Data
Official data in SubjectManager for the following academic year: 2024-2025
Course director
-
Sétáló György ifj.
associate professor,
Medical Skills Education and Innovation Centre -
Number of hours/semester
lectures: 28 hours
practices: 14 hours
seminars: 0 hours
total of: 42 hours
Subject data
- Code of subject: OSA-MF2-T
- 3 kredit
- Dentistry
- Basic modul
- spring
OSA-MF1-T finished
Course headcount limitations
min. 5 – max. 200
Topic
To teach students aspects of molecular cell biology that are essential for clinical subjects, with special respect to the cell membrane and the extracellular matrix, intracellular signal transduction, cellular and molecular mechanisms of carcinogenesis and molecular medicine.
Lectures
- 1. Opening lecture, cell-cell connections - Sétáló György ifj.
- 2. Passive and active transport - Kemény Ágnes
- 3. The extracellular matrix, cell-matrix connections - Kemény Ágnes
- 4. Types of chemical signaling - Berta Gergely
- 5. Heterotrimeric G-proteins in signaling - Sétáló György ifj.
- 6. Signal by catalytic receptors - Sétáló György ifj.
- 7. Signaling of cellular stress - Sétáló György ifj.
- 8. Cytokine and integrin signaling - Sétáló György ifj.
- 9. TGFb-, Wnt-, Heghehog-, Notch-signaling - Sétáló György ifj.
- 10. General features of signal transduction - Sétáló György ifj.
- 11. Types of cell death - Sétáló György ifj.
- 12. Signaling of apoptosis and its medical significance - Bátor Judit
- 13. Stem cells and their medical significance - Bátor Judit
- 14.
General features of tumors
- Varga Judit - 15. DNA tumor viruses - Bátor Judit
- 16. RNA tumor viruses - Bátor Judit
- 17.
Cellular oncogenes I
- Varga Judit - 18.
Cellular oncogenes II
- Varga Judit - 19.
Cellular oncogenes III
- Varga Judit - 20.
Tumor suppressor genes I
- Sétáló György ifj. - 21. Tumor suppressor genes II - Sétáló György ifj.
- 22. Oncogenes and the cell cycle - Sétáló György ifj.
- 23. The multistage mechanism of carcinogenesis I: Experimental carcinogenesis - Sétáló György ifj.
- 24. The multistage mechanism of carcinogenesis II: Clinical stages - Sétáló György ifj.
- 25. Therapy of tumors - Sétáló György ifj.
- 26. Molecular diagnostics - Berta Gergely
- 27. Gene therapy - Bátor Judit
- 28.
Closing lecture
- Bátor Judit
Practices
- 1. Introduction - Pap Marianna
- 2. Light microscopy - Feketéné Kiss Katalin
- 3. Isotopes - Bátor Judit
- 4. Centrifugation and chromatography - Pap Marianna
- 5. The magnification of micrographs - Feketéné Kiss Katalin
- 6. Protein electrophoresis and Western blotting - Bátor Judit
- 7. DNA isolation - Pap Marianna
- 8. Histochemistry of macromolecules, immune and enzyme histochemistry - Feketéné Kiss Katalin
- 9. Phase contrast microscopy, polarisation microscopy - Bátor Judit
- 10. The tumor cell I - Pap Marianna
- 11. The tumor cell II - Feketéné Kiss Katalin
- 12. Apoptosis I - Bátor Judit
- 13. Apoptosis II - Pap Marianna
- 14. Exam consultation - Feketéné Kiss Katalin
Seminars
Reading material
Obligatory literature
Szeberényi, J., Komáromy, L.: Molecular Cell Biology Syllabus
M. Pap and G. Sétáló Jr. (editors): Molecular Cell Biology Laboratory Manual for Students of Dentistry
Literature developed by the Department
Szeberényi, J., Komáromy, L.: Molecular Cell Biology Syllabus
M. Pap and G. Sétáló Jr. (editors): Molecular Cell Biology Laboratory Manual for Students of Dentistry
Notes
Szeberényi, J., Komáromy, L.: Molecular Cell Biology Syllabus
M. Pap and G. Sétáló Jr. (editors): Molecular Cell Biology Laboratory Manual for Students of Dentistry
Recommended literature
Gerald Karp: Cell and Molecular Biology
Cooper, G.M.: The Cell. A Molecular Approach.
