« Oktatás

Radiation Biology

Tantárgy menü

Adatok

A Tantárgybejelentőben megadott hivatalos adatok az alábbi tanévre: 2020-2021

Tantárgyfelelős

Dr. Géza SÁFRÁNY (gsafrany@hotmail.com), visiting professor

Institute of Laboratory Medicine

Tárgyadatok

Kód: OSF-SUB-T  |  2 kredit  |  Dentistry |  Optional modul  |  spring

Előfeltétel: Nincs

Óraszámok / félév

12 óra előadás + 0 óra gyakorlat + 12 óra szeminárium = összesen 24 óra

Kurzus létszámkorlát

min. 3 fő – max. 30 fő

Campus kurzusként elérhető 30 fő számára. Campus-karok: ÁOK ÁJK BTK ETK KPVK GYTK KTK MK MIK TTK

Tematika

The course will focus on the better understanding of radiation effects on the whole organisms, tissues and cells, as well as on the cellular causes leading to the death of normal and malignant cells. This helps to understand why a given dose of radiation induces tumors in one case while destroys tumor cells in another case. On the basis of radiobiological knowledge one can develop new therapeutic modalities to improve the survival of cancer patients. Radiation biology helps us to understand how and why ionizing radiation can be used to examine healthy and pathological cell structures and to diagnose and treat various diseases.
The aim of radiation therapy is to kill tumor cells without seriously damaging normal tissues. The death of normal cells leading to the development of early and late normal tissue sequels strongly influences the amount of total and fraction doses deliverable to the malignant tissues and by this way the success of radiation therapy. We will describe factors and protocols affecting and suitable to predict radiation-induced reactions in healthy and malignant cells. The effect of dose rate, total- and fraction dose, as well as treatment time on the radiation response of normal and tumor cells will be discussed, too. We will describe in details those new radiotherapy approaches (accelerated-, hyper-fractionated, etc. radiotherapy) which were developed on radiobiological backgrounds. We will discuss those new therapeutic modalities such as gene therapy which can be efficiently combined with radiation therapy. Using up to date methodologies the radiation sensitivity of normal and malignant tissues might be predicted before the onset of radiation therapy and radiation regimens can be adjusted to individual needs. This can improve the survival chances of tumor patients.
Finally, we will discuss the radiation protection measures necessary to minimize the damaging effect of ionizing radiation.

Előadások

  • 1. The importance of radiobiology in clinical diagnostics and therapy. Types of ionizing radiation, natural and artificial sources of radiation. - Dr. Sáfrány Géza
  • 2. Cellular radiation damages, linear energy transfer and the relative biological effect. - Dr. Sáfrány Géza
  • 3. Repair of cellular damages at the cellular level, the effect of dose rate on DNA repair. - Dr. Sáfrány Géza
  • 4. The effect of oxygen on the survival of cells, radio-sensitizing agents, bioreductive drugs. - Dr. Sáfrány Géza
  • 5. Acute radiobiological injuries in humans and in experimental animal models. - Dr. Sáfrány Géza
  • 6. Epidemiology and molecular background of radiation-induced tumors. - Dr. Sáfrány Géza
  • 7. Proliferative organization of normal tissues. Dose-effect relationships in normal tissues. - Dr. Sáfrány Géza
  • 8. The radiobiological background of fractionated radiotherapy, the importance and application of the linear-quadratic approach in tumor treatment. - Dr. Sáfrány Géza
  • 9. The role of treatment duration, total and fraction dose in radiotherapy. - Dr. Sáfrány Géza
  • 10. Radiobiological principles of low and high-dose rate brachytherapy. - Dr. Sáfrány Géza
  • 11. Risks of occupational exposure to radiation: dose limit in radiation protection. - Dr. Sáfrány Géza
  • 12. Gene therapy of malignant tumors: combined modality treatments with radio- chemo- and gene therapy. - Dr. Sáfrány Géza

Gyakorlatok

Szemináriumok

  • 1. Basics of radio-physics and radiochemistry: dosimetry, radiolysis, formation of free radicals, direct and indirect effects of radiation.
  • 2. Cell death due to ionizing radiation, survival curves.
  • 3. Radio-protective agents.
  • 4. Genetic and fetal effects of ionizing radiation.
  • 5. Molecular biological principles of tumor development.
  • 6. The Chernobil nuclear accident and its consequences.
  • 7. Proliferation of tumor cells, factors influencing tumor development.
  • 8. Early and late side-effects of radiotherapy.
  • 9. Alternative radiotherapeutic applications: accelerated-, hyper- and hypo-fractionated radiotherapy, particle radiations.
  • 10. The risk of repeated radiotherapy.
  • 11. Targeted and individual tumor therapy, estimating radiosensitivity, predictive assays.
  • 12. Doses and risks in radiology and imaging diagnostics.

A tananyag elsajátításához szükséges segédanyagok

Kötelező irodalom

Radiation Biology: A Handbook for Teachers and Students. International Atomic Energy Agency, Vienna, 2010; http://www.iaea.org/books

Saját oktatási anyag

Jegyzet

Ajánlott irodalom

http://radiationbiology.arc.nasa.gov/index.html
http://www.rtstudents.com/students/radiation-biology.htm

A félév elfogadásának feltételei

In the case of maximum 2 unexcused absences the student is allowed to take the exam.

Félévközi ellenőrzések

Test exam at the end of the course; oral consultation at halfway

Távolmaradás pótlásának lehetőségei

Joining later seminars, individual consultations.

Vizsgakérdések

Multiple choice test for checking the acquisition of course material is given at the end of semester. Questions include material discussed in lectures and seminars. It is important to know that part of the material cannot be found in textbooks.

Vizsgáztatók

Gyakorlatok, szemináriumok oktatói

  • Dr. Sáfrány Géza