Daten
Offizielle Daten in der Fachveröffentlichung für das folgende akademische Jahr: 2024-2025
Lehrbeauftragte/r
-
Ujfalusi Zoltán
assistant professor,
Department of Biophysics -
Semesterwochenstunden
Vorlesungen: 0
Praktika: 14
Seminare: 0
Insgesamt: 14
Fachangaben
- Kode des Kurses: OBA-106-G
- 1 kredit
- Biotechnology MSc
- Basic modul
- autumn
OBA-106-E parallel
Zahl der Kursteilnehmer für den Kurs:
min. 5 – max. 100
Thematik
The Biophysics curse aims to introduce students to the methods and applications, that are routinely used in both medical and pharmaceutical biotechnology. The principles of the state-of-the-art approaches and instrumentations are covered by the topics. The course presents diverse spectroscopic techniques (absorption, fluorescence, infrared, Raman, EPR, NMR), imaging approaches (light and fluorescence microscopy, EM, super-resolution fluorescence microscopy, MRI, CT), radioactive applications, calorimetry, and fast kinetics techniques. The lectures discuss in detail the physical bases and principles of each approach and the field of applications. The practices are dedicated to extending the students' knowledge and routine with the use of different techniques. The practices lay special emphasis on presenting not only the routine applications but advanced uses of each technique. The limitations, as well as the artifacts that can be caused by improper experimental planning, are highlighted.
Vorlesungen
Praktika
- 1.
Confocal microscopy, STORM (Nano-Bio-Imaging Core Facility)
- Jánosi Tibor Zoltán - 2.
Confocal microscopy, STORM (Nano-Bio-Imaging Core Facility)
- Jánosi Tibor Zoltán - 3.
Confocal microscopy, STED (Nano-Bio-Imaging Core Facility)
- Makkai Géza - 4.
Confocal microscopy, STED (Nano-Bio-Imaging Core Facility)
- Makkai Géza - 5.
TIRF microscopy (Nano-Bio-Imaging Core Facility)
- Huberné Barkó Szilvia - 6.
TIRF microscopy (Nano-Bio-Imaging Core Facility)
- Huberné Barkó Szilvia - 7.
Absorption photometry, fluorescence spectroscopy – protein research (Dept. of Biophysics)
- Ujfalusi Zoltán - 8.
Absorption photometry, fluorescence spectroscopy – protein research (Dept. of Biophysics)
- Ujfalusi Zoltán - 9.
Infrared and Raman spectroscopy (Dept. of Biophysics)
- Lukács András Szilárd - 10.
Infrared and Raman spectroscopy (Dept. of Biophysics)
- Lukács András Szilárd - 11.
X-ray, CT (Dept. of Biophysics)
- Ujfalusi Zoltán - 12.
X-ray, CT (Dept. of Biophysics)
- Ujfalusi Zoltán - 13.
MRI (Dept. of Biophysics)
- Bukovics Péter - 14.
MRI (Dept. of Biophysics)
- Bukovics Péter
Seminare
Materialien zum Aneignen des Lehrstoffes
Obligatorische Literatur
Vom Institut veröffentlichter Lehrstoff
All handouts and other related materials can be found in the Microsoft Teams group of the course.
Skript
Empfohlene Literatur
Voraussetzung zum Absolvieren des Semesters
There are no additional conditions.
Semesteranforderungen
Two written tests are scheduled during the semester covering the topics/calculations/etc discussed during the practices. The expected dates: 7th week, 14th week. The practical grade is obtained based on the average of the two grades of the tests.
Grading policy:
< 60% fail (1)
60 – 69% satisfactory (2)
70 – 79% average (3)
80 – 89% good (4)
> 90% excellent (5)
To pass, at least 60% has to be reached at each test.
Two retake tests will be scheduled at the end of the semester/in the exam period. The schedule will be provided during the semester.
Möglichkeiten zur Nachholung der Fehlzeiten
The schedule for making up the missed practices will be provided during the semester.
Prüfungsfragen
Topics of the exam questions:
Electromagnetic waves
Quantum numbers, NMR, MRI
Energy levels of atoms and molecules
Protein Structure. Introduction to protein engineering.
UV-VIS absorption spectroscopy
Fluorescence spectroscopy
Infrared and Raman spectroscopy
Flow cytometry
Light and fluorescence microscopy
Modern microscopic methods (STORM, STED, SIM, confocal, 2-photon)
Image analysis
Gamma camera, computed tomography (CT), single-photon emission computed tomography (SPECT), positron emission tomography (PET)
Radioactivity, the interaction of radioactive radiations with matter
Biological effects of radioactive radiations, dosimetry
X-ray crystallography, SAXS, EM
Thermodynamics: laws and thermodynamic potentials
Calorimetry: differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC)
Analytical separation techniques: sedimentation, electrophoresis
Analytical separation techniques: chromatographic techniques
Mass spectrometry
Prüfer
Praktika, Seminarleiter/innen
- Bukovics Péter
- Huberné Barkó Szilvia
- Jánosi Tibor Zoltán
- Lukács András Szilárd
- Makkai Géza
- Ujfalusi Zoltán