens módszerrel jelölt mintákról a képeket konfokális lézer pásztázó 

mikroszkóp segítségével rögzítettük. A jelölés intenzitását a Nikon NIS elements szoftverének 

segítségével mértük meg. A vizsgált régiók (Region of interest, ROI) kiválasztása manuálisan 

történt. Az összes ROI megkettőzése után (a duplikált ROI területe megegyezett az eredeti ROI-

val) a duplikátumokat a háttérre helyeztük. A ROI területén belül mért összes pixel számából 

kivontuk a háttérre helyezett ROI-k intenzitását. Az így kapott intenzitás értéket az adott ROI 

területével korrigáltuk. 



11 

 

Statisztikai analízis 

A változók eloszlásának ellenőrzéséhez a Shapiro-Wilk tesztet alkalmaztuk. A normális 

eloszlású változók esetén varianciaanalízist (ANOVA) a nem normális eloszlású változók 

esetében pedig a Kruskal-Wallis tesztet és a Mann-Whitney U tesztet használtuk. Az adatok 

trendjeinek tesztelése a Mann-Kendall trendteszt segítségével történt. A kezelések közötti 

összefüggéseket Spearman-féle rho korrelációs teszttel elemeztük A 0,05-nél kisebb p értéket 

tekintettük statisztikailag szignifikánsnak. Az adatok statisztikai elemzése a Paleontological 

Statistics (PAST) szoftver 3.21-es verziójával történt. 
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4. EREDMÉNYEK 

4.1. NEM FIZIOLÓGIÁS TIROZIN-IZOMEREK HATÁSÁRA KIALAKULÓ 

KRÓNIKUS INZULIN-REZISZTENCIA MAKROFÁGOKBAN 

 

A HEK-sejtek tirozinfelvétele 

A Tyr-izomerek felvételének vizsgálatakor azt tapasztaltuk, hogy a kontrollcsoportban a 

sejtek elenyésző mennyiségben tartalmaztak meta- és orto-Tyr-izomereket a para-Tyr 

mennyiségéhez képest. A 20. perctől kezdve a meta-Tyr mennyisége nem különbözött 

szignifikánsan a para-Tyr mennyiségétől, viszont az orto-Tyr mennyisége a növekedés ellenére 

60 perc elteltével is alacsonyabb maradt a para-Tyr, mennyiségéhez képest, tehát a HEK-293-

sejtek a para-Tyr-nal közel megegyező mennyiségben veszik fel a meta- és orto-Tyr-t. 

Inzulinkezelés hatása J774A.1 makrofágok pAkt mennyiségére különböző médiumokban 

Az inzulinkezelésben nem részesült kontroll csoportok esetén az alábbiakat tapasztaltuk:  

A magas glükóz tartalmú (25 mmol/l) médiumban magasabb volt a nem stimulált pAkt 

mennyisége a makrofágokban összehasonlítva az 5 mmol/l glükózt tartalmazó kezeléssel. A 

meta- és orto-Tyr tartalmú médiummal történő kezelés önmagában szintén növelte a nem 

stimulált pAkt mennyiségét a para-Tyr-os kontrollhoz képest. 

Az inzulinnal történő stimuláció hatására a pAkt mennyisége a következőképpen alakult:  

A fiziológiás para-Tyr-t tartalmazó médiumban az inzulin dózis függő módon növelte a 

pAkt mennyiségét. A magas glükózkoncentráció megszüntette az inzulin pAkt mennyiségét 

növelő hatását. A meta- és orto-Tyr megakadályozta az inzulin pAkt-n keresztüli jelátvitelét.  
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Az inzulinkezelés hatása az argináz-1/iNOS arányra különböző médiumokban inkubált 

J774A.1 makrofágokban 

A magas glükózkezelés csökkentette a makrofágokban az argináz-1/iNOS arányt. Ehhez 

hasonlóan a meta- és orto-Tyr hatására is csökkent az argináz-1/iNOS arány a makrofág 

sejtekben a fiziológiás para-Tyr-kezeléshez képest. A para-Tyr-os kontrollkezelés mellett az 

inzulin csökkentette az argináz-1/iNOS arányt. A magas glükóz tartalmú médium megszüntette 

az inzulin hatását. Az orto-Tyr kezelés mellett szintén megszűnt az inzulin kiváltotta csökkenés 

az argináz-1/iNOS arány tekintetében. A meta-Tyr alkalmazása pedig megfordította ezt a hatást 

és az inzulin növelte az argináz-1/iNOS arányát a makrofág sejtekben. 

