Practical Applications of Biomathematics

Daten

Offizielle Daten in der Fachveröffentlichung für das folgende akademische Jahr: 2024-2025

Lehrbeauftragte/r

  • Bugyi Beáta

    associate professor,
    Department of Medical Biology and Central Electron Microscope Laboratory

Semesterwochenstunden

Vorlesungen: 12

Praktika: 0

Seminare: 0

Insgesamt: 12

Fachangaben

  • Kode des Kurses: OTF-GBM-T
  • 1 kredit
  • Biotechnology BSc
  • Optional modul
  • spring
Voraussetzungen:

keine

Vizsgakurzus:

Zahl der Kursteilnehmer für den Kurs:

min. 5 – max. 20

Erreichbar als Campus-Kurs für . Campus-karok: GYTK TTK

Thematik

The medical, pharmaceutical, and biotechnological sciences and research methodologies increasingly rely on the use and management of databases and the tools of descriptive and inferential statistics. The course provides overviews of the basics and applications of database management and statistical software packages and support. The Students can get experience and practical skills by solving software-based exercises and problem-solving (e.g., Microsoft Excel, RStudio, GPower, Microcal Origin, Minitab). Special emphasis is laid on the application of modern teaching methods (flipped learning, thematic student presentations, and projects, discussion of the Students’ research results, and case studies) in order to provide students with the knowledge, understanding, and hands-on experience in database management and in the mathematical and software toolkit of statistical analysis. The course offers the opportunity to acquire basic mathematical, computer science, and statistical skills that can be helpful in other natural sciences and in preparing TDK and diploma work, thesis, or other scientific presentations.

Vorlesungen

  • 1. Introduction, data, data management and statistics. - Bugyi Beáta
  • 2. Introduction to software tools. - Bugyi Beáta
  • 3.

    Principles and applications of descriptive statistics.

    - Leipoldné Vig Andrea Teréz
  • 4.

    Principles and applications of descriptive statistics.

    - Leipoldné Vig Andrea Teréz
  • 5.

    Principles and applications of inductive statistics.

    - Gaszler Péter
  • 6.

    Principles and applications of inductive statistics.

    - Gaszler Péter
  • 7. Correlation and regression analysis. - Leipoldné Vig Andrea Teréz
  • 8. Correlation and regression analysis. - Leipoldné Vig Andrea Teréz
  • 9.

    Introduction to R.

    - Bugyi Beáta
  • 10.

    Introduction to R.

    - Bugyi Beáta
  • 11.

    Basics of biological data analysis in R.

    - Bugyi Beáta
  • 12.

    Basics of biological data analysis in R.

    - Bugyi Beáta

Praktika

Seminare

Materialien zum Aneignen des Lehrstoffes

Obligatorische Literatur

Vom Institut veröffentlichter Lehrstoff

Can be found on MS Teams group of the course.

Skript

Empfohlene Literatur

Statistics Openstax, ISBN-10: 1-947172-05-0, ISBN-13: 978-1-947172-05-0

Allan G. Bluman: Elementary statistics, ISBN 978–0–07–338610–2

Myra L- Samuels, Jeffrey A. Witmer, Andrew A. Schaffner: Statistics for the life sciences, ISBN-13: 978-1-292-10181-1

James Stewart, Troy Day: Biocalculus, ISBN-13: 978-1-133-10963-1

J. Pezzullo: Biostatistics for dummies, 2013, Wiley, ISBN 978-1-118-55399-2

Voraussetzung zum Absolvieren des Semesters

A maximum of 25% absence is allowed.

Semesteranforderungen

Grading policy

The grade is based on the result of

a written test,

or short (5-10 minute) presentations of Students’ projects or laboratory notebooks.

Möglichkeiten zur Nachholung der Fehlzeiten

The opportunity to make up for absence can be discussed with the course leader.

Prüfungsfragen

No exam is scheduled in the exam period.

Prüfer

Praktika, Seminarleiter/innen

  • Bugyi Beáta
  • Gaszler Péter
  • Leipoldné Vig Andrea Teréz