Molecular Cell Biology for Students of Dentistry 1

Daten

Offizielle Daten in der Fachveröffentlichung für das folgende akademische Jahr: 2024-2025

Lehrbeauftragte/r

  • Sétáló György ifj.

    associate professor,
    Department of Medical Biology and Central Electron Microscope Laboratory

Semesterwochenstunden

Vorlesungen: 42

Praktika: 0

Seminare: 0

Insgesamt: 42

Fachangaben

  • Kode des Kurses: OSA-MF1-T
  • 3 kredit
  • Dentistry
  • Basic modul
  • autumn
Voraussetzungen:

keine

Zahl der Kursteilnehmer für den Kurs:

min. 5 – max. 100

Thematik

To provide a molecular and cell biological basis for anatomy, biochemistry, physiology, pathology, pathophysiology, microbiology and pharmacology studies of dentistry students. The course covers cellular and molecular characteristics of the structure and function of cells, the mechanisms of storage, replication and expression of the genetic information and the methods used to study them.

Vorlesungen

  • 1. Orientation - Sétáló György ifj.
  • 2. Pro- and eukaryotes - Sétáló György ifj.
  • 3. Nucleic acids - Sétáló György ifj.
  • 4. Proteins - Sétáló György ifj.
  • 5. Light microscopy - Sétáló György ifj.
  • 6. Electron microscopy - Berta Gergely
  • 7. Restriction endonuleases - Bátor Judit
  • 8. DNA cloning, genomic libraries - Sétáló György ifj.
  • 9. Polymerase chain reaction - Sétáló György ifj.
  • 10. DNA sequencing by Sanger and DNA chips - Bátor Judit
  • 11. New generation sequencing - Kemény Ágnes
  • 12. Examination of gene expression - Kemény Ágnes
  • 13. Transgenic organisms - Kemény Ágnes
  • 14. Targeted inhibition of gene expression - Kemény Ágnes
  • 15. Immunological methods - Varga Judit
  • 16. The cell nucleus - Sétáló György ifj.
  • 17. Genome organisation - Sétáló György ifj.
  • 18. Structure and chemical composition of chromatin - Sétáló György ifj.
  • 19. Phases of the cell cycle - Sétáló György ifj.
  • 20. Regulation of the cell cycle - Sétáló György ifj.
  • 21. Cell division, mitosis and meiosis - Sétáló György ifj.
  • 22. Replication in prokaryotes - Pap Marianna
  • 23. Replication in eukaryotes - Pap Marianna
  • 24. DNA-repair - Pap Marianna
  • 25. Transcription in prokaryotes - Pap Marianna
  • 26. Eukaryotic pre-rRNA transcription and processing - Pap Marianna
  • 27. Eukaryotic pre-mRNA transcription - Pap Marianna
  • 28. Eukaryotic pre-mRNA processing - Pap Marianna
  • 29. Components of translation - Pap Marianna
  • 30. The mechanism of translation - Pap Marianna
  • 31. The genetic code - Pap Marianna
  • 32. Gene regulation in prokaryotes - Pap Marianna
  • 33. Levels of gene regulation in eukaryotes - Berta Gergely
  • 34. Epigenetics - Berta Gergely
  • 35. Transcription factors - Berta Gergely
  • 36. Rough endoplasmatic reticulum, Golgi-apparatus and protein glycosylation - Bátor Judit
  • 37. Endocytosis and vesicular transport - Kemény Ágnes
  • 38. Lysosomes and the smooth endoplasmatic reticulum - Sétáló György ifj.
  • 39. Reactive oxygen species - Sétáló György ifj.
  • 40. Structure and function of mitochondria - Sétáló György ifj.
  • 41. Genetic apparatus of mitochondria - Sétáló György ifj.
  • 42. Closing lecture - Sétáló György ifj.

Praktika

Seminare

Materialien zum Aneignen des Lehrstoffes

Obligatorische Literatur

Vom Institut veröffentlichter Lehrstoff

Szeberényi J., Komáromy L.: Molecular Cell Biology Syllabus.

