Informatics and Bioinformatics II

Data

Official data in SubjectManager for the following academic year: 2024-2025

Course director

Number of hours/semester

lectures: 0 hours

practices: 28 hours

seminars: 28 hours

total of: 56 hours

Subject data

  • Code of subject: OTV-IBI2-T
  • 4 kredit
  • Biotechnology BSc
  • Specialised Core Module modul
  • autumn
Prerequisites:

-

Course headcount limitations

min. 5 – max. 24

Topic

Students will learn about the biological sequence analysis and get skills to handling and checking sequencing data. Topics overwieved: univariate and bivariate statistical methods, probability theory and statistical hypothesis testing. R and RStudio for Genomics software, finding restriction sites. primer design. Depositing new sequences into primary databases. Search using optimal alignment algorithms: web implementations. Maximizing signal to noise ratio. Filtering false positive hits: avoiding low complexity regions, repetitive sequences, vector contaminations.

Lectures

Practices

  • 1. Introduction to univariate and bivariate statistical methods I. - Herczeg Róbert
  • 2. Introduction to univariate and bivariate statistical methods II. - Herczeg Róbert
  • 3. Introduction to probability theory and statistical hypothesis testing - Herczeg Róbert
  • 4. Application of confidence, T-and Mann-Whitney tests - Herczeg Róbert
  • 5. Basics of regression analysis I. - Herczeg Róbert
  • 6. Basics of regression analysis II. - Herczeg Róbert
  • 7. Introduction to survival analysis and Kaplan-Meier method - Herczeg Róbert
  • 8. Introduction to the command line I. - Herczeg Róbert
  • 9. Introduction to the command line II. - Herczeg Róbert
  • 10. Basic bioinformatics phrases and file formats. - Herczeg Róbert
  • 11. Introduction to bioinformatics I. - Herczeg Róbert
  • 12. Introduction to bioinformatics II. - Herczeg Róbert
  • 13. Intro to R and RStudio for Genomics I. - Herczeg Róbert
  • 14. Intro to R and RStudio for Genomics II. - Herczeg Róbert
  • 15. Basic bioinformatics softwares I. - Herczeg Róbert
  • 16. Basic bioinformatics softwares II. - Herczeg Róbert
  • 17. Basic bioinformatics softwares III. - Herczeg Róbert
  • 18. Short versus long reads I. - Herczeg Róbert
  • 19. Short versus long reads II. - Herczeg Róbert
  • 20. IGV - Herczeg Róbert
  • 21. Project Organization and Management for Genomics - Herczeg Róbert
  • 22. Data management and reproducibility - Herczeg Róbert
  • 23. Genomic data analysis and visualization in R - Herczeg Róbert
  • 24. Introduction to HPC (High Performance Computing) - Herczeg Róbert
  • 25. Building pipelines I. - Herczeg Róbert
  • 26. Building pipelines II. - Herczeg Róbert
  • 27. Runnig pipelines I. - Herczeg Róbert
  • 28. Runnig pipelines II. - Herczeg Róbert

Seminars

  • 1. The basics of biological sequence analysis: Handling and checking sequencing data. - Kunsági-Máté Sándor
  • 2. The basics of biological sequence analysis: Handling and checking sequencing data. - Kunsági-Máté Sándor
  • 3. Contig assembly. Finding restriction sites. Primer design. Depositing new sequences into primary databases. - Kunsági-Máté Sándor
  • 4. Contig assembly. Finding restriction sites. Primer design. Depositing new sequences into primary databases. - Kunsági-Máté Sándor
  • 5. Sequence comparisons: Pairwise comparisons: dot-plot. Scoring systems, substitution matrices. PAM, BLOSUM matrices. - Kunsági-Máté Sándor
  • 6. Sequence comparisons: Pairwise comparisons: dot-plot. Scoring systems, substitution matrices. PAM, BLOSUM matrices. - Kunsági-Máté Sándor
  • 7. Pairwise sequence alignments: optimal alignment. Global and local alignment. - Kunsági-Máté Sándor
  • 8. Pairwise sequence alignments: optimal alignment. Global and local alignment. - Kunsági-Máté Sándor
  • 9. Similarity searches in sequence databases: Search using optimal alignment algorithms: web implementations. - Kunsági-Máté Sándor
  • 10. Similarity searches in sequence databases: Search using optimal alignment algorithms: web implementations. - Kunsági-Máté Sándor
  • 11. Maximizing signal to noise ratio. Filtering false positive hits: avoiding low complexity regions, repetitive sequences, vector contaminations. - Kunsági-Máté Sándor
  • 12. Maximizing signal to noise ratio. Filtering false positive hits: avoiding low complexity regions, repetitive sequences, vector contaminations. - Kunsági-Máté Sándor
  • 13. Heuristic search methods. Estimating the significance of a hit. Deciding which code to use. - Kunsági-Máté Sándor
  • 14. Heuristic search methods. Estimating the significance of a hit. Deciding which code to use. - Kunsági-Máté Sándor
  • 15. Basic bioinformatics softwares I. - Kunsági-Máté Sándor
  • 16. Basic bioinformatics softwares II. - Kunsági-Máté Sándor
  • 17. Basic bioinformatics softwares III. - Kunsági-Máté Sándor
  • 18. Short versus long reads I. - Kunsági-Máté Sándor
  • 19. Short versus long reads II. - Kunsági-Máté Sándor
  • 20. Project Organization and Management for Genomics - Kunsági-Máté Sándor
  • 21. Project Organization and Management for Genomics - Kunsági-Máté Sándor
  • 22. Data management and reproducibility - Kunsági-Máté Sándor
  • 23. Introduction to HPC (High Performance Computing) - Kunsági-Máté Sándor
  • 24. Introduction to HPC (High Performance Computing) - Kunsági-Máté Sándor
  • 25. Building pipelines I. - Kunsági-Máté Sándor
  • 26. Building pipelines II. - Kunsági-Máté Sándor
  • 27. Runnig pipelines I. - Kunsági-Máté Sándor
  • 28. Runnig pipelines II. - Kunsági-Máté Sándor

Reading material

Obligatory literature

Micheal J. Crawley: The R Book 2007
Peter Dalgaard: Introductory statistics with R 2002

Literature developed by the Department

Slides and notes of all lectures are available electronically.

Notes

Slides and notes of all lectures are available electronically.

Recommended literature

John H. McDonald: Handbook of Biological Statistics, 2008

Conditions for acceptance of the semester

No additional requirements.

Mid-term exams

Two tests written on the 7th and 14th weeks.

Making up for missed classes

-

Exam topics/questions

Describe the univariate and bivariate statistical methods

Describe the probability theory and statistical hypothesis testing

T-and Mann-Whitney tests

Survival analysis and Kaplan-Meier method

Describe the R and RStudio for Genomics software

Comparison and differences: Short versus long reads

Basic rules of Project Organization and Management for Genomics

Biological sequence analysis: Handling and checking sequencing data.

Finding restriction sites. Primer design. Depositing new sequences into primary databases.

Similarity searches in sequence databases: Search using optimal alignment algorithms: web implementations.

Pairwise sequence alignments: optimal alignment. Global and local alignment.

Sequence comparisons: Pairwise comparisons: dot-plot. Scoring systems, substitution matrices. PAM, BLOSUM matrices.

Maximizing signal to noise ratio. Filtering false positive hits: avoiding low complexity regions, repetitive sequences, vector contaminations.

Heuristic search methods. Estimating the significance of a hit. Deciding which code to use.

Examiners

Instructor / tutor of practices and seminars

  • Herczeg Róbert
  • Kunsági-Máté Sándor