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Bevezetés  

A bőr és a nyálkahártyák alkotják a szervezet első védelmi vonalát a kórokozók 

bejutásával szemben. A mikrobiális patogéneket ezeken a védelmi vonalakon történő 

átjutásuk után az immunrendszer sejtjei juttatják el a szomszédos másodlagos 

nyirokszövetekbe, ahol a fehérvérsejtek - a kórokozók megkötését követően - különböző 

típusú immunválaszokat alakítanak ki (1), (2). 

A másodlagos nyirokszövetek (így a lép, nyirokcsomók és a Peyer-plakkok) a születés 

előtt fejlődnek ki. Ezen kívül a bélnyálkahártya védelmében részt vevő egyéb nyirokszöveti 

szerveződések, pl. a kriptoplakkok (CP) egy másik csoportot alkotnak, amik a születést 

követően alakulnak át izolált nyiroktüszővé (ILF) (3). Ezekkel a mostanra részletesen 

megismert nyirokszövetekkel szemben a savós hártyák immunológiai védelme jórészt 

feltáratlan, bár ezen felületek számos hasüregi szervet borítanak be és nagy számban 

tartalmaznak B-1 B-sejteket (4). 

Ugyan a zsírszövetek általánosan elfogadott élettani szerepe az energiaraktározás, 

számos kutatócsoport számolt be a zsírszövetekben előforduló nyirokszövetek helyi 

immunválaszok kialakításában játszott szerepéről (5–7). Ezekre a zsírszövetbe ágyazott 

nyirokszöveti struktúrákra a diffúz szerkezeti elrendeződés jellemző, amiben a fehérvérsejtek 

megtelepedését a CXCL1 és CXCL13 kemokinek segítik elő  (5–8). 

A csepleszt (omentum) sebészi megfigyelések alapján régóta a hasüreg 

felügyelőjének tekintjük, ahol a tejfoltok (milky spot – MS) játsszák az elsődleges szerepet az 

immunológiai ellenőrzésben (9). A MS képletek gazdagon erezett, számos fehérvérsejtet 

tartalmazó struktúrák, amikben a B-1 sejtek természetes antitesteket termelnek (10–13). A 

közelmúltban ismerték fel a zsír-asszociált nyirokszöveti csoportosulásokat (fat-associated 

lymphoid clusters – FALC) amikben a 2. típusú veleszületett limfoid sejtek (ILC2) fontos 

szerepet játszanak a B-1 sejtek helyi osztódásában (14, 15). 

A B-sejtek az adaptív immunitás kitüntetetten fontos résztvevői. Ennek részeként a B-

1 sejtek nagy részben természetes antitesteket termelnek, míg a B-2 sejtek fontos szerepet 

töltenek be az antigén-prezentációban, immunszabályozásban és antigén-specifikus 
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ellenanyag-termelésben (16, 17). Az antigén-stimuláció mellett a B-sejt összetétel az egyén 

öregedése során is változik. Ennek következtében az öregedéshez kapcsolódó B-sejtek (age-

associated B cells – ABC) jelennek meg, amik nagyszámú előfordulása jellemző az SLE-re 

hajlamos egerekben (16–20). A CD11c pozitív/T-bethigh ABC populáció a lép T/B zóna 

határterületén mutatható ki (21, 22). Fenotípusuk, genotípus-jellemzőik és klinikai 

jelentőségük miatt a B-sejt differenciálódás és antigén-stimulációt követő B-sejt alcsoportok 

megoszlásának vizsgálata fontos ismereteket nyújthat, és elősegítheti B-sejtes daganatok 

kórfolyamatainak a megértését is. 

A cseplesz MS és FALC területeiben nem csak fehérvérsejtek, hanem különböző 

daganatsejtek, így petefészek-tumor sejtek is felhalmozódhatnak áttétképzés során vagy 

hasüregi oltást követően (23–25). Ezen kívül a neutrofil granulociták által képzett neutrofil 

extracelluláris hálók (neutrophil extracellular traps - NETs) is kimutathatók a petefészek-

daganatok premetasztatikus helyein, ami általában rossz prognózissal jár. Ezek a jelenléte a 

tumorsejtek, stromális összetevők és fehérvérsejtek közötti komplex kölcsönhatásra utal a 

tumor-növekedés során  (26). 