Lodish et al.: Molecular Cell Biology
Alberts et al.: Molecular Biology of the Cell
Szeberényi J.: Experiments in Molecular Cell Biology
Conditions for acceptance of the semester
Compliance with the maximum permitted number of absences.
Mid-term exams
Mid-term tests
Making up for missed classes
It is not possible to make up for missed lectures. Extra labs are organized at the end of the lab cycle.
Exam topics/questions
MOLECULAR CELL BIOLOGY FOR STUDENTS OF DENTISTRY 2.
EXAM QUESTIONS
Final exam theory
1. Main features of prokaryotic and eukaryotic cells
2. Structure and function of nucleotides
3. The DNA molecule
4. DNA as the genetic material (experiments as evidence)
5. Types of RNA
6. Proteins
7. Carbohydrates
8. Lipids
9. Restriction endonucleases
10. Cloning of DNA fragments
11. Genomic libraries
12. Polymerase chain reaction
13. The Sanger DNA sequencing method
14. The Illumina DNA sequencing method
15. Proton sequencing and nanopore sequencing of DNA
16. DNA chips
17. Fluorescence in situ hybridization
18. The Human Genome Project
19. cDNA cloning
20. cDNA libraries
21. Transgenic organisms
22. Targeted gene inactivation at the DNA level
23. Inhibition of endogenous gene expression at the level of mRNA
24. Inhibition of endogenous gene expression at the level of proteins
25. Microscopic detection of specific antigens
26. Immunoprecipitation and Western blotting
27. The structure of the nucleus
28. Unique and repetitive sequences
29. Multilevel chromatin organization
30. The chemical composition of chromatin
31. Main phases of the cell cycle
32. Regulation of the cell cycle
33. Mitosis – how our somatic cells divide
34. Meiosis – how germ cells are generated in humans
35. General features of replication
36. The mechanism of replication in prokaryotes
37. Features of eukaryotic replication
38. Excision repair of DNA
39. Proofreading, Mismatch repair
40. Reparation of double-stranded DNA breaks
41. Prokaryotic RNA synthesis and processing
42. General features of eukaryotic RNA synthesis
43. Synthesis of eukaryotic rRNA
44. Synthesis of pre-mRNA in eukaryotes, modifications at the 5’ and 3’ ends
45. Pre-mRNA splicing and editing
46. Synthesis of aminoacyl-tRNA
47. The structure and function of ribosomes
48. The genetic code
49. Initiation of translation
50. Elongation and termination of translation
51. General features of translation
52. The lactose operon
53. The tryptophan operon
54. Cloning by nuclear transplantation
55. Regulation of pre-mRNA synthesis and processing in eukaryotes
56. Regulation of mRNA transport, translation and degradation in eukaryotes
57. Regulation of protein activity and degradation in eukaryotes
58. Eukaryotic transcription factors
59. The mechanism of action of steroid hormones
60. Rough endoplasmic reticulum
61. Golgi complex and the glycosylation of proteins
62. The mechanism of secretion
63. Endocytosis
64. The mechanism of vesicular transport
65. Lysosomes
66. Smooth endoplasmic reticulum
67. Oxygen free radicals and membrane damage
68. The structure and function of mitochondria
69. The genetic apparatus of mitochondria
70. Mitochondrial diseases
71. Microfilaments
72. Intermediate filaments
73. Microtubules
74. The cell membrane
75. Intercellular junctions
76. Passive transport
77. Active transport
78. The extracellular matrix
79. Cell-extracellular matrix junctions
80. Types of chemical signaling
81. cAMP-mediated signal transduction
82. Inositol-phospholipid signal transduction
83. PI3-kinase signalization
84. Growth factor signaling
85. Cytokine signaling
86. Stress signaling
87. Integrin signaling
88. TGF-ß, Wnt-, Notch-, Hedgehog signaling
89. The role of protein kinases in cell regulation
90. Signal amplification. Signal termination. Signaling networks
