Biomaterials and Biocompatibility in Dentistry

Data

Official data in SubjectManager for the following academic year: 2024-2025

Course director

  • Turzó Kinga Mónika

    associate professor,
    Department of Dentistry, Oral and Maxillofacial Surgery

Number of hours/semester

lectures: 24 hours

practices: 0 hours

seminars: 0 hours

total of: 24 hours

Subject data

  • Code of subject: OSE-BCO-T
  • 2 kredit
  • Dentistry
  • Elective modul
  • spring
Prerequisites:

OSA-FAT-T finished

Course headcount limitations

min. 5 – max. 200

Available as Campus course for . Campus-karok: ÁOK GYTK TTK

Topic

The subject completes the knowledge of dental students in respect of biomaterial science as every material which is used in dentistry has to be biocompatible. Beside the traditional biomaterial classes (like metals, ceramics, polymers and composites) they will learn about hydrogels and natural materials (proteins, polysaccharides, polynucleotides). The general concepts and mechanisms of osseointegration and biointegration will be introduced at molecular and cellular level. We will discuss the newst evidences available int he field of biomaterial-host interaction and biological surface science methods (BioSS) will be presented. Implants of the oral and maxillofacial region, especially titanium dental implants osseointegration will be presented and those surface modification methods which can improve their biointegration. The etiology of peri-implant infections will be discussed and methods which van prevent them. The students will learn about biocompatibility and biomechanical tests of biomaterials (in vitro and in vivo methods).

Lectures

  • 1. Introduction to biomaterials science. Historical overview. - Turzó Kinga Mónika
  • 2. Classes of biomaterials used in dentistry and medicine - Turzó Kinga Mónika
  • 3. Bulk properties of materials (chemical bonds and structure, mechanical testing methods) - Turzó Kinga Mónika
  • 4. Mechanical properties of biomaterials. - Turzó Kinga Mónika
  • 5. Thermal properties of biomaterials. - Turzó Kinga Mónika
  • 6. Electrical properties of biomaterials. - Turzó Kinga Mónika
  • 7. Optical properties of biomaterials. - Turzó Kinga Mónika
  • 8. Comparison of biomaterials based on their bulk properties. - Turzó Kinga Mónika
  • 9. Surface characteristics of biomaterials - Turzó Kinga Mónika
  • 10. Investigation methods of the surfaces of biomaterials (contact angle, ESCA, SEM, STM, AFM, SIMS, IRS) - Turzó Kinga Mónika
  • 11. Metals (stainless steels, Co-Cr alloys, Ti alloys and metals used in dentistry) - Turzó Kinga Mónika
  • 12. Dental amalgams. Corrosion of metals. - Turzó Kinga Mónika
  • 13. Hydrogels, bioresorbable and bioerodible materials - Turzó Kinga Mónika
  • 14. Polymers, types of polymers, polymerization, mechanical and thermal properties - Turzó Kinga Mónika
  • 15. Dental applications of ceramics. - Turzó Kinga Mónika
  • 16. Bioceramics (bioinert, calcium-phosphate ceramics, bioactive glasses) - Turzó Kinga Mónika
  • 17. Composites as biomaterials. - Turzó Kinga Mónika
  • 18. Natural materials (proteins, polysaccharides, polynucleotide’s) - Turzó Kinga Mónika
  • 19. Host reactions to biomaterials. - Turzó Kinga Mónika
  • 20. Response of biomaterials to implantation and degradation of biomaterials in the biological environment. - Turzó Kinga Mónika
  • 21. Biointegration and osseointegration of titanium implants - Turzó Kinga Mónika
  • 22. Physical-chemical and biochemical surface modifications of dental implants. Thin films, coatings and fabrics. - Turzó Kinga Mónika
  • 23. Testing biomaterials (in vitro, in vivo assessment and animal models). - Turzó Kinga Mónika
  • 24. Biocompatibility and biomechanical tests. - Turzó Kinga Mónika

Practices

Seminars

Reading material

Obligatory literature

O’Brien, W.J. Dental Materials and Their Selection, 3. ed. Quintessence, ISBN 0-86715-406-3, 2002

K.J. Anusavice: Phillips’ Science of Dental Materials (10th ed), B. Saunders Company, ISBN 0-7216-5741-9, Philadelphia, Pennsylvania, USA, 1996

Literature developed by the Department

1. Introduction to biomaterials science. Historical overview. Classes of biomaterials used in dentistry and medicine

2. Bulk and mechanical properties of materials and investigation methods (chemical bonds and structure, mechanical testing methods)

3. Surface characteristics of materials and investigation methods

4. Metals (stainless steels, Co-Cr alloys, Ti alloys)

5. Dental amalgams. Corrosion of metals. Hydrogels, bioresorbable and bioerodible materials

6. Polymers, types of polymers, polymerization, mechanical and thermal properties

7. Ceramics, glasses and glass-ceramics (bioinert, calcium-phosphate ceramics, bioactive glasses)

8. Composites and natural materials (proteins, polysaccharides, polynucleotides)

9. Host reactions to biomaterials and degradation of biomaterials in the biological environment

10. Titanium implants and biointegration. Thin films, coatings and fabrics

11. Testing biomaterials (in vitro, in vivo models). Biocompatibility and biomechanical tests.

Notes

lectures

Recommended literature

B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons: Biomaterials Science: An Introduction to Materials in Science. Academic Press, 1996

Conditions for acceptance of the semester

-

Mid-term exams

-

Making up for missed classes

-

Exam topics/questions

Introduction to biomaterials science

Bulk and mechanical properties of materials and investigation methods

Surface

Metals

Dental amalgams

Polymers

Ceramics

Composites and natural materials

Host reactions to biomaterials and degradation of biomaterials in the biological environment

Titanium implants and biointegratio

Thin films, coatings and fabrics

Examiners

Instructor / tutor of practices and seminars