Korábbi munkánkban egy egérben kialakult spontán high-grade B-sejtes limfóma 

(Bc.DLFL1) vizsgálata során ezen sejtek nagyfokban korlátozott megtapadását és in vivo 

növekedését figyeltük meg a hasi nyirokcsomókban és a lépben. Kutatásaimban a Bc.DLFL1 

sejtek és normál B-sejtek szerozális megtapadási helyeit azonosítottam, és vizsgáltam a 

zsírszöveti megtapadás során fellépő citokin-változásokat. Ennek során különböző hasüregi 

zsírszöveti területeken kimutattam egy új szerkezeti képlet, a leveles nyirokszövegi 

aggregátum (Foliate lymphoid aggregates – FLAg) jelenlétét. Emellett tanulmányoztam a 

Bc.DLFL1 sejtek eredetét. Tézisemben ezeknek az eredményeit foglalom össze, és további 

lehetséges kutatási irányokat mutatok be a szerozális limfocita-homeosztázis és daganat-

megtapadás vizsgálatára. 
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Célkitűzés 

A kutatásaink célja az alábbiak vizsgálata volt: 

 A zsírszövet-asszociált nyirokszövetek típusai és szerkezeti jellemzői 

 A Bc.DLFL1 és normál B-sejtek hasüregi-szerozális megtapadási folyamata;  

 A Bc.DLFL1 sejtek jellemzőinek és eredetének meghatározása; 

 A zsírszöveti alapállomány átalakulása a Bc.DLFL1 limfóma sejtek infiltrációja során.  
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Anyagok és módszerek 

1. Egerek  

8-10 hetes BALB/c és BALB/ceGFP Tg egereket használtunk, amiket az Immunológiai 

és Biotechnológiai Intézet SPF és konvencionális állatházában tartottunk fenn. A Prox-1-GFP 

riporter egereket Jakus Zoltás (SE) bocsájtotta rendelkezésünkre. A KikGR egereket  (27) a 

Jackson Laboratories kolóniájából szereztük be. A Bc.DLFL1 sejteket a limfómás hasi 

nyirokcsomó szuszpenzió hasüregi oltásával tartottuk fenn (28). Az állatkísérletek az 

Állatkísérletes Tudományos Etikai Tanács (ÁTET) által kiállított engedélyek alapján történtek. 

 

2. Áramlási citometria és szortolás  

A Bc.DLDL1 és A20 limfoma sejteket fluorokrom-jelölt ellenanyagokkal inkubáltuk. 

Intracelluláris jelöléshez a sejtfelszíni markerekkel reagáló antitestekkel való inkubálást 

követően a sejteket fixáltuk és permeabilizáltuk, majd T-bet és Blimp-1 transzkripciós 

faktorokkal szembeni antitestekkel inkubáltuk. A mintákat BD FACSCalibur és CellQuest Pro 

szoftver segítségével elemeztük.  

Az IgVH szekvenáláshoz a Bc.DLFL1 limfóma sejteket nagyság és granularitás (FSC/SSC) 

valamint B220 marker expresszió alapján Bio-Rad S3e szorterrel tisztítottuk, majd mRNS-t 

izoláltunk.  

 

3. Bc.DLFL.1 Ig Vh szekvencia analízis  

A tisztított Bc.DLFL1 sejtekből NucleoSpin RNA XS kittel teljes mRNS-t izoláltunk. Ezt 

követően High-Capacity cDNA Reverse Transcription kittel cDNS-t szintetizáltunk. A végpont 

PCR-t Applied Biosystems 2720 Thermal Cycler berendezésen DreamTaq TM Green PCR 

Master Mix felhasználásával végeztük el. A PCR termékeket BigDye Terminator Cycle 

Sequencing Ready Reaction v1.1 kit felhasználásával AB 3500 Genetic analizátorral 

szekvenáltuk, és az IMGT/HighV-QUEST platformon elemeztük.  