91. Stem cells
92. The physiological and pathological role of apoptosis
93. The mechanism of apoptosis
94. General features of tumors and of the tumor cell
95. Oncogenic DNA viruses
96. Retroviruses
97. Retroviral oncogenes
98. Identification of cellular oncogenes by gene transfer
99. Insertional mutagenesis
100. Mechanisms of cellular oncogene activation
101. General features of tumor suppressor genes
102. Rb and p53 proteins
103. The role of tumor suppressor genes in Wilms-tumor, neurofibromatosis, colon and breast cancer
104. The role of oncogenes in cell cycle regulation
105. Phases of experimental carcinogenesis
106. Clinical stages of tumor development
107. Metastasis formation
108. Steps of carcinogenesis in naturally occurring (e.g., colon) tumors
109. Tumor therapy
110. Cytogenetics, structural genomics, and the structural examination of individual gene copies
111. Functional genomics and the functional examination of individual gene copies
112. Types of oligonucleotide gene therapy
113. Types of real gene therapy
Molecular cell biology laboratory exam questions for students of dentistry
Experimental theory
1. Structure and operation of the light microscope
2. Sample preparation for light microscopy
3. Radioactive isotopes in molecular cell biology
4. Homogenisation
5. Cell fractionation by centrifugation
6. Hypopycnic gradient centrifugation
7. Isopycnic gradient centrifugation
8. Gel filtration
9. Ion-exchange chromatography
10. Affinity chromatography
11. Protein electrophoresis
12. Isolation of mammalian DNA
13. Structure and operation of the polarization microscope
14. Structure and operation of the phase-contrast microscope
15. Histochemistry of the cytoplasm
16. Immune cytochemistry and enzyme histochemistry
17. Analysis of apoptotic processes
18. Structure and operation of the electron microscope
19. Sample preparation for electron microscopy, from fixation through sectioning
20. Contrasting methods for electron microscopy
Practical questions
21. Observation of prokaryotic cells by immersion objective, Gram staining
22. Determination of the cell diameter by light microscopy
23. Analysis of a human peripheral blood smear, May-Grünwald-Giemsa staining
24. Analysis of a light microscopic autoradiographic preparation
25. Analysis of bromodeoxyuridine labeling
26. Preparation of a linear density gradient
27. Analysis of the result of gel filtration
28. Steps of protein electrophoresis, detection of proteins in the gel and on the membrane
29. Steps of Western blotting, analysis of the result
30. Operation of the photometer - determination of DNA and RNA concentrations
31. Structure and operation of the polarization microscope
32. Structure and operation of the phase-contrast microscope
33. Analysis of a nucleic acid histochemistry preparation, chromosomes stained using
Giemsa dye
34. Analysis of a cytoplasm histochemistry preparation
35. Analysis of immune histochemical preparations
36. Comparison of normal and Burkitt lymphoma lymph nodes
37. Identification of normal and cancer cells in Papanicolau smears
38. Identification of normal and apoptotic cells
39. Identification of nuclear components on micrographs
40. Identification of cytoplasmic organelles on micrographs
Examiners
- Balassa Tímea
- Balogh Bálint
- Bátor Judit
- Berta Gergely
- Bogdán Ágnes
- Boros Melinda
- Bugyi Beáta
- Csabai-Tanics Tímea Judith
- Gaszler Péter
- Görgey Éva
- Horváth Marianna
- Kemény Ágnes
- Leipoldné Vig Andrea Teréz
- Németh Marica
- Pap Marianna
- Schipp Renáta
- Sétáló György ifj.
- Stayer-Harci Alexandra
- Szütsné Tóth Mónika Ágnes
- Tarjányi Oktávia
- Varga Judit
Instructor / tutor of practices and seminars
- Bátor Judit
- Feketéné Kiss Katalin
- Pap Marianna