Data
Official data in SubjectManager for the following academic year: 2024-2025
Course director
-
Pap Marianna
associate professor,
Medical Skills Education and Innovation Centre -
Number of hours/semester
lectures: 24 hours
practices: 0 hours
seminars: 0 hours
total of: 24 hours
Subject data
- Code of subject: OSE-NS2-T
- 2 kredit
- Dentistry
- Elective modul
- spring
OSA-MF1-T finished
Course headcount limitations
min. 5 – max. 200
Topic
The aim of the course is to present the most important and most exciting Nobel Prize-winning molecular cell biology discoveries based on Nobel lectures given by the winners. The background story of the awards reveals many years of research work, good ideas, good fortune mixed with family and other personal memories. There is no single recipe for success, the road is always a bit different, and perhaps the only common feature is the teamwork. From the presentations one might get insight of the winners’ personality as well. An important aspect was in the selection of the topics to emphasize their significance (DNA-, RNA-structure and their synthesis, ribosome function), their impact on current medical way of thinking (e.g. Prions) and diagnostic methods (e.g. recombinant DNA technology, DNA sequencing), the description of their present and future medical applicability (e.g. in vitro fertilization), as well as to highlight their potential relations to different diseases (e.g. cell cycle regulation, reprogram of differentiated cells, RNA interference, papillomaviruses, HIV). Lectures are organized based on the topics related to the weekly schedule of the molecular cell biology course, not in chronological order. Most of the presented discoveries and experiments are involved in the molecular cell biology course material, so hopefully their discussion helps in the better understanding of those topics and lead to a more effective and shorter exam preparation.
Lectures
- 1. Passive transport - Pap Marianna
- 2. Passive transport - Pap Marianna
- 3. Active transport - Pap Marianna
- 4. Action of hormones - Pap Marianna
- 5. G-proteins and their role in signal transduction - Pap Marianna
- 6. G-protein coupled receptors - Pap Marianna
- 7. Growth factors - Pap Marianna
- 8. Growth factors - Pap Marianna
- 9. Reversible protein phosphorylation in signal transduction pathways - Pap Marianna
- 10. Reversible protein phosphorylation in signal transduction pathways - Pap Marianna
- 11.
Autophagy
- Pap Marianna - 12.
Autophagy
- Pap Marianna - 13. Programmed cell death - Pap Marianna
- 14. Programmed cell death - Pap Marianna
- 15. DNA tumor viruses - Pap Marianna
- 16. DNA tumor viruses - Pap Marianna
- 17. RNA tumor viruses - Pap Marianna
- 18. Retroviral oncogenes - Pap Marianna
- 19. Telomeres and telomerase activity in cancers - Pap Marianna
- 20. Human cell- and tissue transplantation - Pap Marianna
- 21. In vitro fertilization - Pap Marianna
- 22. The discovery of the green fluorescent protein and its significance in molecular biology - Pap Marianna
- 23. Exam - Pap Marianna
- 24. Exam - Pap Marianna
Practices
Seminars
Reading material
Obligatory literature
Literature developed by the Department
Notes
Recommended literature
www.nobelprize.org
Conditions for acceptance of the semester
None
Mid-term exams
2 written tests: on week 7 and on week 14.
Making up for missed classes
Participation on Hungarian or German lectures is the only possibility to make-up missed lectures.
Exam topics/questions
1. Passive transport
2. Active transport
3. G-proteins and their role in signal transduction
4. Growth factors
5. Reversible protein phosphorylation in signal transduction pathways
6. Autophagy
7. Programmed cell death
8. DNA tumor viruses
9. RNA tumor viruses Retroviral oncogenes
10. Telomeres and telomerase activity in cancers
11. In vitro fertilization
12. The discovery of the green fluorescent protein and its significance in molecular biology