 

4. Whole-mount és szöveti immunhisztokémia és immunfluoreszcencia  
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Teljes bél whole-mount immunhisztológiai vizsgálatainkhoz a teljes bél komplexet 

(nyelőcsőtől a felszálló vastagbélig) 4%-of paraformaldehidben fixáltuk, majd 3 percig 

hematoxilinben festettük. Ezt követően a megfelelő bélfodor és cseplesz részeket 

mikrodisszekcióval izoláltuk. Immunhisztokémiai vizsgálatokhoz a szövetmintákat 0,1% fenil-

hidrazin oldatban kezeltük, majd 5% borjú szérum albuminnal (BSA) telítettük. A mintákat 

különböző egér nyirokszöveti antigénekkel szembeni patkány monoklonális antitestekkel 

inkubáltuk, majd mosást követően a kötődést HRP-jelölt kecske anti-patkány antitesttel 

mutattuk ki diamino-benzidin (DAB)-H2O2 szubsztráttal. Immunfluoreszcens eljárás során 

különböző fluorokrómokkal jelölt patkány monoklonális antitesteket használtunk, a kötődést 

Olympus FluoView FV1000 LSC mikroszkóppal vizsgáltuk.  

A hasi nyirokcsomókon végzett immunhisztokémiához Bc.DLFL1-oltott egerek mintáiból Leica 

CM1850 kriosztáttal 8 μm-es fagyasztott metszeteket készítettünk, majd azokat szárítás után 

hideg acetonnal fixáltuk. A metszetek fenil-hidrazinos kezelése majd 5% BSA-telítése után 

különböző monoklonális antitestekkel inkubáltuk nedves kamrában. Mosást követően az 

antitestek kötődését HRP-konjugált kecske anti-patkány IgG-vel detektáltuk DAB-H2O2 

szubsztráttal, hematoxylin magfestéssel kiegészítve. Kettős immunfluoreszcens jelöléshez 

FITC-konjugált és biotinált monoklonális antitesteket használtunk, utóbbit fikoeritrin-

streptavidin (PE-StrAv) konjugátummal mutattuk ki. 

GFP és gp38 kombinált kimutatásához a bélfodort paraformaldehid-fixálás után 30%-os 

szukróz-oldatban inkubáltuk. Fagyasztást követően 20 μm vastag metszetet készítettünk, 

majd száradás után PE-jelölt anti-gp38 antitesttel inkubáltuk. Mosás után a metszeteket 

Hoechst-33342 tartalmú 50%-os glicerinben fedtük, majd Olympus Fluoview FV-1000 LSC 

mikroszkópban vizsgáltuk. 

 

5. Transzmissziós elektronmikroszkópia  

Az eltávolított beleket és a bélfodor FLAg képleteit 4%-of pufferolt paraformaldehidben 

fixáltuk, majd PBS-es mosást követően 2%-os glutáraldehidben utófixáltuk. Etanolos 

víztelenítés majd két órányi 1%-os ozmium-tetroxid kezelés után a mintákat Polybed/Araldit 
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6500 keverékkel beágyaztuk. Az 1 μm félvékony metszeteket toluidin-kékkel festettük. Az 

ultravékony metszeteket uranil-acetáttal és ólom-citráttal kontrasztosítottuk és H-7600 Hitachi 

elektronmikroszkóppal vizsgáltuk. 

 

6. Sejt jelölés és transzfer  

A20 és Bc.DLFL1 (28) sejteket 5mM CFSE vagy 10mM CellTrace Far Red (CTFR) 

intracelluláris fluoreszcens festékekkel jelöltünk (29). BALB/c egér lépből FITC-jelölt anti-Thy-

1/CD90 és anti-FITC paramágneses gyöngyökkel MACS eljárással depletáltuk a T-sejteket 

normál B-sejtek tisztításához. Infravörös közeli (NIR) fluoreszcenciához lipofil XenoLight DiR 

festéket használtunk. A festékek kimosása után a jelölt sejteket intraperitoneálisan oltottuk.  

 

7. NIR fluoreszcens képalkotás  

A MACS-tisztított B-sejteket vagy Bc.DLFL1 sejtek megtapadását XenoLight DiR 

jelölést és intraperitoneális oltást követően IVIS Lumina III képalkotó berendezéssel vizsgáltuk. 

A Bc.DLFL1 sejtek in vitro szövetei kötődését Bio-One CELLSTAR lemezen vizsgáltuk. Az 

adatokat Living Image programmal dolgoztuk fel és értékeltük.  

 

8. KikGR fotokonverzió és kompetitív megtelepedés  

A BALB/c alapra visszakeresztezett KikGR egérből eltávolított nyirokcsomókat 

szobahőmérsékleten fotokonvertáltuk (KikR), majd mechanikai úton feltártuk, és nem 

fotokonvertált (KikG) sejtekkel 1:1 (KikR/KikG) arányban elegyítettük, melyeket előzőleg anti-

L-szelektin (MEL-14) monoklonális antitesttel kezeltünk. A sejt-keveréket a farokvénán 

keresztül intravénásan oltottuk (30). 