4.2. A WT1, A VIMENTIN ÉS A CRF EXPRESSZIÓJA FOKÁLIS SZEGMENTÁLIS 

GLOMERULOSCLEROSISBAN (FSGS) HUMÁN VESÉBEN ÉS A META- ÉS ORTO-TIROZIN 

HATÁSA A WT1-, VIMENTIN- ÉS CRF-EXPRESSZIÓRA HEK-293-SEJTEKBEN 

A kontroll és az FSGS-csoport betegeinek alapadatai 

A kontroll és az FSGS-csoport betegeinek alapadatait összehasonlítva azt találtuk, hogy a 

vártnak megfelelően az FSGS-csoportban szignifikánsan nagyobb volt az FPE a kontrollhoz 

képest. Emellett a vörösvértest-süllyedés értéke is magasabb volt az FSGS-csoportban a 

kontrollhoz viszonyítva, valamint az FSGS-csoportban az alkalmazott diuretikumok 

mennyisége is nagyobb volt a kontrollcsoportban regisztrálthoz képest. 

Vesebiopsziás minták 

A vesebiopsziás mintákban azt találtuk, hogy a WT1-jelölés intenzitásának tekintetében a 

glomerulusokban nem volt szignifikáns különbség az FSGS- és a kontrollcsoport között. 

Viszont a tubulo-interstitium esetén az FSGS-csoportban alacsonyabb volt a WT1-expresszió a 

kontrollcsoporthoz képest. A vimentin-jelölés intenzitása az FSGS-csoport glomerulusaiban 
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alacsonyabb volt a kontrollhoz képest. A tubulo-interstitium jelölése esetén pedig magasabb 

volt a vimentin-expresszió a kontrollcsoporthoz viszonyítva. A CRF-jelölés intenzitása kisebb 

volt a glomerulusokban mint a tubulo-intertitiumban. A FPE mértéke a glomerulusokban 

korrelációt mutatott a vimentin- és a CRF-jelölés intenzitásával.  

HEK-293 sejtek 

A HEK-293-sejtek kezelése során azt tapasztaltuk, hogy a meta- és orto-Tyr kezelés 

egyaránt csökkentette a WT1 mennyiségét a fiziológiás para-Tyr-kezeléshez viszonyítva. A 

meta-Tyr pedig a vimentin expresszióját csökkentette a HEK-293-sejtekben a para-Tyr-os 

kontrollhoz képest. 
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5. MEGBESZÉLÉS 

A Tyr-izomerek felvételének vizsgálata során azt tapasztaltuk, hogy a HEK-293 sejtek közel 

azonos mértékben veszik fel mindhárom izomert. Az inzulinnal nem kezelt makrofág sejtekben 

a 25 mmol/l-es glukózkoncentráció, a meta- és az orto-Tyr növelte a pAkt-szintet és 

csökkentette az argináz 1/iNOS arányt. A fiziológiás para-tirozin kezelés esetén az inzulin dózis 

függően növelte a pAkt mennyiségét és csökkentette az argináz 1/iNOS arányt. Mind a meta-, 

mind az orto-Tyr-kezelés megszüntette vagy megfordította az inzulin pAkt-ra gyakorolt növelő 

hatását és az argináz 1/iNOS arányra gyakorolt csökkentő hatását. 

A glomerulusokban a WT1 festödés intenzitása az FSGS és a kontrollcsoportokban azonos 

volt, viszont a tubulo-interstitiumában alacsonyabb volt a WT1 intenzitása az FSGS-betegek 

esetén. Alacsonyabb volt a vimentin intenzitás az FSGS-betegek glomerulusaiban, és magasabb 

volt a tubulo-interstitiumban, a kontrollcsoporthoz viszonyítva. Az elektronmikroszkóppal 

meghatározott FPE mértéke korrelációt mutatott a vimentinnel és a CRF-fel a 

glomerulusokban. A HEK sejtek vizsgálata során a WT1 jelölés intenzitása alacsonyabb volt a 

meta- és orto-Tyr csoportban, valamint a vimentin intenzitása alacsonyabb volt a meta-Tyr 

csoportban a para-Tyr csoportban mértekhez képest. 

5.1. TYR-IZOMEREK FELVÉTELÉNEK VIZSGÁLATA 

Régóta vizsgálják a nem fiziológiás Tyr-izomerek káros hatását az élő szervezetekre [11]. 

