Seminars in Physiology 2

Data

Official data in SubjectManager for the following academic year: 2023-2024

Course director

Number of hours/semester

lectures: 0 hours

practices: 0 hours

seminars: 12 hours

total of: 12 hours

Subject data

  • Code of subject: OAF-LS2-T
  • 1 kredit
  • General Medicine
  • Optional modul
  • spring
Prerequisites:

OAA-EL2-T parallel

Course headcount limitations

min. 5 – max. 120

Topic

The course is a consultation-type seminar related to the Physiology 2 course in groups of a maximum of 10 people. Six times during the semester, following the theme of the physiology lectures, we will help with the understanding and adequate preparation for the physiology final exams. During the lessons, following the needs of the students, we will discuss the problematic parts of the core material, and we will help the study of physiology with tests and problem-solving tasks. We recommend the course to dentistry, pharmacy, and general medicine students. The course starts in the 3rd week of the semester.

Lectures

Practices

Seminars

  • 1. Endocrinology
  • 2. Endocrinology
  • 3. Endocrinology
  • 4. Endocrinology
  • 5. The spinal cord, postural reflexes, locomotion
  • 6. The spinal cord, postural reflexes, locomotion
  • 7. Central nervous regulation of motor functions. The vestibular system
  • 8. Central nervous regulation of motor functions. The vestibular system
  • 9. Sensory systems
  • 10. EEG, sleeping and higher functions of autonomic regulations
  • 11. EEG, sleeping and higher functions of autonomic regulations
  • 12. Plasticity, memory, speech

Reading material

Obligatory literature

John E. Hall & Michael E. Hall: Guyton and Hall Textbook of Medical Physiology (Elsevier), 14th Edition, 2020, ISBN: 0323597122 (Elsevier)

Literature developed by the Department

Notes

Recommended literature

Pocket Companion to Guyton and Hall Textbook of Medical Physiology (Guyton Physiology) 14th Edition by John E. Hall PhD, Michael E. Hall MD MSc. (2020)
Kim Barrett, Susan Barman, Jason Yuan, Heddwen Brooks Ganong's Review of Medical Physiology, McGraw-Hill Education 26th Edition (2019)
Thomas M. Jessell Steven A. Siegelbaum: Principles of Neural Science, Sixth Edition, 2021, ISBN: 9781259642234 (McGraw-Hill)

Conditions for acceptance of the semester

Maximum of 15 % absence allowed

Mid-term exams

The classroom activity is included in the assessment of the course. During the course, the student must give an oral report at a chosen time.

Making up for missed classes

The missed class is advised to be covered by joining another group.