 

9. Limfóma-hordozó egerek BAFF-receptor blokkoló kezelése 

BALB/c egereket intraperitoneálisan oltottunk Bc.DLFL1 sejtekkel, majd 3 naponta 100 

μg mBR3-Ig szolúbilis BAFF-receptorral, illetve kontrol egér IgG1 monoklonális antitesttel 
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oltottuk intravénásan (Genentech, USA). A kezelést a 18. napig folytattuk, miközben az állatok 

elhullását naponta ellenőriztük. 

 

10. A Bc.DLFL1 sejtek in vitro tenyésztése és ZsGreen1 fluoroprotein lentivirális 

transzdukciója  

Bc.DLFL1 sejteket 6-lyukú szövettenyésztő lemezeken peritoneális mosással 

eltávolított makrofágokra tettünk, majd 10% FCS, 2 mM GlutaMax és 5x10-5 M β-

merkaptoetanol hozzáadásával tenyésztettük.  

Az EF1α promoter által irányított ZsGreen1-kódoló, VSV-G-kifejező lentivirális vektor 20 MOI 

dózisban történő hozzáadásával a limfóma sejteket egy éjszakán keresztül fertőztük, majd a 

legintenzívebb zöld fluoreszcenciát mutató stabilan transzfektált 10%-nyi Bc.DLFL1ZsGreen1 

populációt Bio-Rad S3e szorter segítségével izoláltuk és tenyésztettük in vitro.  

 

11. A Bc.DLFL1 ZsGreen1 limfóma sejtek in vivo nyirokszöveti megtapadása 

A Bc.DLFL1ZsGreen1 sejteket intravénásan oltottuk, majd 12 órával később a sejtek 

megoszlását a lépben Alexa Fluor 647-jelölt anti-B220 és anti-MARCO antitestekkel 

vizsgáltuk fagyasztott lépmetszetek immunfluoreszcens jelölésével. 

 

12. A limfomás szövetek citokin-termelésének vizsgálata és meghatározása multiplex R&D 

citokin-panel eljárással 

A limfóma-hordozó és normál egerek cseplesz, bélfodor és hasi nyirokcsomó-mintáit 

Bc.DLFL1-hordozó, terminális állapotban lévő egerekből távolítottuk el, a szöveteket T-PERTM 

Tissue Protein Extraction reagenssel kezeltük proteáz-gátlók jelenlétében. A szövet-

extraktumokkal Proteome profilerTM Array Mouse XL Cytokine Array Kit nitrocellulóz 

membránokat inkubáltunk a kit leírásának megfelelően. Az immunreaktivitás mértékét 

kemilumineszcens eljárással LAS 4000 berendezés és program segítségével határoztuk meg 

180 másodperces expozíció során, az egyes intenzitásokat Image J programmal határoztuk 

meg. A normalizált adatkészleteket a pheatmap programcsomag segítségével ábrázoltuk.  
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13. Kvantitatív RT-PCR  

Az ágyéki nyirokcsomókból, csepleszből és bélfodorból NucleoSpin használatával 

teljes mRNS-t tisztítottunk. High-Capacity cDNA Reverse Transcription Kit segítségével 

cDNS-t készítettünk. A PNAd vázfehérjék és a MECA-79 glikoepitop kialakításában szereplő 

glikozilációs enzimek mRNS meghatározására a RT-PCR amplifikációt Applied Biosystems 

PRISM 7500 készüléken végeztük duplikátumban, SYBR Green primerek felhasználásával 

(31). 

 

14. Statisztikai értékelés  

A kapott adatokat SPSS 22.0 (IBM) segítségével értékeltük. Az adatok 

normáleloszlását Shapiro–Wilks teszttel ellenőriztük. Normál mintaeloszlás esetében t-tesztet, 

nem normáleloszlás esetében Mann–Whitney U-tesztet alkalmaztunk két csoport 

összehasonlítására. Az adatokat az átlag és ± SEM formában ábrázoljuk. A p érték < 0.05 

esetében tekintettük az egyes adatcsoportokat szignifikánsan eltérőnek. 