Vizsgálatainkból arra következtethetünk, hogy a sejtek azonos mértékben képesek felvenni a 

kóros Tyr-izomereket, mint a fiziológiás para-Tyr-t. Valószínűsíthetjük, hogy a Tyr-izomerek 

képesek beépülni a fehérjékbe, és többek között ilyen módon is kifejtik az élő szervezetekre 

gyakorolt káros hatásukat [12]. 
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5.2. AZ ABNORMÁLIS TYR-IZOMEREK HATÁSA A MAKROFÁGOK INZULIN-JELÁTVITELÉRE 

A kutatócsoportunk tanulmányain kívül nem találtunk olyan tanulmányt melyben a Tyr-

izomerek pAkt, vagy egyéb inzulin-jelátvitelben szereplő fehérje aktivitására gyakorolt hatását 

vizsgálták. Viszont felleltünk néhány publikációt melyekben az oxidatív stressz hatását 

vizsgálták az Akt foszforilációjára makrofágokban illetve egyéb szövetekben [13–17]. Mivel 

az oxidatív stressz növekedésével nő a nem fiziológiás tirozinok mennyisége, ezért ezek a 

tanulmányok közvetett módon összevethetők az általunk végzett vizsgálatokkal. Ezek közül a 

tanulmányok közül 3 vizsgált makrofágokat és mind a három vizsgálat alátámasztja azon 

eredményünket, hogy a nem fiziológiás Tyr-izomerek és a glükóz mennyiségének magasabb 

szintje növeli a pAkt mennyiségét. 

Az említett kutatások nem vizsgálták az oxidatív stressz hatását az inzulinra. Kutatócsoportunk 

előző munkái során vizsgálta a nem fiziológiás Tyr-izomerek hatását az inzulin-jelátvitelre az 

IRS-1 és pAkt mérésén keresztül [6]. Ezek az eredmények alátámasztják jelen eredményeinket 

miszerint a meta- és orto-Tyr jelenlétében megszűnik az inzulin pAkt mennyiségét növelő 

hatása. 

5.3. AZ ABNORMÁLIS TYR-IZOMEREK HATÁSA A MAKROFÁGOK M1/M2 IRÁNYÚ 

POLARIZÁCIÓJÁRA 

Sajnos kevéssé vizsgálták az inzulin-rezisztencia hatását a marofágok polarizációjának 

irányára. Két olyan releváns tanulmányt találtunk az irodalomban, ahol az inzulin és az inzulin 

rezisztencia hatását vizsgálták a makrofágok M1/M2 irányú polarizációjára [18,19]. Ezek a 

tanulmányok, ahol az iNOS illetve az Arg1 (Argináz-1) expressziót is vizsgálták, alátámasztják 

azon eredményeinket, miszerint az inzulin-rezisztencia hatására csökken az iNOS és növekszik 

az Arg1 mennyisége a makrofág sejtekben. Vizsgálatunk megbízhatóságát tovább erősíti az 
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inzulin-jelátvitel és az M1/M2 polarizáció vizsgálatánál kapott eredményeink közötti 

koherencia. 

5.4. VESEBIOPSZIÁS MINTÁK ÉS HEK-293-SEJTEK VIZSGÁLATA  

Az FSGS diagnózisában kiemelkedő szerepe van az elektronmikroszkóp segítségével 

detektálható FPE megléte, amely egyik kezdő lépése a podociták károsodásának [20,21]. Az 

általunk vizsgált FSGS-el diagnosztizált betegek mintáiban a vártnak megfelelően magasabb 

volt az FPE aránya a kontroll csoport mintáihoz viszonyítva. 

A WT1 nélkülözhetetlen a podociták funkciójának, illetve ezen keresztül a glomeruláris 

működésnek a fenntartásához. A WT1 expressziójának csökkenése heveny glomerulonephritist 

és mesangialis sclerosist okozhat [22]. Ezek alapján a WT1 kardinális szerepet tölt be a vese 

működésében, és hiánya (főként) glomerulopathiak kialakulásához vezethet. Eredményeink 

szerint a WT1 mennyisége nem különbözött  az FSGS és a kontroll csoport glomerulusaiban. 

Igaz a podociták nem képesek a regenerációra, de vizsgálatok igazolják, hogy a sérülés hatására 

a pariethalis epithelialis sejtek képesek vándorolni és podocita irányba differenciálódni [23,24]. 

Ezek a sejtek szaporodhatnak a podocita-károsodás hatására, és képesek helyettesíteni a sérült 

podocitákat [22]. Ez a fajta regenerációs folyamat lehet felelős a változatlan WT1 szintekért az 

FSGS korai szakaszában. 

A krónikus tubulo-interstitiális változások melyek az FSGS-ben megfigyelhetők, a 

WT1-jelölés intenzitásának csökkenését okozhatja, ami magyarázhatja az általunk kapott 

eredményeket. 

Egerekben a WT1-fehérje expressziójának gátlása az FSGS kialakulásához vezetett 

[25]. Eredményeink azt mutatják, hogy a meta- és orto-Tyr tartalmú médiumban csökken a WT1 

fehérje jelölésének intenzitása. Ebből arra következtethetünk, hogy az abnormális Tyr-

izomereknek szerepe lehet a WT1-fehérje expressziójának gátlásában és így az FSGS 

kialakulásában is. 