Exam topics/questions

1. Describe the body fluid compartments and explain the methods used for measurement of body fluid volumes
2. Describe the major plasma proteins and the other non-electrolytic constituents of blood and explain their function in the body
3. Describe the intra- and extracellular ionic components and explain their physiological functions
4. The structure, function and origin of erythrocytes
5. Characterize the various leukocytes indicating their origins and functions
6. Origin and function of blood platelets
7. The basic structure and metabolism of hemoglobin and the metabolism of iron
8. Describe the two pathways involved in the initiation of blood coagulation
9. Specific mechanism of clot formation
10. Describe the mechanism of fibrinolysis. Explain the significance of anticlotting mechanism
11. Regulation of H+ ion concentration in the blood
12. A-B-0 blood groups. The Rh blood types
13. The role of leukocytes in the defense mechanism
14. Mechanical activity of the heart and the three-component model of heart muscle. Calcium ion movements within the cardiac muscle cell
15. Generators and conductors of impulses in the heart. Refractory periods
16. The sequence of events in the cardiac cycle
17. The human electrocardiogram (ECG). Electrocardiography: bipolar and unipolar leads
18. The heart sounds. Phonocardiography (PCG)
19. Cardiac output: measurement, normal standards and physiological variations
20. Metabolism and energetics of cardiac muscle
21. Ventricular wall tension and the Laplace relationship
22. The heart-lung preparation (Starling?s laws)
23. Arterial blood pressure: determinants of normal arterial blood pressure
24. The arterial and the venous pulse. Basic principles of hemodynamics.
25. Circulation through the capillaries
26. The properties, production and the movement of lymph
27. Circulation in the vein. Effect of gravity on circulation
28. The pulmonary circulation. Control of lung vessels
29. The coronary circulation
30. Cerebral circulation. The concept of blood-brain barrier
31. Splanchnic circulation
32. Skeletal muscle circulation. Cutaneous circulation
33. Nervous control of the heart
34. Control mechanisms of the circulatory system: general considerations
35. Local control of the vascular smooth muscle
36. Autoregulation of blood flow in tissues and organs
37. The function and importance of baroreceptors in the regulation of circulation
38. Reflex control mechanisms of circulation
39. Mechanisms of vasoconstriction and vasodilatation
40. Mechanics of respiration (functions of respiratory muscles, compliance, intrathoracic pressures, respiratory volumes)
41. Alveolar air, alveolar ventilation, dead spaces. Function of the respiratory passageways
42. Gaseous exchange in the lungs and tissues
43. O2 and CO2 transport in the body
44. Peripheral and central regulatory mechanisms of respiration. Respiratory reflexes
45. Chemical control of respiration. Acidosis, alkalosis
46. Different types of hypoxia. Oxygen treatment. Mechanisms of acclimatisation. Nitrogen narcosis. Decompression sickness
47. Describe the origin, composition, function and control of salivary secretion
48. Describe the origin, nature and function of gastric secretion indicating the mechanisms of regulation
49. Mechanism and regulation of gastrointestinal movements
50. Identify the pancreatic secretions, their components, their action and the substrates on which they act. Control mechanism of pancreatic secretion
51. Describe the basic ingredients and functions of the bile indicating the origin and fate of the components and the factors controlling bile secretions and gall bladder functions
52. Identify the components and functions of the intestinal system
53. Describe how carbohydrate is digested and absorbed indicating the enzymes involved
54. Describe how fat is digested and absorbed indicating the enzymes and secretions involved
55. Describe how protein is digested and absorbed indicating the enzymes and secretions involved
56. Dynamics of glomerular filtration. Glomerular filtration rate. Plasma clearance
57. Renal blood flow. Clearance of PAH. Extraction ratio. Filtration fraction
58. Regulation of renal blood flow and pressure. Renin-angiotensin system
59. Reabsorption and secretion of different substances in the renal tubule. Methods for their investigation
60. Concentrating and diluting mechanisms of the kidney
61. Fluid volume regulation of the body
62. Regulation of concentrations of ions in the extracellular fluid. Regulation of osmolality of body fluids
63. Basal metabolic rate. Describe factors influencing the basal metabolism
64. Define metabolic rate explaining those factors influencing the total expenditure of energy by the body
65. Describe the necessary elements of normal diet
66. The normal body temperature and its physiological variations. Hyperthermia, fever, hypothermia
67. Chemical regulation of body temperature, changes of regulation at low and high environmental temperature
68. Physical regulation of body temperature, changes of regulation at low and high environmental temperature
69. Central regulatory mechanisms of heat production and heat loss
70. Mechanisms of hormone action (receptors, intracellular mediators, cAMP, Ca2+ and diacylglycerol, protein kinases)
71. Mechanism of hormonal regulation. Negative and positive feedback controls in the endocrine system
72. The anterior pituitary hormones. Regulation of pituitary hormone secretions. Pituitary dysfunction
73. Function of growth hormone during development and after adolescence
74. Abnormalities of thyroid secretion. Goitrogens
75. Function of the thyroid gland. Iodine metabolism in the body
76. Hormonal changes during menstrual cycle
77. Hormonal changes during pregnancy. Role of placenta in pregnancy. Foeto-placental unit
