Biomathematics 1 - Practice

Daten

Offizielle Daten in der Fachveröffentlichung für das folgende akademische Jahr: 2024-2025

Lehrbeauftragte/r

Semesterwochenstunden

Vorlesungen: 0

Praktika: 28

Seminare: 0

Insgesamt: 28

Fachangaben

  • Kode des Kurses: OPA-B1G-T
  • 2 kredit
  • Pharmacy
  • Basic modul
  • autumn
Voraussetzungen:

keine

Zahl der Kursteilnehmer für den Kurs:

min. 5 – max. 15

Thematik

Introduction to fundamentals and methods of differential and integral calculus. Applications in the fields of mathematics, physics, chemistry and biology.

Vorlesungen

Praktika

  • 1. Introduction
  • 2. Introduction
  • 3. The difference quotient
  • 4. The difference quotient
  • 5. Calculating derivatives. Higher-order derivatives
  • 6. Calculating derivatives. Higher-order derivatives
  • 7. Applications of derivatives
  • 8. Applications of derivatives
  • 9. Analysis of functions using derivatives
  • 10. Analysis of functions using derivatives
  • 11. Partial derivatives
  • 12. Partial derivatives
  • 13. Applications of partial derivatives
  • 14. Applications of partial derivatives
  • 15. The definite integral. Integration methods
  • 16. The definite integral. Integration methods
  • 17. 1st Midterm Test
  • 18. 1st Midterm Test
  • 19. Applications of integrals
  • 20. Applications of integrals
  • 21. Differential equations and their applications
  • 22. Differential equations and their applications
  • 23. Differential equations for reaction kinetics
  • 24. Differential equations for reaction kinetics
  • 25. 2nd Midterm Test
  • 26. 2nd Midterm Test
  • 27. Summary, consultation
  • 28. Summary, consultation

Seminare

Materialien zum Aneignen des Lehrstoffes

Obligatorische Literatur

Vom Institut veröffentlichter Lehrstoff

Will be published on Teams, Moodle or PotePedia.

Skript

József Belágyi, László Mátyus, Miklós Nyitrai: Mathematics, textbook

Péter Hajdu, László Grama: Selected Problems in Mathematics, problems booklet

Empfohlene Literatur

Voraussetzung zum Absolvieren des Semesters

None.

Semesteranforderungen

Midterm tests written during the 8th and 14th weeks from materials of differential calculus and integral calculus, respectively.

Möglichkeiten zur Nachholung der Fehlzeiten

None.

Prüfungsfragen

Will be published on Teams, Moodle or PotePedia.

Prüfer

Praktika, Seminarleiter/innen

  • KURZUSHOZ RENDELT OKTATÓ