Biomathematics 1 - Theory

Data

Official data in SubjectManager for the following academic year: 2024-2025

Course director

Number of hours/semester

lectures: 28 hours

practices: 0 hours

seminars: 0 hours

total of: 28 hours

Subject data

  • Code of subject: OPA-B1E-T
  • 2 kredit
  • Pharmacy
  • Natural and Social Sciences modul
  • autumn
Prerequisites:

OPA-B1G-T parallel

Course headcount limitations

min. 5

Topic

Introduction to fundamentals and methods of differential and integral calculus. Applications in the fields of mathematics, physics, chemistry and biology.

Lectures

  • 1. Introduction - Grama László
  • 2. Introduction - Grama László
  • 3. The difference quotient - Grama László
  • 4. The difference quotient - Grama László
  • 5. Calculating derivatives. Higher-order derivatives - Karádi Kristóf Kálmán
  • 6. Calculating derivatives. Higher-order derivatives - Karádi Kristóf Kálmán
  • 7. Applications of derivatives - Karádi Kristóf Kálmán
  • 8. Applications of derivatives - Karádi Kristóf Kálmán
  • 9. Analysis of functions using derivatives - Grama László
  • 10. Analysis of functions using derivatives - Grama László
  • 11. Partial derivatives - Trombitás Norbert
  • 12. Partial derivatives - Trombitás Norbert
  • 13. Applications of partial derivatives - Trombitás Norbert
  • 14. Applications of partial derivatives - Trombitás Norbert
  • 15. 1st Midterm Test - Grama László
  • 16. 1st Midterm Test - Grama László
  • 17. The definite integral. Integration methods - Grama László
  • 18. The definite integral. Integration methods - Grama László
  • 19. Applications of integrals - Grama László
  • 20. Applications of integrals - Grama László
  • 21. Differential equations and their applications - Karádi Kristóf Kálmán
  • 22. Differential equations and their applications - Karádi Kristóf Kálmán
  • 23. Differential equations for reaction kinetics - Karádi Kristóf Kálmán
  • 24. Differential equations for reaction kinetics - Karádi Kristóf Kálmán
  • 25. Summary, consultation - Grama László
  • 26. Summary, consultation - Grama László
  • 27. 2nd Midterm Test - Grama László
  • 28. 2nd Midterm Test - Grama László

Practices

Seminars

Reading material

Obligatory literature

Literature developed by the Department

Available on Teams, Moodle or PotePedia.

Notes

József Belágyi, László Mátyus, Miklós Nyitrai: Mathematics, textbook

Péter Hajdu, László Grama: Selected Problems in Mathematics, problems booklet

Recommended literature

Conditions for acceptance of the semester

None.

Mid-term exams

Midterm tests written during the 8th and 14th weeks from materials of differential calculus and integral calculus, respectively.

Making up for missed classes

None.

Exam topics/questions

Available on Teams, Moodle or PotePedia.

Examiners

  • Grama László

Instructor / tutor of practices and seminars

  • KURZUSHOZ RENDELT OKTATÓ