78. Hormones of lactation
79. Mechanism of erection and ejaculation. The sexual act (coitus)
80. The function of the testis, epididymis, seminal vesicle, and prostate
81. Regulation of sexual behaviour. Maternal behaviour
82. Physiological changes at puberty and climacteric
83. Vasopressin and oxytocin. Function of ANH (atrionatriuretic hormone)
84. The effects of prostaglandins
85. The endocrine pancreas
86. Function of insulin in the body. Diabetes mellitus
87. Hormonal control of carbohydrate metabolism
88. Hormonal control of calcium and phosphor homeostasis
89. Hormonal function of the adrenocortical system. Hypophyseal regulation of the adrenocortical system. Stress and the adaptation syndrome
90. Function and regulation of mineralocorticoids
91. Function and regulation of glucocorticoids
92. Consequences of hypo- and hyperfunction of the adrenal cortex. Androgens and estrogens of the adrenal cortex.
93. Hormones of the adrenal medulla. Importance of the sympathoadrenal system
94. Physiology of ontogenesis and aging.
95. Molecular mechanism of muscle contraction. The regulatory role of calcium ion
96. Mechanical characteristics of muscle. Differentiation of fast and slow twitch muscle fibers. Role of the connective tissue in the function of muscles
97. Mechanism of fatigue
98. Electromyography (EMG)
99. The source of energy for muscle contraction (aerobe and anaerobe processes). Heat production during the contraction-relaxation cycle
100. The neuromuscular junction
101. Structural and functional differences between skeletal and smooth muscles. Mechanism of smooth muscle contraction
102. Membrane potential and action potential: explain their ionic mechanisms. Membrane properties of CNS neurons
103. The compound action potential. Conductive properties of various nerve fibers
104. Neurochemistry of synapses, neurotransmitters, postsynaptic receptors, and neuromodulators. EPSP, IPSP
105. The myotatic (stretch) reflex. Gamma motoneurons
106. The motor units. Central control of muscle contractions
107. Types of mechanoreceptors and their role in motor control
108. How do cutaneous mechanoreceptors help to explore, learn and know our environment?
109. Somatosensory mechanisms of the spinal cord and brain stem
110. Pain mechanisms, central and peripheral components
111. Descendent control (gating) of nociception and of pain reactions
112. Organization of primary somatosensory cortex, thalamocortical projection and somatotopy
113. The human electroencephalogram (EEG). Evoked potential (EP) technique
114. Neural mechanisms of sleep and correlated somatic, autonomic, and bioelectrical phenomena. The role of reticular formation in the sleep-wakefulness cycle
115. The diencephalon (hypothalamus), its motor, autonomic, and hormonal regulatory function
116. Hunger and thirst. Central regulatory processes of food and water intake
117. Central mechanisms of locomotion
118. Decerebration rigidity and spinal shock (symptoms and mechanisms)
119. Postural and righting reflexes, their central mechanisms and localization within the spinal cord, brain stem and neocortex
120. Structure and function of the extrapyramidal system
121. Symptoms after damages of different extrapyramidal structures. Role of neurotransmitters in the extrapyramidal functions
122. Importance of the cerebellum in co-ordination of movements
123. Cerebellar cortical mechanisms
124. Structure and function of the vestibular system
125. Functions of the autonomic nervous system. Autonomic reflexes
126. Humoral mediators in the autonomic nervous system. Adrenergic, cholinergic and opioid receptors
127. Structures, connections, and functions of the limbic system
128. Functions of the motor cortex. Symptoms following its damage
129. Corticospinal (pyramidal) system. Consequences of lesions of the pyramidal pathways and the peripheral motoneuron
130. The concept of drive and motivation. Their integrated neural mechanisms. Reticular activating system
131. Emotions and their central nervous mechanisms
132. The phenomena of operant (instrumental) and classical (Pavlovian) conditioning. Mechanism of reinforcement
133. Electrical and chemical self-stimulation. Rewarding (positive) and punishing (negative) reinforcement. Simple learning processes. Exceptional forms of conditioning
134. Types and disorders of memory functions
135. Cerebral dominance. Lateralization of functions in the hemispheres. Split-brain examinations
136. Functions of the neocortex's parietal and temporal association (intrinsic) areas. Symptoms after damage (apraxia, agnosia)
137. Neurophysiological mechanisms of speech. Speech disorders
138. Functions of the frontal lobe (prefrontal intrinsic area)
139. Functions of the temporal lobe (Kluver-Bucy syndrome)
140. Central monoaminergic systems and their functional significance
141. Peripheral auditory mechanisms (conductive apparatus and cochlea)
142. Central auditory pathways, acoustic cortex and related mechanisms
143. Physiological optics
144. The retina. Photoreceptors and neuronal functions in the retina
145. Central visual pathways, the visual cortex and their functions
146. Colour vision. Stereoscopic vision
147. Peripheral and central mechanisms of olfaction
148. Peripheral and central mechanisms of sensation of taste
149. Plasticity in the nervous system. Consequences of sensory deprivation in the visual cortex. Ageing. Transplantation

Examiners

Instructor / tutor of practices and seminars

  • Dr. Barabás Klaudia
  • Dr. Buzás Péter
  • Dr. Gálosi Rita
  • Dr. Jandó Gábor
  • Dr. Kecskés Miklós
  • Dr. Kövesdi Erzsébet
  • Dr. László Bettina Réka
  • Dr. László Kristóf
  • Dr. Lengyel Ferenc
  • Dr. Ollmann Tamás
  • Dr. Pál József
  • Dr. Péczely László Zoltán
  • Dr. Szabó István
  • Dr. Zagorácz Olga
  • Dr. Zelena Dóra Tímea