Data
Official data in SubjectManager for the following academic year: 2024-2025
Course director
-
Pandur Edina
assistant professor,
-
Number of hours/semester
lectures: 28 hours
practices: 0 hours
seminars: 0 hours
total of: 28 hours
Subject data
- Code of subject: OTF-TMB-T
- 2 kredit
- Biotechnology BSc
- Optional modul
- autumn
OTV-BIC1-T finished , OTV-SEBI-T finished
Course headcount limitations
min. 4 – max. 24
Available as Campus course for . Campus-karok: ETK TTK
Topic
During the course we will discuss the molecular mechanisms of tumor development. We will deal with characteristic features of tumor cells, and cancers. The function of influencing factors, risk factors, causes, the underlying molecular mechanisms, e.g. mutations, the role of oncogenes and tumor-suppressor genes, DNA repair, epigenetics and the role of immune system will be discussed in detail. We will emphasize the function of cell signaling pathways and the failure of apoptosis in tumorigenesis. We will speak about the molecular mechanisms of invasion and metastasis of tumors, the genes and proteins which have a crucial role in these processes. The participants will get an insight into the molecular diagnosis, genetic aberrations, and molecular alterations of human cancers. We will discuss the possibilities for cancer therapies, the new approaches such as gene therapy and immunotherapy.
Lectures
- 1. Introduction to cancers: classification and characterization of cancers, causes of cancer, properties of cancer cells, principles of therapies, targets of therapies - Pandur Edina
- 2. Introduction to cancers: classification and characterization of cancers, causes of cancer, properties of cancer cells, principles of therapies, targets of therapies - Pandur Edina
- 3. Tumor genetics: mutations, carcinogenic agents, inheritance, tumor genes, defects in DNA repair and predispositions to cancer, cell protection mechanisms - Pandur Edina
- 4. Tumor genetics: mutations, carcinogenic agents, inheritance, tumor genes, defects in DNA repair and predispositions to cancer, cell protection mechanisms - Pandur Edina
- 5. Tumor epigenetics: mechanisms of epigenetic inheritance, imprinting, DNA methylation, epigenetics of cell differentiation and tissue homeostasis - Jánosa Gergely
- 6. Tumor epigenetics: mechanisms of epigenetic inheritance, imprinting, DNA methylation, epigenetics of cell differentiation and tissue homeostasis - Jánosa Gergely
- 7. Oncogenes and tumor-suppressor genes - Pandur Edina
- 8. Oncogenes and tumor-suppressor genes - Pandur Edina
- 9. The cell cycle, apoptosis and senescence: checkpoints, therapeutic targets and inhibitors, molecular mechanisms of apoptosis, replicative senescence and its disturbances in human cancers - Pap Ramóna
- 10. The cell cycle, apoptosis and senescence: checkpoints, therapeutic targets and inhibitors, molecular mechanisms of apoptosis, replicative senescence and its disturbances in human cancers - Pap Ramóna
- 11. Signaling pathways in tumors: MAPK, PI3K, TP53 network, NFkappaB, TGFbeta, STAT signaling - Pandur Edina
- 12. Signaling pathways in tumors: MAPK, PI3K, TP53 network, NFkappaB, TGFbeta, STAT signaling - Pandur Edina
- 13. Invasion and metastasis: genes and proteins involved in cell-to-cell, cell-matrix adhesion, in extracellular matrix remodeling during tumor invasion; angiogenesis. - Pandur Edina
- 14. Invasion and metastasis: genes and proteins involved in cell-to-cell, cell-matrix adhesion, in extracellular matrix remodeling during tumor invasion; angiogenesis. - Pandur Edina
- 15. The role of immune system in tumors: inflammation, infections, cancer vaccines, inhibition of the immune system - Pap Ramóna
- 16. The role of immune system in tumors: inflammation, infections, cancer vaccines, inhibition of the immune system - Pap Ramóna
- 17. Stem cells and cancer: Wnt signaling, Hh signaling, differentiation therapy - Pandur Edina
- 18. Stem cells and cancer: Wnt signaling, Hh signaling, differentiation therapy - Pandur Edina
- 19. Cancer prevention: nutrients, energy metabolism of tumors, hormones and gene interactions - Pap Ramóna
- 20. Cancer prevention: nutrients, energy metabolism of tumors, hormones and gene interactions - Pap Ramóna
- 21. Diagnosis of tumors: molecular diagnosis, molecular detection and classification - Jánosa Gergely
- 22. Diagnosis of tumors: molecular diagnosis, molecular detection and classification - Jánosa Gergely
- 23. Human cancers I: common properties, genetic aberrations, molecular alterations, histology and etiology of cancers - Tóth Dénes
- 24. Human cancers I: common properties, genetic aberrations, molecular alterations, histology and etiology of cancers - Tóth Dénes
- 25. Human cancers II: common properties, genetic aberrations, molecular alterations, histology and etiology of cancers - Tóth Dénes
- 26. Human cancers II: common properties, genetic aberrations, molecular alterations, histology and etiology of cancers - Tóth Dénes
- 27. Drugs in cancer therapy: molecular mechanisms of cancer chemotherapy, targeted drug therapy, immunotherapy, gene therapy - Pandur Edina
- 28. Drugs in cancer therapy: molecular mechanisms of cancer chemotherapy, targeted drug therapy, immunotherapy, gene therapy - Pandur Edina
Practices
Seminars
Reading material
Obligatory literature
Literature developed by the Department
Educational materials will be uploaded to Neptun MeetStreet.
Notes
Recommended literature
Lauren Pecorino: Molecular Biology of Cancer
Wolfgang Arthur Schulz: Molecular Biology of Human Cancers
Conditions for acceptance of the semester
Max. 3 absences
Mid-term exams
Completion of three multiple-choice tests during the semester
Making up for missed classes
Personal consultation
Exam topics/questions
Multiple choice tests based on the lectures.