Molecular Cell Biology for Students of Dentistry 2

Data

Official data in SubjectManager for the following academic year: 2024-2025

Course director

Number of hours/semester

lectures: 28 hours

practices: 14 hours

seminars: 0 hours

total of: 42 hours

Subject data

  • Code of subject: OSA-MF2-T
  • 3 kredit
  • Dentistry
  • Basic modul
  • spring
Prerequisites:

OSA-MF1-T finished

Course headcount limitations

min. 5 – max. 200

Topic

To teach students aspects of molecular cell biology that are essential for clinical subjects, with special respect to the cell membrane and the extracellular matrix, intracellular signal transduction, cellular and molecular mechanisms of carcinogenesis and molecular medicine.

Lectures

  • 1. Opening lecture, cell-cell connections - Sétáló György ifj.
  • 2. Passive and active transport - Kemény Ágnes
  • 3. The extracellular matrix, cell-matrix connections - Kemény Ágnes
  • 4. Types of chemical signaling - Berta Gergely
  • 5. Heterotrimeric G-proteins in signaling - Sétáló György ifj.
  • 6. Signal by catalytic receptors - Sétáló György ifj.
  • 7. Signaling of cellular stress - Sétáló György ifj.
  • 8. Cytokine and integrin signaling - Sétáló György ifj.
  • 9. TGFb-, Wnt-, Heghehog-, Notch-signaling - Sétáló György ifj.
  • 10. General features of signal transduction - Sétáló György ifj.
  • 11. Types of cell death - Sétáló György ifj.
  • 12. Signaling of apoptosis and its medical significance - Bátor Judit
  • 13. Stem cells and their medical significance - Bátor Judit
  • 14.

    General features of tumors

    - Varga Judit
  • 15. DNA tumor viruses - Bátor Judit
  • 16. RNA tumor viruses - Bátor Judit
  • 17.

    Cellular oncogenes I

    - Varga Judit
  • 18.

    Cellular oncogenes II

    - Varga Judit
  • 19.

    Cellular oncogenes III

    - Varga Judit
  • 20.

    Tumor suppressor genes I

    - Sétáló György ifj.
  • 21. Tumor suppressor genes II - Sétáló György ifj.
  • 22. Oncogenes and the cell cycle - Sétáló György ifj.
  • 23. The multistage mechanism of carcinogenesis I: Experimental carcinogenesis - Sétáló György ifj.
  • 24. The multistage mechanism of carcinogenesis II: Clinical stages - Sétáló György ifj.
  • 25. Therapy of tumors - Sétáló György ifj.
  • 26. Molecular diagnostics - Berta Gergely
  • 27. Gene therapy - Bátor Judit
  • 28.

    Closing lecture

    - Bátor Judit

Practices

  • 1. Introduction - Pap Marianna
  • 2. Light microscopy - Feketéné Kiss Katalin
  • 3. Isotopes - Bátor Judit
  • 4. Centrifugation and chromatography - Pap Marianna
  • 5. The magnification of micrographs - Feketéné Kiss Katalin
  • 6. Protein electrophoresis and Western blotting - Bátor Judit
  • 7. DNA isolation - Pap Marianna
  • 8. Histochemistry of macromolecules, immune and enzyme histochemistry - Feketéné Kiss Katalin
  • 9. Phase contrast microscopy, polarisation microscopy - Bátor Judit
  • 10. The tumor cell I - Pap Marianna
  • 11. The tumor cell II - Feketéné Kiss Katalin
  • 12. Apoptosis I - Bátor Judit
  • 13. Apoptosis II - Pap Marianna
  • 14. Exam consultation - Feketéné Kiss Katalin

Seminars

Reading material

Obligatory literature

Szeberényi, J., Komáromy, L.: Molecular Cell Biology Syllabus

M. Pap and G. Sétáló Jr. (editors): Molecular Cell Biology Laboratory Manual for Students of Dentistry

Literature developed by the Department

Szeberényi, J., Komáromy, L.: Molecular Cell Biology Syllabus

M. Pap and G. Sétáló Jr. (editors): Molecular Cell Biology Laboratory Manual for Students of Dentistry

Notes

Szeberényi, J., Komáromy, L.: Molecular Cell Biology Syllabus

M. Pap and G. Sétáló Jr. (editors): Molecular Cell Biology Laboratory Manual for Students of Dentistry

Recommended literature

Gerald Karp: Cell and Molecular Biology

Cooper, G.M.: The Cell. A Molecular Approach.