A BAFF-R kezelés T/B megoszlásra kifejtett hatásának statisztikai értékelésére student’s T-

tesztet és GraphPad Prism 5 programot használtunk, ahol a statisztikailag szignifikáns 

különbségnek a p érték <0.001 tekintettük. A hibasávok a standard átlag hibát jelzik. A Kaplan-

Meier túlélési görbét GraphPad Prism 5 (p<0.01) segítségével ábrázoltuk. 
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Eredmények  

1. A FLAg képletek, mint a bélfodor nyirokelvezetéséhez kapcsolódó új szerozális 

nyirokszöveti variánsok 

A Bc.DLFL1 high-grade B-sejtes limfóma BALB/c egerekben a hasi nyirokcsomóra s 

lépre korlátozódó módon terjed. Nem ismert, hogy a korai megtapadás milyen szövetei 

összetevőket érint. XenoLight DiR-jelölt limfóma sejtek beadása után 4 órával megfigyeltük, 

hogy a cseplesz mutatja a legerősebb fluoreszcens szignált, míg kis fokális elrendeződést 

mutató jelforrások a bélfodor zsírszövetében is kimutathatók, a két jelforrás össz-intenzitása 

között nincs szignifikáns különbség. Meglepő módon a lépben és a hasi nyirokcsomóban nem 

volt korai megtapadáshoz köthető jelölődés. Whole-mount immunhisztokémiai eljárással a 

CFSE-jelölt limfóma-sejtek anti-FITC antitesttel történő kimutatása a NIR képalkotással nyert 

elrendeződéshez hasonló mintázatot mutatott. Tisztított normál B-sejtek hasüregi beoltása a 

Bc.DLFL1 limfóma sejtekhez hasonló megoszlást eredményezett. 

Sztereomikroszkópos vizsgálatokkal a limfóma-kötő képletek között levélszerű 

képződményeket találtunk, amelyek vagy közvetlenül a bélfodor zsírszövetéhez, vagy egy 

nyél közvetítésével a hasüregi hashártya-tasakhoz (bursa omentalis) kapcsolódtak. Hasonló 

struktúrákat C57Bl/6J egerekben is azonosítottunk. 

Immunhisztokémiai módszerekkel az egész FLAg területén intenzív CD45 kifejeződést 

figyeltünk meg, míg CD90/Thy-1.2 jelöléssel elsősorban a FLAg centrális részén volt kifejezett 

reaktivitás. Ezzel ellentétben whole-mount fénymikroszkópos immunhisztokémiai eljárással a 

B-sejtekre jellemző B220 kifejeződés egyenletes megoszlást mutatott. A FLAg képletek széli 

részében LYVE-1-pozitív makrofág-csoportosulásokat figyeltünk meg. 

Kettős immunfluoreszcens jelöléssel konfokális mikroszkópos detektálással megerősítettük, 

hogy a T-sejtek a FLAg centrális részében, míg a B-sejtek a széli részben halmozódnak fel, 

ami megfelel a CCL21 és CXCL13 kifejeződési mintázatnak. 

Elektronmikroszkópos feldolgozással a FLAg további részleteit figyeltük meg. Ezek alapján a 

FLAg képleteket egyrétegű mezotél sejtek fedik. Ez alatt a nagy denzitásban elhelyezkedő 

limfociták között elszórtan plazmasejtek is jelen vannak, az alapállományt retikuláris sejtek és 
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dús kapilláris-hálózat alkotja. További immunfluoreszcens vizsgálatokkal kiterjedt fibronectin-

hálózat találtunk a FLAg és nyél részekben egyaránt. VCAM-1 kifejeződést a nyelek mentén, 

valamint a FLAg centrális régiójában észleltünk. A zsírszövetekhez kapcsolódó FLAg 

kapilláris-hálózatának endotél sejtjei CD31 kifejeződést mutatnak, amihez szakaszos 

elrendeződésben PNAd-pozitivitás társul. Ugyanakkor a nyirokendotél sejteket azonosító 

Prox-1 riporter egér FLAg képleteiben csak kevés elszórt GFP-pozitív sejtet találtunk. Ezek 

alapján a FLAg nem tartalmaz nyirokereket. 

 

2. A limfociták hematogén megtapadása a szerozális nyirokszövetekben részben PNAd-függő 

Kikume GR egerekből tisztított limfocitákkal kompetitív homing tesztet végeztünk el. 

Megfigyeltük, hogy az L-szelektin blokkolására végzett MEL-14 antitest-kezelést követően a 

KikG+ limfociták megtapadása a perifériás nyirokcsomókban nagymértékben csökkent. 