Skript

Empfohlene Literatur

Gerald Karp: Cell and Molecular Biology

Cooper, G.M.: The Cell. A Molecular Approach.

Lodish et al.: Molecular Cell Biology

Alberts et al.: Molecular Biology of the Cell

Szeberényi J.: Experiments in Molecular Cell Biology

Voraussetzung zum Absolvieren des Semesters

Compliance with the maximum permitted number of absences.

Semesteranforderungen

Mid-term tests

Möglichkeiten zur Nachholung der Fehlzeiten

It is not possible to make up for missed lectures.

Prüfungsfragen

1.      Main features of prokaryotic and eukaryotic cells

2.      Structure and function of nucleotides

3.      The DNA molecule

4.      DNA as the genetic material (experiments as evidence)

5.      Types of RNA

6.      Proteins

7.      Carbohydrates

8.      Lipids

9.      Restriction endonucleases

10.  Cloning of DNA fragments

11.  Genomic libraries

12.  Polymerase chain reaction

13.  The Sanger DNA sequencing method

14.  The Illumina DNA sequencing method

15.  Proton sequencing and nanopore sequencing of DNA

16.  DNA chips

17.  Fluorescence in situ hybridization

18.  The Human Genome Project

19.  cDNA cloning

20.  cDNA libraries

21.  Transgenic organisms

22.  Targeted gene inactivation at the DNA level

23.  Inhibition of endogenous gene expression at the level of mRNA

24.  Inhibition of endogenous gene expression at the level of proteins

25.  Microscopic detection of specific antigens

26.  Immunoprecipitation and Western blotting

27.  The structure of the nucleus

28.  Unique and repetitive sequences

29.  Multilevel chromatin organization

30.  The chemical composition of chromatin

31.  Main phases of the cell cycle

32.  Regulation of the cell cycle

33.  Mitosis – how our somatic cells divide

34.  Meiosis – how germ cells are generated in humans

35.  General features of replication

36.  The mechanism of replication in prokaryotes

37.  Features of eukaryotic replication

38.  Excision repair of DNA

39.  Proofreading, Mismatch repair

40.  Reparation of double-stranded DNA breaks

41.  Prokaryotic RNA synthesis and processing

42.  General features of eukaryotic RNA synthesis

43.  Synthesis of eukaryotic rRNA

44.  Synthesis of pre-mRNA in eukaryotes, modifications at the 5’ and 3’ ends

45.  Pre-mRNA splicing and editing

46.  Synthesis of aminoacyl-tRNA

47.  The structure and function of ribosomes

48.  The genetic code

49.  Initiation of translation

50.  Elongation and termination of translation

51.  General features of translation

52.  The lactose operon

53.  The tryptophan operon

54.  Cloning by nuclear transplantation

55.  Regulation of pre-mRNA synthesis and processing in eukaryotes

56.  Regulation of mRNA transport, translation and degradation in eukaryotes

57.  Regulation of protein activity and degradation in eukaryotes

58.  Eukaryotic transcription factors

59.  The mechanism of action of steroid hormones

60.  Rough endoplasmic reticulum

61.  Golgi complex and the glycosylation of proteins

62.  The mechanism of secretion

63.  Endocytosis

64.  The mechanism of vesicular transport

65.  Lysosomes

66.  Smooth endoplasmic reticulum

67.  Oxygen free radicals and membrane damage

68.  The structure and function of mitochondria

69.  The genetic apparatus of mitochondria

70.  Mitochondrial diseases

Prüfer

  • Balogh Bálint
  • Bátor Judit
  • Berta Gergely
  • Bogdán Ágnes
  • Boros Melinda
  • Brandt Barbara
  • Bugyi Beáta
  • Csabai-Tanics Tímea Judith
  • Gaszler Péter
  • Horváth Marianna
  • Kemény Ágnes
  • Leipoldné Vig Andrea Teréz
  • Les Hajnalka
  • Németh Marica
  • Pap Marianna
  • Schipp Renáta
  • Sétáló György ifj.
  • Stayer-Harci Alexandra
  • Szütsné Tóth Mónika Ágnes
  • Tarjányi Oktávia
  • Varga Judit

Praktika, Seminarleiter/innen