Lodish et al.: Molecular Cell Biology

Alberts et al.: Molecular Biology of the Cell

Szeberényi J.: Experiments in Molecular Cell Biology

Conditions for acceptance of the semester

Compliance with the maximum permitted number of absences.

Mid-term exams

Mid-term tests

Making up for missed classes

It is not possible to make up for missed lectures. Extra labs are organized at the end of the lab cycle.

Exam topics/questions

MOLECULAR CELL BIOLOGY FOR STUDENTS OF DENTISTRY 2.

EXAM QUESTIONS


Final exam theory

 

1.      Main features of prokaryotic and eukaryotic cells

2.      Structure and function of nucleotides

3.      The DNA molecule

4.      DNA as the genetic material (experiments as evidence)

5.      Types of RNA

6.      Proteins

7.      Carbohydrates

8.      Lipids

9.      Restriction endonucleases

10.  Cloning of DNA fragments

11.  Genomic libraries

12.  Polymerase chain reaction

13.  The Sanger DNA sequencing method

14.  The Illumina DNA sequencing method

15.  Proton sequencing and nanopore sequencing of DNA

16.  DNA chips

17.  Fluorescence in situ hybridization

18.  The Human Genome Project

19.  cDNA cloning

20.  cDNA libraries

21.  Transgenic organisms

22.  Targeted gene inactivation at the DNA level

23.  Inhibition of endogenous gene expression at the level of mRNA

24.  Inhibition of endogenous gene expression at the level of proteins

25.  Microscopic detection of specific antigens

26.  Immunoprecipitation and Western blotting

27.  The structure of the nucleus

28.  Unique and repetitive sequences

29.  Multilevel chromatin organization

30.  The chemical composition of chromatin

31.  Main phases of the cell cycle

32.  Regulation of the cell cycle

33.  Mitosis – how our somatic cells divide

34.  Meiosis – how germ cells are generated in humans

35.  General features of replication

36.  The mechanism of replication in prokaryotes

37.  Features of eukaryotic replication

38.  Excision repair of DNA

39.  Proofreading, Mismatch repair

40.  Reparation of double-stranded DNA breaks

41.  Prokaryotic RNA synthesis and processing

42.  General features of eukaryotic RNA synthesis

43.  Synthesis of eukaryotic rRNA

44.  Synthesis of pre-mRNA in eukaryotes, modifications at the 5’ and 3’ ends

45.  Pre-mRNA splicing and editing

46.  Synthesis of aminoacyl-tRNA

47.  The structure and function of ribosomes

48.  The genetic code

49.  Initiation of translation

50.  Elongation and termination of translation

51.  General features of translation

52.  The lactose operon

53.  The tryptophan operon

54.  Cloning by nuclear transplantation

55.  Regulation of pre-mRNA synthesis and processing in eukaryotes

56.  Regulation of mRNA transport, translation and degradation in eukaryotes

57.  Regulation of protein activity and degradation in eukaryotes

58.  Eukaryotic transcription factors

59.  The mechanism of action of steroid hormones

60.  Rough endoplasmic reticulum

61.  Golgi complex and the glycosylation of proteins

62.  The mechanism of secretion

63.  Endocytosis

64.  The mechanism of vesicular transport

65.  Lysosomes

66.  Smooth endoplasmic reticulum

67.  Oxygen free radicals and membrane damage

68.  The structure and function of mitochondria

69.  The genetic apparatus of mitochondria

70.  Mitochondrial diseases

71.  Microfilaments

72.  Intermediate filaments

73.  Microtubules

74.  The cell membrane

75.  Intercellular junctions

76.  Passive transport

77.  Active transport

78.  The extracellular matrix

79.  Cell-extracellular matrix junctions

80.  Types of chemical signaling

81.  cAMP-mediated signal transduction

82.  Inositol-phospholipid signal transduction

83.  PI3-kinase signalization

84.  Growth factor signaling

85.  Cytokine signaling

86.  Stress signaling

87.  Integrin signaling

88.  TGF-ß, Wnt-, Notch-, Hedgehog signaling

89.  The role of protein kinases in cell regulation