Ehhez viszonyítva a bélfodorban kb. 50%-os gátlás-hatékonyságot találtunk. Ezt követően a 

pPCR vizsgálatok kimutatták a MECA-79 glikoepitop kialakításában résztvevő vázfehérjék és 

glikozilációs enzimek mRNS kifejeződését, ami lehetővé teszi a magas endoteliális venulákon 

(HEV) keresztüli fehérvérsejt-kilépést. Ezek az eredmények arra utalnak, hogy a szerozális 

nyirokszövetekbe történő limfocita-megtelepedés az érpályából részben az L-szelektin PNAd-

kötődésétől függő folyamat.  

 

3. A Bc.DLFL1 sejtek szelektív megtelepedése a hasüregi szeroza felől a bélfodor nyirokerein 

keresztül 

CFSE-jelölt Bc.DLFL1 sejtek anti-FITC whole-mount immunhisztokémiai kimutatása 

megerősítette a jelölt sejtek megjelenését a bélfodor nyirokereiben. Hasonló eredményt 

kaptunk, amikor a vörös fluorokrom CTFR-jelölt limfóma sejteket a Prox-1-GFP nyirokér-jelölő 

konstrukciót kifejező transzgenikus egér hasüregébe oltottuk. Eredményeink szerint az oltást 

követően 4 órán belül a limfóma sejtek elérik a bél Prox-1-pozitív nyirokér-rendszerét.  
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4. A Bc.DLFL1 sejteken megjelenő intracelluláris és sejtfelszíni markerek a limfóma sejtek 

ABC B-sejt alcsoporthoz való kapcsolódására utalnak. 

Korábbi eredményeink alapján a Bc.DLFL1 sejtek CD19, B220, MHC-II és MAC-1 

(CD11b/CD19) markereket hordoznak, ugyanakkor nem fejezik ki a CD21 és CD23 

markereket. Ezt követőan azt találtuk, hogy a sejtek CCR7 receptort és CXCR4 receptort is 

kifejeznek, ami eddigi ismeretek alapján a CD11c markert kifejező időskori B-sejtek (age-

associated B cell – ABC) egyik jellemző sejtfelszíni molekulája (20). Az elvégzett áramlási 

citometriás vizsgálatok igazolták a CD11c megjelenését a limfóma sejteken. Irodalmi adatok 

alapján a T-bet transzkripciós faktor kifejeződése az ABC populációra jellemző (18, 20, 32). 

Igazoltuk, hogy a Bc.DLFL1 sejtek kifejezik a T-bet és Blimp-1 transzkripciós faktorokat. 

Ugyanakkor a plazmasejtekre jellemző CD138 nem mutatható ki, bár az ABC populációban 

fokozott CD80 és CD86 aktivációs markerek kifejeződését a Bc-DLFL1 sejteken is 

megfigyeltük.  

A limfóma sejtek Ig gén VH régiójában 11 aminosav-váltással járó és egy “silent” mutációt 

találtunk. A sejtvonal által termelt immunglobulin az IgG2a osztályba tartozik, ami igazolja a 

nehéz lánc izotípus-váltását. Ezek az adatok együttesen alátámasztják, hogy a Bc.DLFL1 

limfóma ABC-eredetű plazmablasztból származhat, aminek a nem teljes plazmasejt érési 

stádiumát a Blimp-1 kifejeződés és IgG2a immunoglobulin termelése igazolja, a CD138 

kifejeződése nélkül. 

 

5. A Bc.DLFL1 sejtek a lép extrafollikuláris területeiben halmozódnak fel.  

Előzetes eredményeink a Bc.DLFL1 sejtek extrafollikuláris megtelepedési 

preferenciáját vetették fel. A limfóma sejtek érzékeny nyomonköveteséhez létrehoztuk az 

intenzív zöld fluoreszcenciát mutató Bc.DLFL1ZsGreen sejteket. A Bc.DLFL1ZsGreen sejtek 

intravénás oltását követő 12 óra múlva a zöld sejtek túlnyomó része a fehér pulpa 

extrafollikuláris részében, valamint azt a vörös pulpától elválasztó marginális zónában 

helyezkedik el.  
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6. BAFF-R gátlás fokozza a limfóma-hordozó egerek túlélését.  

