Az igazság az élő sejtről, amit mindenkinek tudnia kell

Adatok

A Tantárgybejelentőben megadott hivatalos adatok az alábbi tanévre: 2024-2025

Tantárgyfelelős

Óraszámok/félév

előadás: 12 óra

gyakorlat: 0 óra

szeminárium: 0 óra

összesen: 12 óra

Tárgyadatok

  • Kód: OFE-PRO-T
  • 1 kredit
  • Fogorvos
  • Elektív modul
  • Tavaszi
Előfeltétel:

Nincs

Kurzus létszámkorlát

min. 5 fő – max. 200 fő

Tematika

Az élő sejt nem csupán heterogén molekuláris összetételében, hanem él is. Az egyetemi évek alatt kevés figyelmet fordítanak erre a fontos tényre. Alapvető kérdés, hogy a XXI. század kezdetére, milyen mélységű ismerete van az emberiségnek az élővé szerveződés lényegéről. Mi a lényegi különbség a halott sejt és az élő sejt között? Milyen saját képe van ma az élő sejtről egy orvostanhallgatónak, egy gyógyszerész, vagy biológushallgatónak? Mik a tények és az elméletek (hipotézisek) az élő sejtről? Hogyan lehet ezeket elkülöníteni? Mi a génekhez (DNS) kötött lineáris-memória és mi a dinamikusan asszociált fehérjerendszerekhez kapcsolt tér-memória lényege? Membránnal körülvett szabad oldat-e az élő sejt, vagy olyan dinamikus rendszer, amelyben a víz is szerkezeti elem? Ezekre a kérdésekre próbálunk a kurzus keretében a feltárt igazságok, a tények számbavételével eligazítást adni.

Előadások

  • 1. Bevezetés: A valóságalapú saját világkép az élő sejtről. "Omnis cellula e cellula"; (Minden sejt sejtből keletkezik). Az első élő sejtet Darwin progenitornak nevezte és belőle származtatta, belőle származtatja a modern tudomány is az összes élő sejtet. Mi az élő állapot? (Szent Györgyi Albert válasza). A tények és a hipotézisek közti különbség az élő sejt analízisének példái alapján. - Kellermayer Miklós (LMI)
  • 2. Bevezetés: A valóságalapú saját világkép az élő sejtről. "Omnis cellula e cellula"; (Minden sejt sejtből keletkezik). Az első élő sejtet Darwin progenitornak nevezte és belőle származtatta, belőle származtatja a modern tudomány is az összes élő sejtet. Mi az élő állapot? (Szent Györgyi Albert válasza). A tények és a hipotézisek közti különbség az élő sejt analízisének példái alapján. - Kellermayer Miklós (LMI)
  • 3. Az élő sejtben a biokémiai folyamatok tér-idő koordináták közt zajlanak. Ez a tény önmagában ellentmond az intracelluláris szabad oldat hipotézisnek. Az élő sejt magján belül a gének (DNS) nincsenek kitéve egy 150-200 mmol/l szabad elektrolit oldatnak. (Saját megfigyelések). - Kellermayer Miklós (LMI)
  • 4. Az élő sejtben a biokémiai folyamatok tér-idő koordináták közt zajlanak. Ez a tény önmagában ellentmond az intracelluláris szabad oldat hipotézisnek. Az élő sejt magján belül a gének (DNS) nincsenek kitéve egy 150-200 mmol/l szabad elektrolit oldatnak. (Saját megfigyelések). - Kellermayer Miklós (LMI)
  • 5. Hol van az élő sejt határa? Problémák a sejtfelszíni kettős lipoid membrán körül. Problémák a membrán pumpa - szabad oldat hipotézissel. Kritikai megjegyzések a mikro elektródás mérésekről. (Gilbert Ling 50 évvel ezelőtti eredeti megfigyelései). - Kellermayer Miklós (LMI)
  • 6. Hol van az élő sejt határa? Problémák a sejtfelszíni kettős lipoid membrán körül. Problémák a membrán pumpa - szabad oldat hipotézissel. Kritikai megjegyzések a mikro elektródás mérésekről. (Gilbert Ling 50 évvel ezelőtti eredeti megfigyelései). - Kellermayer Miklós (LMI)
  • 7. Az élő sejt energia tára. A felszíni membrán pumpák sokkal nagyobb energiát igényelnének, mint ami rendelkezésre áll. Probléma az ATP hidrolízis, makroerg foszfát felhasználás elmélete körül. Az adszorbeált ATP teremti meg, tartja fenn a fehérjék magas energia állapotát. A fehérjék munkavégzése - Kellermayer Miklós (LMI)
  • 8. Az élő sejt energia tára. A felszíni membrán pumpák sokkal nagyobb energiát igényelnének, mint ami rendelkezésre áll. Probléma az ATP hidrolízis, makroerg foszfát felhasználás elmélete körül. Az adszorbeált ATP teremti meg, tartja fenn a fehérjék magas energia állapotát. A fehérjék munkavégzése - Kellermayer Miklós (LMI)
  • 9. A dinamikusan felépített cytoskeleton, membránskeleton és extracelluláris mátrix. A "térmemória", mint az élő sejt alapvető karakterisztikuma. A sejtdifferenciálódás problematikája. Az őssejtek (stem cells) kutatásának eddigi fő eredményei. A sejtek fúziója, hibridizációja és a klónozás. - Kellermayer Miklós (LMI)
  • 10. A dinamikusan felépített cytoskeleton, membránskeleton és extracelluláris mátrix. A "térmemória", mint az élő sejt alapvető karakterisztikuma. A sejtdifferenciálódás problematikája. Az őssejtek (stem cells) kutatásának eddigi fő eredményei. A sejtek fúziója, hibridizációja és a klónozás. - Kellermayer Miklós (LMI)
  • 11. Az élő sejt dinamikus fehérje-ATP-K-H2O co-compartmentalizációja. A sejtfehérjék magas szabad energia állapota az újdonképződéskor és később. A dinamikus újrarendeződés, az intracelluláris fehérjetranszport a chaperonok szerepének megvilágításában - Kellermayer Miklós (LMI)
  • 12. Az élő sejt dinamikus fehérje-ATP-K-H2O co-compartmentalizációja. A sejtfehérjék magas szabad energia állapota az újdonképződéskor és később. A dinamikus újrarendeződés, az intracelluláris fehérjetranszport a chaperonok szerepének megvilágításában - Kellermayer Miklós (LMI)

Gyakorlatok

Szemináriumok

A tananyag elsajátításához szükséges segédanyagok

Kötelező irodalom

Kellermayer Miklós: Az élő sejt csodája

Saját oktatási anyag

Kellermayer Miklós: Az élő sejtről diákoknak segéd tankönyv (ajánlott)

Jegyzet

nincs

Ajánlott irodalom

Kellermayer Miklós: Az élet

Geoffrey M. Cooper: The Cell - A Molecular Approach

Bruce Alberts, Dennis Bray, et all: Molecular Biology of The Cell

Gilbert N. Ling: A Revolution in the Physiology of the Living Cell, Krieger Publ. 1992

A félév elfogadásának feltételei

Min. 4 oldalas esszészerű dolgozat, max. 2 óra hiányzás.

Félévközi ellenőrzések

Esszé

Távolmaradás pótlásának lehetőségei

Nincs

Vizsgakérdések

Nincs

Vizsgáztatók

Gyakorlatok, szemináriumok oktatói