90.  Signal amplification. Signal termination. Signaling networks

91.  Stem cells

92.  The physiological and pathological role of apoptosis

93.  The mechanism of apoptosis

94.  General features of tumors and of the tumor cell

95.  Oncogenic DNA viruses

96.  Retroviruses

97.  Retroviral oncogenes

98.  Identification of cellular oncogenes by gene transfer

99.  Insertional mutagenesis

100.   Mechanisms of cellular oncogene activation

101.   General features of tumor suppressor genes

102.   Rb and p53 proteins

103.   The role of tumor suppressor genes in Wilms-tumor, neurofibromatosis, colon and breast cancer

104.   The role of oncogenes in cell cycle regulation

105.   Phases of experimental carcinogenesis

106.   Clinical stages of tumor development

107.   Metastasis formation

108.   Steps of carcinogenesis in naturally occurring (e.g., colon) tumors

109.   Tumor therapy

110.   Cytogenetics, structural genomics, and the structural examination of individual gene copies

111.   Functional genomics and the functional examination of individual gene copies

112.   Types of oligonucleotide gene therapy

113.   Types of real gene therapy

 Molecular cell biology laboratory exam questions for students of dentistry

Experimental theory

1. Structure and operation of the light microscope

2. Sample preparation for light microscopy

3. Radioactive isotopes in molecular cell biology

4. Homogenisation

5. Cell fractionation by centrifugation

6. Hypopycnic gradient centrifugation

7. Isopycnic gradient centrifugation

8. Gel filtration

9. Ion-exchange chromatography

10. Affinity chromatography

11. Protein electrophoresis

12. Isolation of mammalian DNA

13. Structure and operation of the polarization microscope

14. Structure and operation of the phase-contrast microscope

15. Histochemistry of the cytoplasm

16. Immune cytochemistry and enzyme histochemistry

17. Analysis of apoptotic processes

18. Structure and operation of the electron microscope

19. Sample preparation for electron microscopy, from fixation through sectioning

20. Contrasting methods for electron microscopy

Practical questions

21. Observation of prokaryotic cells by immersion objective, Gram staining

22. Determination of the cell diameter by light microscopy

23. Analysis of a human peripheral blood smear, May-Grünwald-Giemsa staining

24. Analysis of a light microscopic autoradiographic preparation

25. Analysis of bromodeoxyuridine labeling

26. Preparation of a linear density gradient

27. Analysis of the result of gel filtration

28. Steps of protein electrophoresis, detection of proteins in the gel and on the membrane

29. Steps of Western blotting, analysis of the result

30. Operation of the photometer - determination of DNA and RNA concentrations

31. Structure and operation of the polarization microscope

32. Structure and operation of the phase-contrast microscope

33. Analysis of a nucleic acid histochemistry preparation, chromosomes stained using

Giemsa dye

34. Analysis of a cytoplasm histochemistry preparation

35. Analysis of immune histochemical preparations

36. Comparison of normal and Burkitt lymphoma lymph nodes

37. Identification of normal and cancer cells in Papanicolau smears

38. Identification of normal and apoptotic cells

39. Identification of nuclear components on micrographs

40. Identification of cytoplasmic organelles on micrographs

Examiners

  • Balassa Tímea
  • Balogh Bálint
  • Bátor Judit
  • Berta Gergely
  • Bogdán Ágnes
  • Boros Melinda
  • Bugyi Beáta
  • Csabai-Tanics Tímea Judith
  • Gaszler Péter
  • Görgey Éva
  • Horváth Marianna
  • Kemény Ágnes
  • Leipoldné Vig Andrea Teréz
  • Németh Marica
  • Pap Marianna
  • Schipp Renáta
  • Sétáló György ifj.
  • Stayer-Harci Alexandra
  • Szütsné Tóth Mónika Ágnes
  • Tarjányi Oktávia
  • Varga Judit

Instructor / tutor of practices and seminars

  • Bátor Judit
  • Feketéné Kiss Katalin
  • Pap Marianna