18 

 

A vimentin egy intermedier filamentum, amely főként a mezenchimális eredetű 

kötőszöveti sejtekben és a simaizom-sejtekben fordul elő és fontos szerepe van a podociták 

sejtvázának kialakításában is. Szerepet játszik a podocita sejtek integritásának megőrzésében 

is, illetve szerepe van a podociták sérülésre adott válaszában is [26,27]. Továbbá a vimentin a 

vese tubuláris károsodását is jelezheti a tubuláris epithelialis-mezenchimális átmenet (EMT) 

esetén, ahol a vimentin neo-expressziója figyelhető meg [28]. A fentiek alapján a vimentin 

fontos szerepet tölt be a vese működésében, és mennyiségének változása a vesekárosodás 

markereként funkcionálhat.  

A vimentin szignifikánsan alacsonyabb szintje az FSGS-betegek glomerulusaiban 

magyarázható a károsodott podociták megnövekedett számával, amit podocita FPE és a 

vimentin (glom), valamint a WT1 (glom) és a vimentin (glom) közötti erős negatív korreláció 

is alátámaszt.  

A vimentin expressziója szignifikánsan magasabb volt az FSGS-ben szenvedő betegek 

tubulo-interstitiumában, ami a krónikus károsodásra adott válaszként az EMT-t markere lehet 

[29–31] 

HEK-293 sejtek esetén az eredményeink azt mutatják, hogy a meta-Tyr jelentősen 

csökkenti a vimentin festődési intenzitását, ami koherens a vesebiopsziás minták esetén mért 

eredményeinkkel. 

Nem találtunk olyan tanulmányokat, ahol a CRF expresszióját vizsgálták az FSGS-ben 

illetve az egészséges vesékben sem találtunk adatot a CRF expressziójáról. Vizsgálatunkban 

immunfluoreszcens jelölés segítségével CRF-expressziót mértünk, az FSGS-ben és a 

kontrollcsoportban egyaránt. A CRF festési intenzitása szignifikánsan alacsonyabb volt az 

FSGS-csoport glomerulusaiban és nem mutatott különbséget a két csoport tubulo-

interstitiumában. 
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A HEK-293-sejtek CRF-pozitivitást mutattak, de a meta-Tyr-rel vagy orto-Tyr-rel 

történő kezelésnek nem volt hatása a CRF-jelölés intenzitására, amiből arra következtethetünk, 

hogy a CRF valószínűleg nem játszik jelentős szerepet az FSGS patogenezisében. 

5.5. KÖVETKEZTETÉSEK 

Fentiek alapján a kóros Tyr-izomerek jelentős szerepet játszanak az inzulin-rezisztencia 

kialakulásában a makrofágokban, amin keresztül hatást gyakorolnak azok M1/M2 irányú 

polarizációjára. Továbbá az abnormális Tyr-izomerek az inzulin-rezisztencia előidézésével 

közvetve, és eredményeink szerint közvetlenül is részt vesznek a különböző vesebetegségek 

kialakulásában. 
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6. A DOLGOZAT TÉZISEI 

1. Makrofágokban, fiziológiás para-tirozin kezelés esetén az inzulin növelte a pAkt 

mennyiségét és csökkentette az argináz-1/iNOS arányt. 

2. Makrofágokban, a meta- és orto-Tyr-kezelés mellett az inzulin csökkentette a pAkt 

mennyiségét és növelte az argináz-1/iNOS arányt. 

3. Makrofágokban, inzulin-kezelés hiányában a  a 25 mmol/l-es glükózkoncentráció, a- meta- 

és orto-Tyr-kezelés növelte a pAkt-szintet és csökkentették az argináz-1/iNOS arányt 

4. A glomerulusban az FSGS- és kontrollcsoportban mért WT1-intenzitások között nem volt 

különbség, viszont a tubulo-interstitiumban az FSGS-csoport esetén kisebb volt a WT1-

intenzitás a kontrollhoz képest. 

5. A glomerulusban mért vimentin intenzitás az FSGS-csoportban kisebb volt a kontrollhoz 

képest és a tubulo-interstitiumban mért vimentin intenzitása FSGS-ben nagyobb volt a 

kontrollhoz viszonyítva. 

6. Glomerulusban mért CRF intenzitás az FSGS-csoportban kisebb volt a kontrollhoz képest. 

7. A HEK-293-sejtekben meta- és orto-Tyr-kezelés hatására csökkent a WT1 intenzitása a 

kontrollhoz képest.  

8. A meta-Tyr-kezelés hatására csökkent a vimentin intenzitása a HEK-293-sejtekben. 
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