Biomathematics 1 - Theory

Daten

Offizielle Daten in der Fachveröffentlichung für das folgende akademische Jahr: 2024-2025

Lehrbeauftragte/r

Semesterwochenstunden

Vorlesungen: 28

Praktika: 0

Seminare: 0

Insgesamt: 28

Fachangaben

  • Kode des Kurses: OPA-B1E-T
  • 2 kredit
  • Pharmacy
  • Natural and Social Sciences modul
  • autumn
Voraussetzungen:

OPA-B1G-T parallel

Zahl der Kursteilnehmer für den Kurs:

min. 5

Thematik

Introduction to fundamentals and methods of differential and integral calculus. Applications in the fields of mathematics, physics, chemistry and biology.

Vorlesungen

  • 1. Introduction - Grama László
  • 2. Introduction - Grama László
  • 3. The difference quotient - Grama László
  • 4. The difference quotient - Grama László
  • 5. Calculating derivatives. Higher-order derivatives - Karádi Kristóf Kálmán
  • 6. Calculating derivatives. Higher-order derivatives - Karádi Kristóf Kálmán
  • 7. Applications of derivatives - Karádi Kristóf Kálmán
  • 8. Applications of derivatives - Karádi Kristóf Kálmán
  • 9. Analysis of functions using derivatives - Grama László
  • 10. Analysis of functions using derivatives - Grama László
  • 11. Partial derivatives - Trombitás Norbert
  • 12. Partial derivatives - Trombitás Norbert
  • 13. Applications of partial derivatives - Trombitás Norbert
  • 14. Applications of partial derivatives - Trombitás Norbert
  • 15. 1st Midterm Test - Grama László
  • 16. 1st Midterm Test - Grama László
  • 17. The definite integral. Integration methods - Grama László
  • 18. The definite integral. Integration methods - Grama László
  • 19. Applications of integrals - Grama László
  • 20. Applications of integrals - Grama László
  • 21. Differential equations and their applications - Karádi Kristóf Kálmán
  • 22. Differential equations and their applications - Karádi Kristóf Kálmán
  • 23. Differential equations for reaction kinetics - Karádi Kristóf Kálmán
  • 24. Differential equations for reaction kinetics - Karádi Kristóf Kálmán
  • 25. Summary, consultation - Grama László
  • 26. Summary, consultation - Grama László
  • 27. 2nd Midterm Test - Grama László
  • 28. 2nd Midterm Test - Grama László

Praktika

Seminare

Materialien zum Aneignen des Lehrstoffes

Obligatorische Literatur

Vom Institut veröffentlichter Lehrstoff

Available on Teams, Moodle or PotePedia.

Skript

József Belágyi, László Mátyus, Miklós Nyitrai: Mathematics, textbook

Péter Hajdu, László Grama: Selected Problems in Mathematics, problems booklet

Empfohlene Literatur

Voraussetzung zum Absolvieren des Semesters

None.

Semesteranforderungen

Midterm tests written during the 8th and 14th weeks from materials of differential calculus and integral calculus, respectively.

Möglichkeiten zur Nachholung der Fehlzeiten

None.

Prüfungsfragen

Available on Teams, Moodle or PotePedia.

Prüfer

  • Grama László

Praktika, Seminarleiter/innen

  • KURZUSHOZ RENDELT OKTATÓ