Data
Official data in SubjectManager for the following academic year: 2024-2025
Course director
-
Kunsági-Máté Sándor
professor,
Department of Organic and Pharmacological Chemistry -
Number of hours/semester
lectures: 0 hours
practices: 28 hours
seminars: 28 hours
total of: 56 hours
Subject data
- Code of subject: OTV-IBI2-T
- 4 kredit
- Biotechnology BSc
- Specialised Core Module modul
- autumn
-
Course headcount limitations
min. 5 – max. 24
Topic
Students will learn about the biological sequence analysis and get skills to handling and checking sequencing data. Topics overwieved: univariate and bivariate statistical methods, probability theory and statistical hypothesis testing. R and RStudio for Genomics software, finding restriction sites. primer design. Depositing new sequences into primary databases. Search using optimal alignment algorithms: web implementations. Maximizing signal to noise ratio. Filtering false positive hits: avoiding low complexity regions, repetitive sequences, vector contaminations.
Lectures
Practices
- 1. Introduction to univariate and bivariate statistical methods I. - Herczeg Róbert
- 2. Introduction to univariate and bivariate statistical methods II. - Herczeg Róbert
- 3. Introduction to probability theory and statistical hypothesis testing - Herczeg Róbert
- 4. Application of confidence, T-and Mann-Whitney tests - Herczeg Róbert
- 5. Basics of regression analysis I. - Herczeg Róbert
- 6. Basics of regression analysis II. - Herczeg Róbert
- 7. Introduction to survival analysis and Kaplan-Meier method - Herczeg Róbert
- 8. Introduction to the command line I. - Herczeg Róbert
- 9. Introduction to the command line II. - Herczeg Róbert
- 10. Basic bioinformatics phrases and file formats. - Herczeg Róbert
- 11. Introduction to bioinformatics I. - Herczeg Róbert
- 12. Introduction to bioinformatics II. - Herczeg Róbert
- 13. Intro to R and RStudio for Genomics I. - Herczeg Róbert
- 14. Intro to R and RStudio for Genomics II. - Herczeg Róbert
- 15. Basic bioinformatics softwares I. - Herczeg Róbert
- 16. Basic bioinformatics softwares II. - Herczeg Róbert
- 17. Basic bioinformatics softwares III. - Herczeg Róbert
- 18. Short versus long reads I. - Herczeg Róbert
- 19. Short versus long reads II. - Herczeg Róbert
- 20. IGV - Herczeg Róbert
- 21. Project Organization and Management for Genomics - Herczeg Róbert
- 22. Data management and reproducibility - Herczeg Róbert
- 23. Genomic data analysis and visualization in R - Herczeg Róbert
- 24. Introduction to HPC (High Performance Computing) - Herczeg Róbert
- 25. Building pipelines I. - Herczeg Róbert
- 26. Building pipelines II. - Herczeg Róbert
- 27. Runnig pipelines I. - Herczeg Róbert
- 28. Runnig pipelines II. - Herczeg Róbert
Seminars
- 1. The basics of biological sequence analysis: Handling and checking sequencing data. - Kunsági-Máté Sándor
- 2. The basics of biological sequence analysis: Handling and checking sequencing data. - Kunsági-Máté Sándor
- 3. Contig assembly. Finding restriction sites. Primer design. Depositing new sequences into primary databases. - Kunsági-Máté Sándor
- 4. Contig assembly. Finding restriction sites. Primer design. Depositing new sequences into primary databases. - Kunsági-Máté Sándor
- 5. Sequence comparisons: Pairwise comparisons: dot-plot. Scoring systems, substitution matrices. PAM, BLOSUM matrices. - Kunsági-Máté Sándor
- 6. Sequence comparisons: Pairwise comparisons: dot-plot. Scoring systems, substitution matrices. PAM, BLOSUM matrices. - Kunsági-Máté Sándor
- 7. Pairwise sequence alignments: optimal alignment. Global and local alignment. - Kunsági-Máté Sándor
- 8. Pairwise sequence alignments: optimal alignment. Global and local alignment. - Kunsági-Máté Sándor
- 9. Similarity searches in sequence databases: Search using optimal alignment algorithms: web implementations. - Kunsági-Máté Sándor
- 10. Similarity searches in sequence databases: Search using optimal alignment algorithms: web implementations. - Kunsági-Máté Sándor
- 11. Maximizing signal to noise ratio. Filtering false positive hits: avoiding low complexity regions, repetitive sequences, vector contaminations. - Kunsági-Máté Sándor
- 12. Maximizing signal to noise ratio. Filtering false positive hits: avoiding low complexity regions, repetitive sequences, vector contaminations. - Kunsági-Máté Sándor
- 13. Heuristic search methods. Estimating the significance of a hit. Deciding which code to use. - Kunsági-Máté Sándor
- 14. Heuristic search methods. Estimating the significance of a hit. Deciding which code to use. - Kunsági-Máté Sándor
- 15. Basic bioinformatics softwares I. - Kunsági-Máté Sándor
- 16. Basic bioinformatics softwares II. - Kunsági-Máté Sándor
- 17. Basic bioinformatics softwares III. - Kunsági-Máté Sándor
- 18. Short versus long reads I. - Kunsági-Máté Sándor
- 19. Short versus long reads II. - Kunsági-Máté Sándor
- 20. Project Organization and Management for Genomics - Kunsági-Máté Sándor
- 21. Project Organization and Management for Genomics - Kunsági-Máté Sándor
- 22. Data management and reproducibility - Kunsági-Máté Sándor
- 23. Introduction to HPC (High Performance Computing) - Kunsági-Máté Sándor
- 24. Introduction to HPC (High Performance Computing) - Kunsági-Máté Sándor
- 25. Building pipelines I. - Kunsági-Máté Sándor
- 26. Building pipelines II. - Kunsági-Máté Sándor
- 27. Runnig pipelines I. - Kunsági-Máté Sándor
- 28. Runnig pipelines II. - Kunsági-Máté Sándor
Reading material
Obligatory literature
Micheal J. Crawley: The R Book 2007
Peter Dalgaard: Introductory statistics with R 2002
Literature developed by the Department
Slides and notes of all lectures are available electronically.
Notes
Slides and notes of all lectures are available electronically.
Recommended literature
John H. McDonald: Handbook of Biological Statistics, 2008
Conditions for acceptance of the semester
No additional requirements.
Mid-term exams
Two tests written on the 7th and 14th weeks.
Making up for missed classes
-
Exam topics/questions
Describe the univariate and bivariate statistical methods
Describe the probability theory and statistical hypothesis testing
T-and Mann-Whitney tests
Survival analysis and Kaplan-Meier method
Describe the R and RStudio for Genomics software
Comparison and differences: Short versus long reads
Basic rules of Project Organization and Management for Genomics
Biological sequence analysis: Handling and checking sequencing data.
Finding restriction sites. Primer design. Depositing new sequences into primary databases.
Similarity searches in sequence databases: Search using optimal alignment algorithms: web implementations.
Pairwise sequence alignments: optimal alignment. Global and local alignment.
Sequence comparisons: Pairwise comparisons: dot-plot. Scoring systems, substitution matrices. PAM, BLOSUM matrices.
Maximizing signal to noise ratio. Filtering false positive hits: avoiding low complexity regions, repetitive sequences, vector contaminations.
Heuristic search methods. Estimating the significance of a hit. Deciding which code to use.
Examiners
Instructor / tutor of practices and seminars
- Herczeg Róbert
- Kunsági-Máté Sándor