A BAFF (B-sejt aktiváló faktor) fontos szerepet tölt be az érett B-sejtek túlélésében, 

ezért vizsgáltuk a Bc.DLFL1 limfóma sejtek BAFF-receptor (BAFF-R) és analógjainak (BCMA 

és TACI) kifejeződését. Eredményeink alapján a BAFF-R TACI fokozott expressziót mutat, 

míg a BCMA kifejeződésének mértéke nem tér el a normál B-sejtekhez viszonyítva. 

A továbbiakban vizsgáltuk a BAFF-R szerepét a tumor progressziójában, aminek során 

szolúbilis BAFF-R kompetitor mBR3-Fc fúziós fehérjét oltottunk intravénásan a tumor oltását 

követően az 1, 4, 6 és 8. napokon Kontrollként normál egér IgG1 oldatot alkalmaztunk. A 18. 

napra a gátlószerrel kezelt állatok túlnyomó többsége túlélt, míg a kontroll IgG1 oldattal kezelt 

állatok nagyobb része elpusztult. Ezen adatok alapján a mBR3-Fc hatására bekövetkező 

BAFF-R funkció gátlása szignifikáns mértékben javítja a limfóma-hordozó állatok túlélését. 

 

7. A stroma-összetevők változásai és szövet-specifikus citokin-megoszlás  

A limfómás hasi zsírszövetek anti-B220 és anti-Ki-67 immunhisztokémiai vizsgálatai 

megerősítették, hogy a tumor előrehaladott szakaszában a B-sejtes limfóma kitölti a bélfodor 

és cseplesz zsírszövetét. Emellett eGFP transzgenikus recipiens egerekben a limfómás 

régiók gp38+/eGFP+ FRC hálózatot tartalmaznak, míg nem oltott egerekben ezek a sejtek 

tipikusan az erek környezetére korlátozottan helyezkednek el. A hasi nyirokcsomók, cseplesz 

és bélfodor citokin-összetételének összehasonlítása normál és limfóma-hordozó egérben 12 

citokin fokozott termelődését mutatta ki mindhárom szövetben, míg a csepleszben és a 

bélfodorban 38 azonos citokin termelődése fokozódott. 
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A PhD kutatásaim során elért új eredmények: 

 
1. Új nyirokszövet-variáns (FLAg) létezését mutattuk ki, amik részlegesen 

kompartmentalizált szerkezettel rendelkeznek, és amik egy testből és egy, a testet (a 

cseplesz és bélfodor zsírszövetéhez, vagy hashártyához) rögzítő nyélből állnak; 

2. Kimutattuk, hogy a B-sejtek és Bc.DLFL1 high-grade limfóma sejtek hasüregből FLAg 

irányába történő vándorlásuk során a LYVE-1 pozitív makrofágokhoz kapcsolódnak, míg 

a vérpályából részben L-szelektin-függő módon lépnek ki; 

3. Igazoltuk, hogy különböző B-sejtes limfóma sejtek a FLAg képleteken belül kemokin-

receptor mintázatuknak megfelelően kompartmentalizálódnak, a CCR7 

közreműködésével a Bc.DLFL1 sejtek a CCL21-képző centrális rész felé, míg a CXCR5-

hordozó A20 sejtek a CXCL13-tartalmú perifériás övezet felé vándorolnak; 

4. Kimutattuk, hogy a bélfodor nyirokkapillárisai a hasüregbe oltott B-sejtek kilépési 

útvonalának részét képezik; 

5. Igazoltuk, hogy a FLAg-test VCAM-1-pozitív fibroblasztok körül rendeződik el, és kiterjedt 

CD31-pozitív érhálózatot tartalmaz; 

6. A Bc.DLFL1 limfóma sejteket T-bet, CD11c és CXCR4 kifejeződésük alapján időskori 

(age-associated B cell – ABC) B-sejt származékként azonosítjuk, amiket a CCR7 és 

CXCR4 a lép T-sejt zóna, illetve a marginális zóna és a vörös pulpa felé irányít; 

7. Kimutattuk, hogy a Bc.DLFL1 limfómával oltott egerek túlélését a BAFF-R ligand-

kötésének gátlása szignifikánsan javítja; 

8. Megállapítottuk, hogy a Bc.DLFL1 sejtek zsírszöveti kiterjedése szövet-specifikus módon 

megváltoztatja a helyi citokin-mintázatot, és elősegíti a gp38-pozitív retikuláris 

fibroblasztok expanzióját. 
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